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Completely distributive lattices
by
M. S. Lambrou (Iraklion — Crete)

Abstract. If a complete lattice with 0 and 1 satisfies the infinite distributivity laws it is
called completely distributive. In this paper we give simple proofs of known characterizations of
complete distributivity as well as new characterizations in terms of maps from the lattice to itsell
satislying the condition a = \/{b/a & p(b)} for all a in the lattice, where p: L— L is the map.

1. Introduction. Although the motivation for the results of this paper,
whose purpose is to study complete distributivity of lattices, arise from
Functional Analysis, we shall keep the theorems and their proofs lattice

_theoretic. In Functional Analysis, and more specifically in the study of

invariant subspaces of operators on a normed vector space H, one examines
conditions on a set L of subspaces of H to be reflexive in the sense that it
cointides with the family of subspaces that are invariant under each operator
that leaves invariant the elements of the set (see Radjavi and Rosenthal [13]
for the relavant definitions). A necessary, but far from sufficient, condition for
the reflexivity of L is that L is a complete lattice (under the usual lattice
operations on subspaces). There are several sufficient conditions known. For
instance Ringrose in [17] has shown that every complete totally ordered
lattice of subspaces of a Hilbert space (complete nest in his terminology) is
reflexive. Halmos in [7] has shown that complete atomic Boolean lattices of
subspaces are also reflexive. Both these examples are examples of completely
distributive lattices. Longstaff in [12] has shown that in fact complete and
completely distributive lattices of subspaces of Hilbert spaces are reflexive,
and so he extended the previous two cases. A necessary and sufficient
condition for a complete and completely distributive lattice to be a complete
atomic Boolean lattice is given in [10]. Another equivalent condition, but
this time Functional Analytic, is given in [9]. It is easy to see that if the
underlying Hilbert space is finite dimensional then a lattice is complete and
completely distributive if and only if it is distributive. In the finite dimen-
sional Hilbert space case R. Johnson in [8] has shown that a necessary and
sufficient condition for a finite lattice to be reflexive is that it is distributive.
In general Hilbert spaces neither of these two conditions implies the other.
Indeed, Halmos [7] constructed a reflexive lattice which is (lattice) isomor-
phic to the non-modular pentagon M. An example in the opposite direction
is due to Conway ([6]) who constructed a non-reflexive complete lattice
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isomorphic to a (non-atomic) Boolean algebra. Incidentally, this example also
shows that distributivity alone (that is, not complete distributivity) of a
complete lattice is not sufficient (unlike the finite dimensional case) for
reflexivity. (Notice that by Tarski’s theorem ([5], p. 119) non-atomic Boolean
lattices are never completely distributive.)

identity
/_\ \/“tj = \/, /,\aifm
i Sert i

and its dual hold, for all choises of a;;eL (iel, jeJ) where I, J are any
indexing sets and J' denotes the set of all functions f: I —J. If the first
identity holds for a lattice L, we shall say that meets are completely
distributive with respect to joins, and if its dual hold we shall say that joins
are completely distributive with respect to meets. (For all other standard
definitions of Lattice Theory see Birkhoff [5]). In [14] Raney shows that
each of the above two distributive identities implies the other and so each is
equivalent to complete distributivity. He further showed in [15] that com-
plete distributivity in a complete lattice is characterized by the condition that
for each aeL

a=\/N{M/M is a semi-ideal and a <\/M}

(where {7 denotes set theoretic intersection). We shall refer to this equivalence
as Raney's characterization. Longstaff's approach in [12] for the reflexivity of
complete and completely distributive lattices is indirect and, very briefly, runs
as follows: First he shows that a complete lattice L is reflexive if for each
aeL the equality ¢ = a, holds, where

Gy = /\{b—/b £ a}
and where
bo=Afc/bc} (bel).
Using Raney’s characterization he then shows that complete distributivity of
a complete lattice is equivalent to the condition g = a, (aeL) where
a, =\ {blak b.}).

Finally, after proving the relations

ay S a,,<a<a,,<a, '(acl)
concludes the following:
T}‘{EOREM ([121). For a complete lattice L, the Jollowing are equivalent
@) L is completely distributive.
(i) a = a, (ael).
(i) a, =a (ael).

Recall that a complete lattice L is called completely distributive if the
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One of our aims in this paper is to present direct proof of a more
general criterion for complete distributivity, and then get as corollaries
known results whose proofs are scattered in the literature througout several
papers.

2. Complete distributivity. In what follows we shall assume that all
lattices are complete and contain a largest element 1 and a least element O.

DerFintmion. If L is a lattice we say that a map p: L — L V-defines the
lattice if for each ae L the equality a = \/{b/a% p(b)} holds.

As we shall see, the existence of a map that V-defines a lpttice‘ is
characteristic of complete distributivity. We shall also see, in the course of
the proof of Theorem 1, that if a lattice is completely distributive. then the
map p: L— L, p(a) = a. V-defines, where a_ is as in Longstaff’s notation
mentioned above. By examples we show that for a completely distributive
lattice the map p(a) = a_ is just one of a class of V-defining maps. Finally
we mention that the equivalence of the first three statements of Theorem 1
are due to Raney ([14]), but we shall give a different and direct proof that
also establishes their equivalence with the forth statement. ‘

THEOREM 1. If L is a lattice the following are equivalent.

(i) Meets are completely distributive with respect to joins.

(ii) Joins are completely distributive with respect to meets.

(ili) L is completely distributive.

(iv) There exists a map p: L — L that V-defines L. o

Proof. Omitting the obvious implications and the ones that follow by
considering the dual lattice we only show (i) <>(iv) => (ii). .

(iv) =(). Let p: L — L V-define L. As the reverse inclusion’is always
valid, to show (i) it is sufficient to show

A Vay < \/, Nis-
i J Selt i
Let be L be such that
(1) AV ay € p(b).
¢ J

Then for each i it follows that

ywﬁpm,

and so for each i there corresponds at least one j such that a;; & p(b) and
hence, since p V-defines, b < a;. So we can define a function g: I —J in
such a way that for each i€l it picks a corresponding jeJ with b < ay.
Then :

@ b< Nagy <V NAaya-
i sedd i
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Now by assumption the span of all b satisfying (1) equals /\ \/a,-j, so by
i

taking span in (2) over all such b we obtain

/i\ \j/ax‘j < \/1 /.-\aV("”

Jer
as required.

(iv) = (ii). We only need prove that
VA = N\ Vagy.
PJ fE-'JI i
Let b be such that
/\ \/aif(i) £ p(b).

feJI i
Then, for all feJ' we have

3) \/ @ % p(b).
We claim that there is a kel such that
@ b< \ay.

i

If not, then for every iel, b & /\ a; and so for every icl, there corresponds
a jeJ with b £ a;;. Define then a function h: I —J which for each ie] picks
a jeJ with b K 4. As p V-defines L, ay; < p(b). But then Vg < p(d),
contradicting (3). We thus obtain from (4) l
b<\/ Nay
1 J

and arguing as in the last part of the previous implication, we get the desired
conclusion.

{i) = (iv). This part of the proof adapts, in a concealed way, the ideas of
Raney in [15] and their modification by Longstaff in [12].

We shall show that p: L L, at»>a_ V-defines L. We only need show
that a < \/{b/a £ b_}, the reverse inequality being obvious. Index by I the
set {c/a<c_.}, so that a< ¢_ (iel). For each iel index by J; the set

{c/ci % ¢} so that ¢; € ¢ (ie], jeJ) and ¢;_ = \/c;. Allowing repetition if
Ji

necessary we may assume J; =J for all iel. Clearly

a<g /i\ci_ = /f\\,-/cijz \f//\cu(i,.
13

For a fixed feJ' and any kel, , ¥ iy and so ¢ & /\cv(,). In particular
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/\Crf(i) # ¢, (kel) and so /_\c,-f(,.) does not belong to the set {c/a<c_}.
This then implies that l
Acif(i) < \/{b/a £b-}.

Hence

\f/ G < \A{blakb-},
and the proof is complete.

Cororrary 1 (Raney [16]). A lattice L is completely distributive if and
only if a=\/{bjakb_} (acl).

Proof. If the stated equality holds then at>a_ V-defines, so L is
completely distributive. The converse is just the proof of implication (i) = (iv)
in Theorem 1.

CoroLLARY 2 (Raney [16]). A lattice L is completely distributive if and
only if for every pair a, b in L with a £ b there exist x, y in L with a £ x,
y &b and such that for any teL either t < x or y<t.

Proof. If L is completely distributive and p: L — L any map that V-
defines L, then as a = \/{c¢/a £ p(c)} and a < b, it follows that there is a ¢
with a € p(¢) and ¢ £ b. We choose x =p(c), y=c. f now teL and y £t
then ¢t < p(y) = x, and hence x and y have all the desired properties,

Conversly, let aeL be arbitrary and let b=\/{c/a £ c_}. We shall
show that a =b and appeal to Corollary 1. Clearly b<a so if a#b it
follows that a € b. By assumption there are x, ye L with a < x, y € b and
VieL either t <x or y<t. As y_ =\/{t/y £ ¢} we have y_ < x and so
a{y_.But a{y_ implies y < b which is a contradiction. Thus b = a and
atra_ V-defines L. ‘

Corollary 1 was discovered by Raney who stated it in a different form.
To prove Corollary 2 Raney used Galois connections between lattices and
develops a particular type of Galois connection which he calls tight. Using
Raneys original version of Corollary 1 and some manipulation, Longstaff, in
a paper on Functional Analysis, stated and proved Corollary 1 in a form
close to the one given. In the meantime Bandelt in [1], [2] and [3] had also
stated Corollaries 1 and 2 as given here. His proofs are different from
Longstaff's. The equivalence of Corollaries 1 and 2 is stated in [4].

ExampLE (i). If L is a complete atomic Boolean lattice and a’ denotes the
Boolean complement of a, we define p: L— L by

0 ifx=0,
p(x)= {x if xis an atom # 1,
1 otherwise. b
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This map V-defines L since, if aeL then a is the span of atoms contaiping it.
So if b is an atom contained in a then a € b = p(b). Conversely, a € p(b)
implies p(b) # 1 and so b is an atom. This shows that

a=\/{bb atom < a} =\/{b/a £ p(b)}

as required. (Incidently this gives an alternative proof of one direction of
Tarski’s well known theorem.) Also note that as 0¥ a is always false, any
value for p(0) would do just as well o
ExampLE (i). If L is a complete totally ordered Ilattice, define p(x)
=\/{y/y < x}, where < means strict inclusion. Clearly for every ae L we
have p(a) < a (where the equality is possible. In fact pl(a) = aif and only if a
has no immediate predecessor. If a has an immediate predecessor then p(a) is
this predecessor). To prove that p V-defines L, we work as follows. First
observe that x £ p(y) = p(x) <x = p(y) <p(x) = y<x and hence

Q) x>\ {y/x € p()}-

So if x has an immediate predecessor then x itself belongs to the set
{y/x € p(»)}, and hence the right hand side of (5) is > x. If on the other
hand x has no immediate predecessor, then

x=\{y<xt<V{ypy) <x}<x
as required.

Remark. If p V-defines the lattice then for ye L we have x £ p(y) =
y < x. Equivalently y £ x = x < p(y) and so

) =V {x/y € x},

which in LongstafPs notation states p(y) > y-. One can check that in the
two examples above we actually have p(y) = \/ {x/y € x} (ye L) but we show
by an example that this is not always the case. The example that follows is
just one of a class of different types of examples.

ExaMpLE (iii). Let L be the interval [0, 1] of real numbers between 0 and
1 with its usual ordering, and let p: L L be the map

x if x is rational,
p(x) = e e
1 if x is irrational.

1t is easy to see that x_ = x = p(x) il x is rational and x. = x < p(x) if x is
irrational. Also if ye[0, 1] is any fixed real, the relation p(x) <y implies
p(x) # 1, and so x is rational. Hence

VAx/y & p()} = V{xl p(x) <y} =\/{xl xea and p(x) <y}

=\/{x| xea and x <y} =y.
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However the following holds, where we put p(0) =0 to exclude empty
statements.

THEOREM 2. If L is a complete atomic Boolean lattice then there exists a
unique p: L — L that V-defines L. In this case p(0) =0, p(a) =a' if a is an
atom, and p(a) = 1 otherwise (which says p(a) = a_ for aeL).

Proof. The existence of p has been shown concretely in example (i)
(mere existence follows from Theorem 1) and is of the form given. Let now
a#1 be an atom of L. A fortiori a is not the span of elements strictly
smaller than it, since these are equal to zero. Hence the relation a
=\/{b/a £ p(b)} implies that one of the b with a & p(b) (and so with b < a)
must equal a, and so a £ p(a) which in turn implies p(a) < a'. But 4’ is the
span of the rest of the atoms of L (and each such atom x satisfies a £ x). So

p(a) <a' <\ {x/a x} <p(a).
If on the other hand a is not an atom, then the set {b/a € b} contains all
atoms. Therefore \/{b/a £ b} =1 and
l=p@>\{bagb}=1.

Combining the th cases we see that the only p: L—>L that V-defines L is
the one given. ‘

3. The dual of V-defining maps. We now work with the dual concept to
that of V-defining maps. We shall not elaborate on some of the proofs of the
theorems, for they follow by arguments similar to the ones given above.

DeFINITION. A map p: L— L is said to A-define the lattice if a
= A{p®)/b £ a} (acl).
It is easy to see that if p either V-defines or A-defines the lattice then

(6) bka = a<pb).
Another simple observation to make is that if the map p A-defines then it
also has the property
™ a=A{pb)a<p®)}
since 4

a= N\{pbyba}> A\{pbya<p®)}>a
If a map has properties (6) and (7) it does not necessarily A-define L. We
shall show by an easy example that a lattice may have these properties under
some map p: L — L but the lattice is not distributive, that is, not only p does

not A-define L but no map does. However properties (6) and (7) are usefull
in practice to check distributivity in a lattice.

5 — Fundamenta Mathematicae CXIX. 3
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ExaMPLE (iv). In the non-modular five element pentagon 0 <a <1,
0<b<c<1weputp(l)=1,p(a=c pb)=a plc)=1, p0) =b. An easy
verification shows

o l=p(c)=p(1)

/ 2e=p(a)
p(b)= a-

-b p(0)

that p has the desired properties.

Inspite of this example we have the following theorem, which can also
be proved from Corollary 2, but we prefer the direct proof.

THEOREM 3. If p: L — L satisfies the conditions

() b<a = a<ph),

(i) a= A{p®)a<p®)} (acl)
and if in addition a € p(a) for each a in L with p(a) # 1, then L is completely
distributive.

Proof. By Theorem 1 we only need show that

/\ \/au \/ /\“um

We can assume that the right hand side is not equal to 1 and so there is a b
such that p(b) # 1 and

@® \/ /\aif(i) <p(b).
ferl i
This implies that for every f: I—J
Aau(i) <p()

and so, choosing f to be the constant function f(i) = j,
/\au pb) (ieJ).

We claim that this implies that there is a kel with

©®) \j/akj < p(b).

Suppose on the contrary, Viel, \/aij £ p(b). So, as before, there is a
function g: J —1 such that a , € p(b) = b < Qi (all i) and hence

/\“xo(z) \/ /\axj(l) p(b),
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contradicting the assumption b £ p(b) for p(b) # 1. The proof now continues
as before by using (ii).

The example preceding Theorem 3 shows that from assumptions (i) and
(ii) alone we cannot expect distributivity. We shall show however that for a
wide class of subsets of L meets are completely distributivite with respect to
joins and dually.

Let L be indexed by an indexing set K and denote by L, the set {a/a
> a,}. Now, each L, can be indexed by a set J,, so that L, = {g,;/jeJ,}. Let
I be an arbitrary subset of K, and denote the cartesian product of the J,(I€ 1)
by I1J,. We have the following:

THEOREM 4. Suppose p: L — L satisfies conditions (i) and (ii) of Theorem 3.
Then

\//\P a;) =

1 oiel;

/\ \/ p(ayw)-

Proof. We can assume that all the indexing sets J; are the same by just
replacing the J;’s with their union and by letting a;; = 1 if ieJ —J;. Thus we
simply have to prove that ;

\/ /\P(a,j) =A \/P(a-f(f))

feJ

Let b, = /\p(a;) and let b be such that
j
b=\ Apay.
1 J

For each i, b > b; and so be ;. This shows that for each ieI there is a jeJ
with b = q;;, and so there is a function g: I —J with b = a,,. Hence also

p(®) =\ p@gw) > A Vrlaye)
i fe.l’ i
and we can continue as usually.

4. Semi-simplicity. Recall that a lattice is called semi-simple if the
intersection of its maximal ideals is {0}. It is well known (see for example
[5]) that every Boolean lattice is semi-simple. In the next theorem we replace
the condition a £ p(a) (p(a) # 1) of Theorem 3 by a stronger one and we get
a surprisingly stronger result. This result strengthens that in [10] which in
turn strengthens Tarski’s result mentioned above which states that a com-
pletely distributive complete lattice is a Boolean lattice if and only if it is
atomic. First we need a lemma.

Lemma 1. Let p: L — L satisfy conditions (i) and (ii) of Theorem 3, and
suppose that a A p(a) =0, for every aeL with p(a) # 1. Then L is a complete
atomic Boolean lattice.
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Proof. The proof follows closely the one given in [10] so we omit it.
(See also [11] for correction of some printing mistakes of [10])

TueoreM 5. If L is completely distributive then L is a complete atomic
Boolean lattice if and only if L is semi-simple.

Proof. As in [10]. One only has to observe that if aelL satlsﬁes
p(a) # 1 then a A p(a) belongs to each maximal ideal.

Immediate corollaries of the above come from the considerations: It is
well known that the set theoretic complement of an ideal of a lattice is a
filter (dual ideal) if and only if the ideal is prime. In a Boolean lattice prime
ideals are maximal and so the set theoretic complement of a maximal ideal is
an ultrafilter and conversely. From Theorem 5 the following (known) equiv-
alences can be shown for a completely distributive lattice L.

(i) L is a Boolean Ilattice,

(ii) the set theoretic complement of every max1rna1 ideal is an ultrafilter,

(iii) the dual of (ii).

Indeed, if (ii) holds and ae L is non-zero, there is by Zorn’s Lemma an
ultrafilter containing it (consider the filter {x/a < x}). The set theoretic
complement of this ultrafilter is a maximal ideal not containing a. By varying
a we conclude that L is semi-simple and Theorem 5 applies. To prove
(ii) = (i) it is sufficient to observe that the dual of a completely distributive
lattice is also completely distributive (this follows from the equivalence
(i) = (if) of Theorem 1).

Another immediate corollary to Theorem 5 is that if the intersection of
the ultrafilters of a completely distributive lattice is {1} then again L is a
complete atomic Boolean lattice. We have mantioned these corollories
because we want to show by counterexamples that the assumptions of
Theorem 5 cannot be weakened.

ExampLE (v). Complete atomic semi-simple lattices are not necessarily
completely distributive, even if we assume the lattice to be modular. That
this fails can be seen by considering the five element diamond (double
triangle by some authors) 0 <a <1, 0<b<1, 0<e<|

Here the maximal ideals are {0, a}, {0, b} and {0, ¢}, so L is semi-simple and
clearly atomic.
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ExampLE (vi). If we weaken the complete distributivity assumption of
Theorem 5 we still do not get the same conclusion. We construct an example
of a complete lattice L with the following properties:

(a) L is distributive. In fact the infinite distributive law

xa(Vx) =V Ax)
T t
holds,

(b) L is semi-simple.

Yet, we show that the lattice is neither Boolean nor atomic. In fact we
show that even the intersection of its ultrafilters is not {1}:

Let (X, &) be a topological space and let L be the (complete) lattice of
all open sets in Z (with infinite) operations:

VL=UT, AT=(NT)
Then

(i) If (X, Z) is a compact Hausdorff space then L is semi-simple.

(ii) If singletons are closed but not open in (X, ) then the intersection
of ultrafilters is not {1}.

In particular, L has the desired properties.

Proofs. (i) Denote the set {TeL/x¢ T}, where xeX, by M,. If J is
a (proper) ideal of L, we show that there is an xeX such that J & M,.
Indeed, if not, then for each xe X there is a T.eJ such that xe T,. But then

X = U T, and by compactness X = U T,, for some neN. As each T, eJ, it

follows that X also belongs to J;, a contrad1ct1on to the fact that J is proper.
So after all J = M, for some x. Clearly M, itself is a (proper) ideal, so if J is
a maximal ideal we have J = M, for some x. Next we show that each M,
(y€X) is a maximal ideal. If not, then there is a maximal ideal M properly
containing it, and by the above M = M_ for some ze X, so M, = M,. By the
Hausdorff assumption there is a Te.Z such that ze T but y¢ T, so this T is
in M, but not in M,, giving a contradiction.

To show that L is semi-simple, let Se L be a non-empty set in T and let
weS. Then clearly S¢ M, and M, is a maximal ideal.

(i) We show that for each singleton {x} the set X —{x} of L belongs to
all ultrafilters of L. Let U be an ultrafilter of L and suppose that for some
xeX, X—|x}¢U. If TeU then by definition of filters T ¢ X — [x} and
hence xe&T. Therefore

Uc{Tel/xeT}.

The set on the right is a (proper) filter of L and by maximality we have
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equality. Consider now the (not necessarily proper) filter V' generated by U
and X—{x}. As X—{x}¢U, the filter V is strictly larger than U and so
coincides with L. This implies that there is a TeU with Tn(X —{x}) =

and so T = {x). This contradicts the fact that T is open and {x} is not. It
follows that, after all, X —{x} belongs to the intersection of all ultrafilters
and completes the example.

5. Questions. It has been observed that among ¥-defining maps, at-a.
is a most usefull one. This particular map has properties that arbitrary V-
defining maps do not necessarily enjoy. For instance it is easy to see that
at>a_ is a \/-homomorphism, (\/a;)- = \/a_, (however not always a /\-
homomorphism) but the following example shows that not every V-defining
map is: For the lattice 0 <a<c<1, 0<b<c<l.

-

o S
N

Put p(1) =1, p(a)=b, p(b)=a, plc)=1, p(0)=0. Then plavb)=13¢
= p(a) v p(b), although p V-defines. Combining Theorems 3 and 4 it is
tempting to ask whether a lattice L satisfying

(%) a=NA{b_ja<b.} (ael)
is completely distributive. Below we give an example, due to H.-J. Bandelt

(private communication), that this is not the case. However the following
weaker distributive law holds:

Ne-fa<e}vb=A{bve ja<ge}

Indeed, as it is sufficient to prove that the left hand side is <
side, let deL be such that A \c_fa<c_} vb<d_. Then

-2 Nle-fagec.}=a and

So d_ is one of the ¢ with c¢_

| (a, bel).

the right hand

d_>b.
>a and so
d_=d_vbz A{bve_ ja<c.}.

The rest follows as usually.
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The example of H.-J. Bandelt of a lattice satisfying () but not being
completely distributive is the following

Fig. 1
We leave the details to the reader.
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Remarks on intrinsic isometries
by

Juliusz Oledzki and Stanislaw Spiez (Warszawa)

Abstract. A map f: A A’ of metric spaces is said to be an intrinsic isometry if it
preserves the length of every arc. It is shown in this note that the Euclidean n-space E" is
intrinsically isometric to a subset A of E"*! with arbitrarily small diameter 5(4). We also
consider the intrinsic metric of a product of metric spaces.

1. Introduction. The notion of the intrinsic metric for metric spaces and
related notions were introduced by K. Borsuk [1]. Let us say that a space 4
(with metric @) is geometrically acceptable (notation: AeGA) if

(1.1) for every two points x, yeA there exists an arc L = 4 with finite
length such that x, yelL

and

(1.2) for every point xe4 and for every &> 0O there is a neighborhood U
of x in A such that for every point ye U there exists in 4 an arc L
containing the two points x, y and such that the length |L| <e.

Then setting

(1.3)  @4(x, y) = lower bound of the length of all arcs L = A4 containing the
two points x, y,

one gets a metric g, in A called the intrinsic metric in A. The topology in
AeGA induced by the metric g, is the same as the topology induced by the
metric @. ‘

A function f mapping a GA-space A onto another GA-space A’ is said

‘to be an intrinsic isometry provided

for every x, yeA.

(1.4) 04 (%, ¥) = gu (f (2, S )

A map fis an intrinsic isometry if and only if it preserves the length of every
arc. Every intrinsic isometry is a homeomorphism.

K. Borsuk has proved [1] that for every ¢ > O there exists an intrinsic
isometry mapping the Euclidean n-space E” onto a subset 4 < E?" such that
the diameter of 4 (by tbe usual metric in E?") is less than &. We will prove
the following i .
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