[1]
(21

31
[4]
[5]
[6]
7

(8]
[91

H. Barendregt and G. Longo

References

H.P. Barendregt, The Lambda Calculus, "Its' Syntax and Semantics, North Holland,
Amsterdam 1981. )

— and G. Longo, Equality of lambda terms in the model T®, in: To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, Eds. J. R. Hindley and
J. P. Seldin, Academic Press, New York 1980, pp. 303-337.

Ju. L. Ershov, Theorie der Enumerierungen 1, Zeitschr. Math. Logik 19 (4), (1973), pp.
289-388.

P. Giannini and G. Longo, Effectively given domains and lambda caleulus semantics,
preprint Dipt, Informatica (1983), Corso Italia 40, 56100, Pisa, ltaly. |

G. Plotkin, T® as a universal domain, J. Computer and System Sciences 17 (2) (1978), pp.
209-236.

H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New
York 1967.

D. S. Scott, Continuous Lattices, in- LN.M. 274, Springer, Berlin 1972, pp. 97-136.

— Data types as lattices, SIAM J. Comp. 5 (3) (1976), pp. 522-587.

A. Visser, Numerations, A-calculus and arithmetic, in: To H.B. Curry Essays on
Combinatory Logic Lambda Calculus and Formalism, Academic Press, New York 1980,
pp. 259-284.

MATHEMATICAL INSTITUTE

Budapestlaan 6, 3508 TA Utrecht, The Netherlands
Dipartimento di Informatica

Corso Italia 40, 56100 Pisa, Italy

Accepté par la Rédaction le 18.5.1981

icm

Miller’s theorem for cell-like embedding relations
by

Frederick C. Tinsley (Colorado)

Abstract. Let G be an uppersemicontinuous cell-like decomposition of a boundaryless

manifold M" (n > 5) and g be the identification map. If we denote the inverse of g by R, then R
is a relation which assigns a cell-like set to each point of the decomposition space. J. W. Cannon
called R a cell-like embedding relation. We obtain a generalization of the approximation
theorem of R. T. Miller for embeddings of codimension three disks to a theorem for cell-like
embeddings of codimension three disks. We give applications to decomposition space theory.

0. Introduction. Much progress in the study of decompositions of mani-

folds resulted from J. W. Cannon’s novel idea of studying decompositions of
manifolds “in reverse”. Suppose M" is a topological n-manifold (n = 5)
without boundary and G is an uppersemicontinuous cell-like decomposition
of M". Cannon considered the inverse relation #~!: (M"/G) - M™. The image
of each point, =~*(y), is a cell-like set; also if x # y then (x™!(x) Nz~ ()
= (). Appropriately, Cannon called these objects cell-like embedding relations
and noted that they in many respects like functions. He developed this idea
into a theory; he used an approach in which results for functions are
generalized to results for cell-like relations ([Ca®, Appendix I7J). This theory
has been quite fruitful. F. Ancel and Cannon exploited it in using Stanko’s
process ([St?]) to prove a 1-LCC approximation theorem for embeddings of
codimension one manifolds ([An'] and [An-Ca]). D. L. Everett also used
this notion in obtaining embedding and product theorems for cell-like
decompositions ([Ev]).

At the same time Cannon was aware of a close relationship between

taming theory for embeddings and decompostion space theory. This. meant
that the 1-LC property, which is crucial for taming embeddings, would be
quite important also. Cannon generalized the 1-LC taming theorem for
embeddings of §""! in S" to obtain the following:

Tueorem ([Ca', Theorem 55)). If R: §"~' — 8" is a_cell-like embedding

relation such that S"—R(S"" ') is 1-LC at each point-image of R, then R
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extends to a cell-like embedding relation R*: S"— S" with (R*(S"—S8""") a
Junction. :

He then used R* to shrink the corresponding decomposition of S”.

Ultimately, Cannon conjectured that a necessary and sufficient condition
for M™ and M"/G to be homeomorphic is that M"/G satisfy the disjoint disk
property (singular 2-disks in M"/G can be adjusted slightly so that they do
not intersect). This condition is obviously necessary. Cannon showed it to be
also sufficient in the case where the nonmanifold part of E"/G has
dimension < n—3 provided the following is true:

1-LCC shrinking conjecture ([Ca®]): Let X be a locally-compact separ-
able metric space of dimension < n—3, let R: X — E" denote a 1-LCC cell-
like embedding relation onto a closed subset of E”, and let Gy denote the
decompostion of E" whose nondegenerate elements are the nondegenerate
point images of R. Then E"/Gg and E" are homeomorphic.

Wc showed ([Ti]) that this shrinking conjecture is true if either
(2-dim(X))+2 < n or X is a polyhedron. Our method was first to generalize
the following taming theorems of J. L. Bryant — C. L. Seebeck and Bryant
for embeddings:

TueoreMm ([Br-Se?], Theorem 2). Suppose f: D*— E" is<a 1-LCC em-
bedding with n>5 and k< n—3. Then f extends to a homeomorphism
f*: E"—E"

TueoreM ([Br!, Theorem 1]). Suppose X < E" with the inclusion a
1-LCC embedding and with dim(X) =k, 2k+2 < n, and n > 5. Suppose also
that f: X — E" is a 1-LCC embedding. Then f extends to a homeomorphism

* B> B

Our versions follow:

TuEOREM 4.1. Suppose R: D* — E" is a 1-LCC cell-like embedding re-
lation with k<n—3 and n>5. Then R extends to a cell-like embedding
relation R*: E" 5 E" with (R*|(E"—D¥ a function.

THEOREM 4.2. Suppose X < E" with the inclusion a 1-LCC embedding and
with dim(X) =k, 2k+2 < n, and n = 5. Suppose also that R: X - E"is a 1-
LCC cell-like embedding relation. Then R extends to a cell-like embedding
relation R* with (R*|(E"— X)) a function.

We then used R* to shrink the decomposition.

A crucial step in the proof given by Bryant-Seebeck was the PL
approximation theorem which Miller subsequently proved.

TueoreM ([Mi3, Theorem 17). Suppose f: D* — E" is an embedding with
k< n—3. Then for each £¢> 0 there is a PL embedding g: D*— E" with-
da(f, g) <e.

In our proof of Theorem 4.1 it was necessary to generalize Miller’s
theorem to the cell-like embedding relation case.
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Tueorem 3.0. Suppose R: D¥ — E" is a cell-like embedding relation with
k < n—3. Then for each &> 0 there is a PL embedding g: D* — E™ with
g < eoRog = D* x E" (think of ¢oRoe as being a small neighborhood of R in
D*x E"). '

Shortly after the announcement of these results, Edwards ([Ed]) proved
the disjoint disk property to be a sufficient condition for M" being homeo-
morphic to M"/G (with no restriction on the dimension of the nonmanifold
set). A key step in his proof is the verification of the 1-LCC shrinking
conjecture for any codimension three set X. However, he notes that our
Theorem 4.2 suffices for n > 6.

Also, subsequent to our announcement, Cannon, Bryant, and R.C.
Lacher solved the trivial range resolution problem for generalized manifolds
and in the process gave an alternate proof of Theorem 4.2 ([Ca-Br-La]).

Thus, we shall restrict our attention to Theorem 3.0. Interesting in itself,
this theorem depends on neither the results of Edwards nor Cannon, et al. In
addition, Cannon shows how it can be used (as part of Theorem 4.1) in his
proof of the Double Suspension Problem ([Ca?]). Finally, it is a good
illustration of how well the theory of cell-like relations works, even in a
rather complicated situation.

1. Basic definition and theorems. Let E" denote Fuclidean n-space with
the PL metric (derivated from the “sup” norm). Define D" = ([0, 1])*
= ([0, 1]} x {0}"* = E". For any subset X of E", N,(X) is the open é&-
neighborhood of X with its closure abbreviated by Nz(X).

A relation R: X — Y is a subset of X xY. Define the point-image
R{X)='ye¥| (x, y)eR]}. The inverse of R is denoted by R™'= {(y, x)
eYx X| (x, y)eR}. A relation is continuous if the inverse of each closed set
is closed ; it is proper if the inverse of each compact set is compact. We rec-
ord the useful fact that a closed subset of a proper, continuous relation
is continuous and proper. Also, if R: X —Y and S: Y—Z_ are two rela-
tions their composition, SoR: X —Z, is defined naturally as {(x, 2)
eXxZ (x,y)eR and (y, z)eS for some ye Y} Finally, we note that the
composition of continuous relations is continuous.

Our goal is to generalize several theorems about functions to theorems
about relations. Using the fact that any locally compact, finite-dimensional
metric space embeds in some Fuclidean space, we can restrict our attention
to relations R: E™ — E" (some R(X)s may be empty). A topology on these is
gotten from neighborhoods in E™xE" Of particular interest are .“z»;-
neighborhoods.” With each map ¢: E"—(0, o) is associated the relation
e E"— E" where &= |(x, y)eE"x E" y&N,n(ix])}. The closure of & in
E"x E" is denoted by & Thus if ¢ E"—(0, oo) is another map, then the
composition goRog’: E™ — E™ — E" —.E" is an open neighborhood of R. In
particular if R has both compact point-images and point-preimages, then for
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any neighborhood U of R in E™ x E", there exist ¢, &' such that ¢oRog’ = U;
if R itself is compact, then & and ¢ may be chosen to be the same constants.
When written as part of a composition (e.g, toRog) a positive real will
always represent the associated relation.

The following oft-used theorem (not stated here in its full generality)
provides a clean method of handling the details of relations proofs.

Treorem 1.1 ([Ca!, Theorem A12], the Composition Theorem). Suppose
R: E"—E" and S: E"— EY are continuous, proper relations, both with com-
pact point-images. Then if U is any neighborhood of SoR in E™x E4, there
exist neighborhoods V of R in E"xE" and W of § in E"x E* such that the
composition WoV < U. If either of R or S is also compact, then there exists a
constant > 0, such that (doSod)o(6oRoéd) = U.

The support of a relation R: E™— E" (Support (R)) is the set of all
xeE™ with R(x) non-empty. The image of R (Image (R)) is the union of all
point-images of R. We say R is cell-like if for each xe&Support (R) R(x) is
compact and contracts in each neighborhood of itself. The following theorem
is well-known in the decomposition space context. We state it in a form
convenient for this paper.

Treorem 12 ([Ca!, Chapter II, Theorem 14], the Approximation
Theorem for cell-like relations). Suppose R: E™— E" is a continuous cell-like
relation with Support(R) = X, a compactum. For each &> 0 there exists a
8> 0 such that for any closed subset C of N5(X) and map f: C — E" with
f e 80R08, there is a map g: N3(X)—E" which "extends f such that
g < eoRce.

Since many of the applications are made in the case where Support(R)
= X xI, we state the following corollary. . .

CoroLLARY 1.2. Suppose R: E™x 1 — E" is a continuous cell-like relation
with Support (R) = X x I for some compactum X. For each ¢ > 0 there exists a
&> 0 such that for any closed subset C of (N3(X))xI and map F: C— E"
with F < 50R03 there is a map G: (N3(X))x I — E" which extends F such that
G < ¢oRoe.

A cell-like embedding relation R: E™— E" is a cell-like relation with
closed image in E" such that R(x)nR(y) =@ for all x#y, {x,y} in
Support (R). The link to decomposition theory is that R yields a correspond-
ing uppersemicontinuous cell-like decomposition of E” with nondegenerate
elements precisely the nondegenerate point-images of R and with the identifi-
cation map 7n obtained naturally from R~!. The saturation relation,
RoR™1': E"— E" is a cell-like relation contdining (as a subset) the inclusion
map of Image(R) into E".

2. Piecewise-linear PL topology. We assume an understanding of regular
neighborhood theory and general position. A reference is [R-S]. We will
explain any notation which may be non-standard.
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This discussion of collapsing polyhedra serves as a preface for the next
section. Some of it taken directly from Miller’s paper ([Mi*]) so we can
model our proofs after his. However, the material is quite standard.

Suppose a complex Y in E" collapses by a sequence of elementary
simplicial collapses to a subcomplex X. Let ¢ be a simplex of Y that
collapses through a face . Subdivide ¢ by starring at b(z), the barycenter of
7. Call this subdivision ¢’. Let r be the simplicial retraction from ¢’ onto
clos ((bdy ¢) —t) which maps b(q) to the vertex of o opposite . We obtain a
PL deformation retraction as follows. Take the cell complex ¢’ x [0, 1] and
subdivide to a simplicial complex, K, without adding any vertices ([R-S,
Proposition 2.97). Let F3: a'x {0} — o’ be the identity and F{: ¢'x {1} = ¢’
be r. The maps F§ and F{ determine a simplicial map F*: K =0 %[0, 1] —0.
We use the F7s in the same order that the simplexes collapse and then
reparametrize to obtain a PL deformation retraction F: Yx[0,1]—Y
which accomplishes the collapse.

Let Y, X, and F be as above. We denote the collapse by C with the
understanding that |C| is the underlying complex Y and C: X xI =Y is the
deformation retraction F. If Z is a subcomplex of Y then define track «(Z)
=C(Z, [0, 1]) and imagec(Z) = C(Z, 1). By convention C(f) will mean
C(Y, 1), the image of C at time t. Also, C may be denoted Y\ X. Also define
the boundary of C (bdy|C|) to be the collection of “free faces” of |C|, those
simplices © of |C| with star (z, |C]) = ¢ where ¢ collapses through .

It is well-known that a collapse in a PL manifold M gives rise to an
ambient isotopy of M which “follows” C. We use the following theorem of
Miller which is stated in both [Mi?] and [Mi®*] and proved in [Mi']. The
r'th derived subdivision of a complex Q is written as Q' /(r primes). Also, let
N(X, Q' ") be the simplicial neighborhood of X in Q"""

TueoreM 2.1 (Mi?, Proposition 1] or [Mi®, Theorem 7]). Suppose that
Q is a PL g-manifold and Y and X are subcomplexes of Q. If Y collapses
simplicially to X, then there exists an isotopy @ of N(Y, Q") into itself with

P (N(Y, Q1) =N(X, Q")
and with
@, fixed outside N(N (vertici in (Y—XY, Q")Q")
such that if Z is a subcomplex of Y, then
1 (N(Z, 2") = N(imagey. x(2), Q).

If. in addition, (Y—X) is in the interior of Q, then @, extends to an ambient
isotopy of Q (also called @) for which

o (N(N(Z, 0", @) = N(N (tracky. x(2), 2"), 2")

and where @, is fixed on the same set as above.
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3. Approximating codimension 3 cell-like embedding relations. In this
chapter we generalize the approximation theorem of Miller ([Mi?, Theorem])
for embeddings of codimension three polyhedra to the cell-like embedding
relation case. The new statement follows.

TreoREM 3.0 ([Mi3, Theorem 1]). Suppose k < n—3 and R: D¥— E" is
a cell-like embedding relation. Then for each ¢ > O there exists a PL embed-
ding p: D* — E" with p = goRos.

Our proof follows from a sequence of lemmas analogous to those of
Miller. The essential difference is that we must express controls in terms of
neighborhoods of relations rather than simple distances between functions.
However, the use of ¢-neighborhoods allows statements of the lemmas to be
the same for both the relation and function cases.

Let R: D*— E" be a cell-like embedding relation where D* is included
naturally in E". Let #/: D* xI — D* be the deformation retraction of D* along
the j’th factor given by

. identit; for t < x4,
g‘fl(xl'»‘"'!xn):{ y = j

(Koo Xy 15 6 Xy g,00 X)) fOr 0> x5
Define the cell-like relation S/ by the composition
S/ = Roo(R™! xid): E"xI— D*x I~ D¥— E"

We wish to construct homotopies that are close in some sense to §'. In
other words, if a point y in E" is close to'a point-image R(x) of R, then its
track should stay close to the track of a nearby point-image R(x’) under S,
Specifically, a proper homotopy F: X xI > E" is a (j, 6)-homotopy if the
composite relation :

F'=Fo(Fg!xid): E"xI— X xI—E"

is contained in 508708, the §-neighborhood of §7 in E"x I x E*. A collapse C
in a PL submanifold M of E" is a (j, d)-collapse if the associated deformation
retraction C: |C|xI - M < E" is a (j, §)-homotopy. )

Levma 3.1 ([Mi3, Theorem 8]). For each ¢ > 0 there exists a 6 > 0 so
that if M is a PL submanifold of R" triangulated with mesh < 8, C is a (j, 9)-
collapse in M N Ns(R(DY) with |C| a subcomplex of the triangulation, and
pi-1: D71~ (bdy N(IC|, M")) is a PL embedding with p;, = So(R|D'" Yod
then there exists a PL embedding p;: D' — N(C|, M") with p; = eo(R|D)oc.

Proof. We use the same inductive construction of p; as Miller used.
The idea is to let Theorem 2.1 “stretch” p;_; out along the tracks of C to
obtain p;. A detailed description is included.

We choose y = 1/N for a large, positive integer N,; we then choose a
much smaller § > 0. Without loss, we can adjust the parametrization of C so
that C(wd) is a subcomplex of M for each integer w, 0 < w < N.
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We inductively construct a sequence of PL embeddings Gj: D™'x
x[—1, wy] - M which satisfy the following three conditions:

(1) GLDT X (wy)) = GLDIT X [—1, wy) n (bdy N (C (wr), M),

(zw) ij ((pj—i)_ ! (N(07 M”) X {W)’}) < N(imageC\C(wv) g, M”))
for each o€|C|,
(3,) GL(D"!x[0, wy]) is an e-approximation of
RI(D/~* x [0, wy)), ie., GII(D'~' x[0, wy]) = eo{RI(DP™* x [0, wy))oe.

First, GJ is constructed to start the induction. Using regular neighborhood
theory we obtain a PL homeomorphism

p: (bdy N(ICl, M")x [—1, 0] = clos(N (N(/C|, M"), M™)—N(C|, M"))
such that (u)(bdy N(|C|, M"yx {0})) = identity. If we take
Gh = po(p;-q xid): D" x[—1, 0] —(bdy N(Cl, M) xI =M

then it is easy to check that (15), (2o), and (30) hold.

Suppose Gi,_, has been constructed satisfying the three conditions. For
an arbitrarily small ¥, property (1,-) and regular neighborhood theory
allow us to choose a different third derived (leaving the first two alone) so
that

Gl (D7 x[—1,(w=1) 7]}
A elos (N (N (C(w=1)7), M) =N (C(w=1)3), M"))

is equal to Gi,_, (D" ' x[(x=1)y—y, (w—1) 7]). We obtain a PL ambient
isotopy @ of M satisfying the conclusion to Theorem 2.1 for th‘e collapse
C(w—1%)~ C(wy) and the newly chosen third derived subdivision of M.
Now suppose h: D71 x[~1, wy] S DTt x[—1, (w—1)y] is defined on the
first factor by the identity and on the second factor by send_ing 0 to O,
(w—1)y to ((w—l)y—y') and wy to (w—1)y and then, extending linearly.
Thus, h is a PL homeomorphism with )

WD x [w=1)7, wy])=D"! x[((w—i)?—v'), w—1)7].

We now complete the induction step by defining Gi, = poGi,_oh. .

We need only check that the three conditions listed above hold for Gj,.
The first two follow easily from the properties of ¢. We give the details for
the third. .

We check that (3,) holds. By choosing &' very small, (G~ x
%[0, (w—1) v])) can be made arbitrarily close (pointwise) to Gj,— 1. Therefore
we can assume that (GL(D'™* x [0, (w—1) y])) < eoRoe. Thus, our goal is to
show that (GLI(D'~! x[(w—1)7, wy])) < eoRoE.
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First, Condition (2,) implies that
G{u* 1 (xs [((W - 1) Y 'J)I), (W - 1) y]) < N(N ((imageC\C(w— 1y 0)5 M”)» MW)

for each xep™!' where p;_;(x)eN(oc, M) and o<|C|. Also for
te[(w—1)y, wy] we have by definition that Gi(x, ) = @oGi,_ oh(x, ).
Thus, by the above and Theorem 2.1 we have

G, (%, ) = oGl,_, (D™ x [(w=1)y—7), (w—1)7])
< ¢o(N (N (imagec..cqw- 1y ) M"), M)

=N (N ((traCkC((w“—lw)»C<wv) (imagec.. cqw- 1y 9)) M ”)’ M ”')-

We conclude by showing that for appropriate choices of y and 8, the relation
sending (x, t) to the last set above is a subset of so(R|D)os.

Here, the style of proof is different from the embedding case. Since cell-
like sets can be quite large, two collapses close to S/ can be quite far apart
(point-wise). We must handle the epsilontics using neighborhoods of re-
lations. Since this is the first such proof, we include all the details.

These choices of y and § are made through the use of the Composition
Theorem (Theorem 1.1). Start by considering Diagram 3.1. It is easy to check
that this diagram commutes. Note that all the relations are continuous with

compact point images and proper so that we are in a position to use the
Composition Theorem freely.

Dt [———— E"

(id x id)l /

Dl—l xI
((RID*Yy x id) (id)
E"xI
(id x id)l
E"XT 5’ E"
Diagram 3.1

We begin with the top part of Diagram 3.1. Fix ¢ > 0; then by the
Composition Theorem choose 7, & > 0 so that

&'o(R|DY)oe’oyo (id x id)oy < so (R|Di)ce.

Similarly, the bottom Diagram 3.1 is completed by finding &, 0 < < ¥, 8O
that the composition of relations

do(id)odo200870250350 (id x id)o3sodo (R|DI~1) x id)os

is contained in &'o(R|D/)og’.
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We now describe a set of relations whose composition is contained in
£0(R|D)oe and contains the embedding GY,. This will complete the induction.
Recall that the mesh of the triangulation of the manifold M is smaller than
the & we just chose.

Diagram 3.1 depicts the pattern of the following choices; simply follow
the arrows around the outside of the diagram.

First, define a relation R,: D" xI—D/"' xI by

R,(x, 1) =(x, [(w—1)7, wyl).
We see that '
(R,|DI~* x [(w—1)y, wy]) = yolid xidjoy: DV™* xI— D" x1.
For the second step we have that
. (p- 1 xid) < So((RIDI™Y) xid)jod: DI™! x I —E"x1
since .
So((RIDV1) xid)od = (So(RID'~ *)od) x (8c(id)od)

and since by hypothesis p;_; = S{R|D'~")oé. For the next step recall that by
hypothesis the image of p,_, lies in bdy(N(C, M")). Thus, for each xe D'™*
there is a simplex o,e|C| with p;_; (x)eN(o,, M"). Also, the diameter of
N(o,, M") is less than 35. So if R,: E"xI—E"x1I is defined by

R (x, ) =(05, t) for xepj_; (DY)

then
R, = 3d0(id xid)o3d: E"x1— E"xI.

For the fourth step, since C(x, t) = JoS’0é and |C| has mesh < we can
readjust the parametrization of C so that C(wy) is ‘a subcomplex (0 < w < N)
and C < 2608/028. A quick inspection shows that CoR,o(p;_, xid)oR,(x, t)
is equal to the set {trackciy— 1)~ cory (IMABEC . cyw— 1)y Tx)}- This fact, the fact
that the mesh of the triangulated M is less than &, and Diagram 3.1 imply
that the relation from Di"'xI to E" sending the point (x, ) to the set

N (N (traCkC(w— 1)7)%C(wy) (imagec . c(w- 1 0.), M "), M ’”)

is contained in eo(R|D’)oe. .
Lemma 1 is completed by setting p; = (G4| D).
Lemma 3.2 ([Mi®, Corollary 10]) 0 <j<k< n—3). Hypothesis: Suppose
(1) (A}, 6>0, is a set of collections of PL m-manifolds without
boundary such that Me # (3) implies M = Ny(R(DY)).
(2) For each &> 0 there exists a 6 >0 satisfying the following:
If 6>06*>0 and M*ec.#(0%), then for each complex Z with
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dim(Z) K m—4 and Z < M¥*, there is an Me . #(s) with- M n N§(R(DY)
= M* and a (j, &)-homotopy of Z contained in M.

Conclusion: Suppose & > 0 is given, there exists a 6 > 0 satisfying:

If 6= 6*<0 and M*e M (6%), then for each (j, 6)-collapse C* in M*
with dim(|C*|) < m—3 and each complex X in M* with dim(X) < m—4 there
exists Me #(s) with M N¥(R(D))=M* and C, a (j, &)-collapse, with
ICl = (C* U X), M =[C|, and dim(jC}—|C*)) < (dim(X)+1).

Addendum: If in addition X < (M*— N,(R(D’'™")), then C can be chosen
so that |C|—|C*| lies outside N;(R(D'~")).

Proof. This lemma builds collapses from homotopies much in the same
manner as in radial engulfing. The complicated hypotheses are needed
because instead of working in a single manifold, we work in a nested (by
inclusion) sequence of manifolds. As in Lemma 1, our proof consists of
checking to see that Miller’s ideas generalize to the cell-like embedding
relation case.

We induct on r =dim(X). For r = ~1, let C=C* ThlS starts the
induction.

Now, our goal is to enlarge a (j, d)-collapse, C* to a (Jj, e)-colldpse C,
with |C] containing an (m—4)complex X. An outline follows.

Step 1. We use induction to enlarge |C*| to |C1| to contain X~ 1) the
(r—1)-skeleton of X. Call this enlargement Cl1.

Step 2. We now have all but a finite collection of r-simplexes of X in
|Cl}. Let o be one such simplex. Then bdy(c)=|Cl]. Let Z,
= 0 U 4y o (tracke, (bdy 6)). We apply the hypothesis of Lemma 3.2 to get a
homotopy F,: ZxI —E" of Z with F “close” to .
~ Step 3. We construct a collapse ¢, of Z,xI to ((Z x{1Hu
U((imagec, bdy o)) x I) so that F,oc,: Z,xT1—Z,x1 - E" is close to SJ and
cof(tracke, (bdy 6) x {0}) = C1. Then let W= U(Z x I) where the union is

taken along trackc, (bdy o). By construction the ¢,’s piece together to form a
collapse ¢ of W and the F,’s piece together to form a map F: W— E" s0
that Foc is close to §7. The desired collapse C will eventually be constructed
in part from F(W).

Step 4. We use induction and general position to construct a collapse
C2 so that F(W)n|C2| is “saturated” with respect to ¢, i.e.

F (track, (f ~* (F (W) [C2))) = F (W)~ |C2).

Also, F (track,(F~*(S(F)))) = [C2| where S(F) is the singular set of F.
Step 5. The underlying polyhedron of the promised collapse is then given by

IC| = F(W)uU|C2|. The two conditions described in Step 4 allow us to show
that |C| actually collapses.
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We now fill in the details. We are given ¢ > 0. The positive number
6 >0 is chosen as follows.

Choice (0). Choose 0 <J(0) <& so that if C; and C, are any two
(i, 6(0))-collapses, then the following property holds. If (x, t)eE"xI with
Cy(x, E|Cy| then ((x, 2}, C,(Cy (x, 1), t'))e(e0S0e) for all ¢ = 1.

Choice (i). Choose 0 < (1) < 5(0) so the relation
(6(1)oSi0s (1))o(id x 5(1)): E

is contained in &(0)oS0é (0).
Choice (ii). Choose 0 < §(2) < §(1) so that if C; and C, are any two
(j. 6(2))<collapses then

x1—E"xI—E"

Ci ()N Cy(1+6(1) = Cy (t+5(1)2)  for  te[0, 1-5(1)].

Choices (0), (i), and (ii) are needed in Step 5 above in order to fit F (W)
and |C2| together so that the union collapses properly.

Choice (iii). We use induction as follows. For i=3,4,...,r+2 let
e(ind) = &(i—1) and choose §(i) = & (ind). These choices give us the necessary
power and control to complete Step 4 above.

Choice (iv). Choose 0 <d(r+3) < é(r+2) so that if C is a collapse
which is a (j, 6 (r+3))-homotopy of bdy(C) then C is a (j, 6(r+2))-collapse.
This insures that the collapse we are about to construct will in the end be a
(i, 8(r +2))-collapse.

Choice (v). The following are technical conditions that supply
the controls necessary for the description of ¢ in Step 3 above. There
exist &', 6", and 5(r+4) with §(r+4) <8’ <6’ < d(r+3) such that if K is
a (j, 0(r+4) collapse and F is a (j, 6(r+4))-homotopy of |K| with
(|K| U (Tmage (F ))) < N+ 4 (R(DY), then the following hold:

a. §(r+4) <d(r+3)/2.
b. (x, £, F(K(Ny (x), [t=8, t+67), [0, 67)) = 5(r+3)0S%05 (r +3).
c. (x, 1, F(K(Ny(x), [1—30', t+067), [0, t+28'0)) = (r+3)o8'08 (r +3).
4 ;
(x, t, F(K(Ny(x), [r*=0', t*487), [1= 9", t+087])) < 3(r+3)08'05 (r+3)
for each x and t where t*€[0, t].

e. Let Z be a subcomplex of (K| Ny (R(D™?
tel0, ] we have

(x, t, F(K (N (x), [0, 7)), [0, T+ 257)) = 8 (r+3)0S%0d (r +3).

xﬂ); for xeZ and
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f Let Z be a subcomplex of (K| Nz (R(D'™!xD)); then for
telf, 1-8, K(Z,[0, D K(Z,t+8) = D.
g If Z< N (R(DY) and dia(Z) < é(r+4), then

S(r+4)
Z < Ny (R(DP' 1))  for some telo, 1]. ,

Choice (vi). We now use the hypothesis of Lemma 3.2 to supply the
necessary homotopies of the r-simplexes of X. Let &(Hyp) = 6(r+4) and
choose 6(r+5) = d(Hyp).

Choice (vii). Choose §(r+6) < d(r+5)/2.

Choice (vii. We once again use the inductive hypothesis; here we
engulf the (r—1)skeleton of X. Let g(ind) = &(r+6) and choose d(r+7)
= J(ind).

We now show that § = & (r+7) is the proper choice. To this end suppose
that &, 5* C*, M*, and X are as in the conclusion to Lemma 2; we nced to
find C and M. The proof follows the previous outline.

Step 1. We apply induction with &(ind) = & (r-+6). Choice (viii) yields
5 =56(r+7) = 6(ind). Then for M*(ind) = M*, C*(ind) = C*, §*(ind) = &%,
and X(ind) = X"~V (the (r—1)-skeleton of X), induction yields M(r+6)
= M(ind)e .# (5(r+6)) and C(r-+6)=C(ind) (a (j, 6(r+6))-collapse) with
(CHUXT D) [Cr+6)| = M(r+6), M@Er+6)nN;(R(D))=M*  and
dim(|C(r+6)|—|C*) < r.

Step 2. Now the only part of X not in C(r+6) consists of a finite
collection of r-simplexes of X, each of whose boundaries lies in |C(r+6)|.
Using Choice (vi) we obtain homotopies of these simplexes that will event-
ually become part of C, the collapse promised by Lemma 3.2. For the
remainder of Step 2 and all of Step 3 let K = C(r+6) for ease of notation.
Let o be an r-simplex of X and Z, = 6 U g, (trackg (bdy ¢)) (the union is
the abstract topological union taken along the boundaries of the o¢’s). Notice
that in general trackg (bdy o) Nint(o) # @ so that Z, is not embedded in E".
However, there is a PL map f,: Z, > M{r+6) N, (R(D)) obtained
from the inclusions of each of ¢ and trackg(bdyo) separately into
M(r+6) N Ny (R(D)). Let Z = U f,(Z,). Now, Z does lic in M (» -+ 6) since

oeX

X and |K|=|C(r+6) do. Notice that dim(Z) =r < (m—4). If we let ¢
= §(r+4) in the hypothesis of Lemma 3.2, then Choice (vi) and Lemma 3.2
yield §(r+5). Then by letting 6*(hyp) = d(r+6), M*(hyp) = M (r+6) and
Z(hyp) = Z, we obtain M (r+4) = M (hyp)e.#(3(r+4) and a (j, §(r+4))-
homotopy f: Z x I~ M(r+4) with (M (+4) 0 Ngps 6 (R(D)) = M (r+6).

For each o = X define a (j, 6 (r +4))-homotopy F,: Z, xI — M(r+4)
by F, = fo{f, xid).

Step 3. The goal is to coostruct a collapse ¢, of (Z,xI) to
(Z,%{1}) vimageg (bdy o x 1)) so that F,oc, is a (j, §(r+3))-homotopy of &
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and (F,oc,/bdy o) has the same tracks as (K|bdyo). We note that, in fact,
¢, yields a homotopy of ¢ xI, not o, so we identify ¢, with ¢,0i,: ¢ x1I
2 (Z,x ) x1— Z,xI where i,(x, t) =(x, 0, ) &((Z, xI) xI).

Following Miller ([Mi®, p. 410]), we describe ¢ with four steps. Pick
B, 0<p<1.

1. ¢ x[0, B]  ((bdy o) x [0, Bl U o x {B)) through o x {0}.
2. ((trackx (bdy 0)) x [0, B1)

N
((track (bdy o)) x {0, B}) U (image (bdy o)) x [0, BI).

This is accomplished by copying the collapse of tracky(bdyo); in other
words if 7 is a simplex of trackg(bdyo) and t collapses through a face 7/,
then we collapse the cell 7 x [0, ] through the face, ©'x [0, f].

3. ((trackg (bdy 6)) x {0}) s ((imagey (bdy o)) x {0}).
4. (Z,x[B, 17) ™ (Z,x {1} U imageg (bdy o) x I) through Z, x {f#}.

The collapse ¢, will have the same tracks as the one just described, but
the order in which the various stages occur will be altered carefully to yield
the desired properties. Recall that tracky(bdy o) is a subcomplex of |K| and
so is triangulated with mesh less than &(r +6). Extend this triangulation to
one of Z with mesh less than &(r+6). Choose B, 0 < f < d(r+6), so that
N-p =1 for some integer N. Choice (vii) allows us to adjust the parametriz-
ation of K so that K(I-f) is a subcomplex of |K| for each I, 0 <1< N, and
K is still a (j, 8(r5))-collapse. .

We give a precise description of the collapse ¢ as a sequence of N
moves, each consisting of a collapse of PL cells and each taking place while ¢
varies over a subinterval of length B. The case N =3 is illustrated in
Figure 3.2.

tracky (bdy o) % {1}
o x{1}
=

Wcl

Move: [ 11

Figure 3.2


GUEST


76 F. C. Tinsley

Move 1. This move occurs from t =0 until ¢ = p. It can be described
in three distinct submoves.

a. (o [0, B1) ™ (((bdy o) x [0, B1) (o x {B))-

b. (trackg (bdy o) x [0, Bl) ~ ((K"(B) x [0, f)) v (trackg (bdy o) x 0, B }))
where K° = (K|tracky (bdy o)). This is the first part of the collapse of
(trackK(bdy o) x [0, ﬁ]) which mimicks K°.

c. (trackg (bdy o) x {0}) ™ K7(B) x {0}.

We now give the J'th move for each integer J,2<J < N.

Move J. Each move takes place from t = (J—1)f until ¢ = J-pB. Bach
one can be described in four submoves. We mnote that for s<t
K (bdyo, [s, t]) = trackg. xe (bdy 0).

a. ((a v K(bdya, [0, (J- DAY =[-8, J -ﬂ])

(¢ K (bdyo, [0, (/- 1)5)): (7)) v
(K (bdy o, =1 ) x [T~ 1B, 7 -B1))
b. (K*((—1)B)x [0, B1)  (K* (7= 1) B) x {0, B) u (K7 (- B) x [0, B1))-
c. K°((~1)B)x {0} ~ K°(J-B) x {0}.
d. (K(bdyo, [(J—1)B, J - BI)x [i’ J-B)

(K (bdy o, [T—1)B, J-B])x {J - B}) U (K (bdy o, T-B)x [B, J - B1)).

We use Choice (v) to show that ((x, 1), F,0c,(x, 1)) = &(r+3)oS8/08 (r+3)
for each xeoc and rel. We assume that ¢, has been subdivided to be
simplicial ((Wh', Theorem 7J). ]

We split the proof into cases. To give the reader the flavor, we include
details for case 1. Assume (c,|[0, to]) is just move 1(a). Let xeint(t) where 7.
is a simplex of o subdivided.

Case 1. ¢, (x, to)¢((bdy o) x [0, B)).

Since we are collapsing along product lines, ¢,(x, tyet x I for all tel.
Since dia(t) <6 and B <4,

F,o0c,(x, t) = (F,08)(x, 1) E"xI— E"xI - E".

But by Choice (vi) F, = & (r +4)oS/od(r +4). Thus, since & < &(r+4) we have
by Choice (v(a)) that
F,06 = (r+4)0808 (r +4)08 < §(r+3)oS0d (r+3).
The reader will find Choice (v) helpful for
Case 2. ¢,(x, t)e((trackg (bdy 0)) x (0, B)) for all te[to, 1].
Case 3. c,(x, t")etracky (bdy o) x {0} for some t'el.
Case 4. c,(x, t')etracky (bdy o) x {f} for some t'el.
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We leave these as exercises.
We complete Miller’s argument (for cell-like embedding relations) by
letting W= |J Z,xI where identifications are made along the tracks of the

aeX
boundaries at the O-level. Note that for each o, tracky (bdy ¢) actually resides

in M(r+4) and (F +0C,|((trackg (bdy 6)) x {0})) is inclusion. We let F= ) F,
oeX
and ¢ = |J ¢,. Then it is easy to check that F and c are well-defined, that ¢

aeX
is a collapse of W, and that Foc provides a (f, §(r +3))-homotopy of X® in
M(r+4).

Step 4. The argument is precisely that of Miller [Mi®, p. 411-412]).
We use Choice (ili) and induction on Lemma 2.

We have Foc: W— M(r+4), a (j, (r+3)-homotopy of X. After a
general position move we may also assume that dim(S(F)) <r—2 and
dim(F-C) < r—2 where S(F) is the singular set of F and

F-C =clos {w e(W—-U ((trackgq + ) (bdy @))% -{0}-))}

such that F(w)e|C(r+6).

For T« F(W), let SAT(T) = F (track, (F “}(T)) and call T saturated if
SAT(T) = T. Construct inductively collapses C(r+1), C(r),..., C(2) such that
for r+1= 1322, C(g) is a (j, 8(¢)-collapse in M(g)e.# (5(q)),

C(a)l = (SAT(C @+ D nFW)viC(g+ 1),

(lC(q)I —(IC(g+ 1) USAT(C(g+ 1) AF(W))) is in general position with
respect to F(W) and to each simplex of X, dim(C(g)—IC (g+D)<@—-1,
and M (q) O Nyg+ 1) (R(DY) = M(g+1). For g = r+1, let C(g+1)=C(r+6)
and replace SAT(/C(g+ 1)l nF(W)) by the set (SAT(F (F-C)uF(S (F)))).
It is easy to check that (|C(2) N F (W) is saturated, the desired property.
Step 5. The desired collapse C is given by |C] = (F(W)U|C(2)|), Since
(C@InF (W)) is saturated, the collapse ¢ provides a collapse c* of W to

(F-(c@nvuy ((Z, % {1}) U (imagece+ 4 (bdy 0) X [0, 11)))-

But (F|(|C|—|C(2)})) is an embedding so that (Foc*oF“](|Ci—1C(2)])) is
a collapse. We define the time parametrization of C as follows.

Foc*o(F~' xid)(x, t) for xe(jCl—|C (),
C(x, t)= {C(Z)(x, r—B(l)) for xe|C(2), te[6(1), 11,
(x, )

for xe|C(2), te[0, 8(1)].
The time delay removes obstructions blocking the collapse of C(2)
(Choice (ii)). The track of a point x may be included entirely in either F(W)
or |C(2)| or switch from F (W) to|C(2). Choices-(i) and (0) respectively insure

that in either case, ((x, 1), C(x, ) = goS’oe, completing the proof of Lemma 2.
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The keys to generalizing Lemma 2 to the relation case are of course
Choices (0)(viii) some of which require proof. As an example we verify
Choice v(d) and then leave the remaining proofs as exercises.

We show that for ¢ > O there is a § > 0 such that if C is a (j, d)-collapse
and F is a (j, §)-homotopy of |C] then

((x, 1), F(C(Ng(x), [1*—8, t*+8)), [t—8, t'+<$])) < ¢oSlos for t*e[0,t].
Consider the composite relation )
SIS xid)og: E"xI — (E"xJyxI— E"x I — E"

where J = [0, 1] and ¢(x, 1) =(x, [0, ], t). Note that $o(S’xid)og = §’:
E"x1— E". We apply the Composition Theorem to obtain & >0 with
(9087028)0((6087026) x id)oe = eoSoe. Thus, Fodo((Cod) x id)op = soS/ce. But
we also have that ‘

(. B, F(C(Ny(), [t* =35, r*+5]), [t—5, t+01)) = Fodo((Cod) x id)og.
The following yields the Addendum.

SUBLEMMA 32 Suppose 0 < h<j<k. For each ¢> 0 there exists a
0> 0 such that if X lies outside N,(R(D'Y)) and F is an (h, 5)-homotopy of
X, then F(X x1) lies outside N;(R(D'™Y).

Proof. For y>0 we have S'on™!'(R(D"!x[y, 1])nR(D'"!) =@
where m: E"xI—E" is the natural projection. By compactness of D/
there exists a y>0 such that N,(R(D'"'x[0, 1])) = N,(R(D'"Y)). The
Composition T heorem yields a 8, 0 < & < y, with (6oS'08on ™~ 1)osoR (V™! x
x [y, 1])050R(D’_:1) =@. So if F and X are as above, then it is also true
that Xn_]\i,(R(DJ 'x[0,9])) =@ and X < N;(R(D’"'x[y, 17)); so we
have For™ ' (X) n N;(R(D’™1)) = @ and thus F(X x1) n Ny(R(D'"1)) = .

- Lemma 3.3 ([Mi® Lemma 117) (0 <j < k). Suppose'¢ > 0 is given. There
exists a 6> 0 such that if 6 >6*>0 and if C*...,C' and B,,...,B, are
sequences of complexes in Ny*R (DY) satisfying v

1. Cis an (r;( 5*)-lclollapse in (bdy (B, 1)) " Np(R(D") with dim (C") < r.

h2.<3k = N(CY, E™) and B, = N(|C"l, (bdy (B, +,))") for j < r < k—1, then
Jor h<j and each complex X in (bdy (B, ,)) N N (R(DY)) with dim(X) < h,

h N k i f .
there are new complexes Ck, ..., C and BY, ..., BY satisfying (1) and (2) for ¢ in -

place of 6% and which also satisfy

3.1C = |Ckl and X = |CY).

4. If h <j then Bf contains an (h, &)-homotopy of X.

5.1 X is  outside N, (R(D/™! e g =) =
|C"| A Ng(R(D'™1)) and BX mNﬁ(Rng(“)) =.)~) B, :I;L(RI(JC)AII"%)N%(? 5-D</~,- 22

Proof. The proof is by downward induction on J beginnfng v;lithj = k..
In each case Lemma 2 is used to finish the argument.

icm

Miller's theorem for cell-like embedding relations 79

Case 1. j=k In Lemma 2, let {M(3)} = {N,;(R(DY)} for 6 > 0. We
verify the hypothesis in this case. We apply the Approximation Theorem (1.2)
to S*: E"xI—E" taking &(hyp)=06(12) for &(1.2)=e(hyp). For
Z < N, (R(D9)(0 (hyp) = 6* > 0), define f = (INC|(Z x{0})): E"x {0} —» E".
Theorem 1.2 yields an . extension g: Ngm(R(DM)xI—E" with
g < e(hyp)oS*oe (hyp). Clearly, F =(g|(Z xI)) is the desired homotopy.

Now for ¢ > 0, first choose a, 0 < a < ¢, to satisfy Sublemma 3.2; then
choose f, 0 < f < a to satisfy the conclusion to Lemma 3.2; finally choose
§, 0 < & < B according to the previous paragraph. Suppose Ck is a (k, %)
collapse and X = Np(R(D¥). Let F¥ be an (k, B)-homotopy of X. Apply
Lemma 3.2 with C* = C* and X(3.2) =X if h =k or X(3.2) = Ffo.; if h < k.
Then C%=0C(3.2) and Bf = N(C%, E™) satisfy (1)-(3) of Lemma 3.3.
Properties (4) and (5) follow from our choice of o and the Addendum to
Lemma 3.2 respectively.

Case 2. j< k—1. Case 1 began the induction; as in the proof Lemma
2, we verify that Miller’s outline works in the relation case.

We assume Lemma 3.3 holds for (j+1) and prove the following.

CLav. Suppose ¢ > O is given. There exists &' > 0 such that if C*,..., (el
and B, ..., B; satisfy conditions (1) and (2) of Lemma 3.3 for 6%, 0 <0* < ¢
and if' Z < (bdy(B;++)) r\(N,;,,=(R(D-"))) is a complex of dimension < (h—1), then

there are new sequences C, ..., CitY, €V and BE, ..., Bi.y, By satisfying con-
ditions (1) and (2) of Lemma 3.3 with 8* replaced by & and such that | Cg| = | C'|

~for jyl<r<k und such that there is an (h, &)-homotopy of Z in

(bdy (B%. 1)) N N, (R(DY)).

Proof of Claim. We begin with two sets of technical conditions. First,
choose @, 0 < < ¢, and y; > 0 so that if C is a (j+1, x)-collapse then we
have .

(@) C(r)) 0 N, (R(D)) =O.
(ii), For h<j we have for (x, )eE"xI
((x, 1), (acS’ *log)oy, ) ((aoS on)(x, t), 0) < &'oS"or’.
(i), (208 Tom)oT; (N, (R(DY)), 0) = N, (R(DY)).
Next choose §,0 < f <o and 7, > 0s0 that if C is a ((j+1), B)-collapse, then
(i) Cy2) 0 Np(R(D)) = .
(iijy For 1<h<j ((x, [0, y:]), BosSi*lop(x, [0, y2]) < (xoS"on).
(iii)y If ¥ = (Ny(R(D))N[C|) then for h <
BoS*oB({C(Y, 72)} x I) = N (R(DY)).

(iv)y (BoS'* '0p)oT, (Ng(R(DY), 0) = N (R(DY)).

We obtain &' by applying induction on Lemma 3.3 with ¢(ind) = f and also
requiring 6’ < (f/2).
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To prove the claim, let g, denote the composition of first the collapse
By, N |C/tY and then the collapse [V~ C*'(3,). If o=g,, then
0(Z) = bdy (B, ,). We apply induction on Lemma 3.3 to C*,...,C*' and
B,,...,B;,, with X (ind) = o(Z). We obtain new sequences Ciz),..., Ciz and
B§®, ..., BYP), satisfying (1)-(5) of Lemma 3.3 for j+1<r<k.

Since h<j<j+1 and dim(Z)<j+1, we have an (h, f)-homotopy
F: g(Z)xI — E" Also (i); and (5) allow B; and C/ to be added to the above
sequences with the result satisfying (1)-(2) of Lemma 3.3 for > 0.

Define a homotopy G: Z xI — E" by

(. (t/10))
F(x:(t=to)/(1—15))

"For small t, and t, <t <1, G is very close to F. Also, condition (ii),
implies {(x, [0, y,]), §'0C?*'025'(x, [0, y,])) = aoS"on and thus,

((xa {Oa Vz]), Q(X, [0’ Vz])) < (lOShOd,
taking care of the case 0<t<t,. Therefore G is an (h, a)-homotopy.
Conditions (iii); and (iv); imply image(G) = N, (R (D).
We “push” G into bdy(B$¥%) by collapsing “past” G(Z xI) and then
using the inverse.
From condition (i), we see that

Tt (1) N N (R(DY) = ©.

This collapse occurs in bdy Bi%); let @, be the isotopy of bdy(B§%)) that
Theorem 2.1 associates with the collapse. Note that

for 0 <t <1y,
for to St <1,

G(x,t) =%

&, (BY) = N(Ciz (7). (bdy (BIZ))").

We can choose our second derived so that ®(B%%))n N,(R(D))=0Q.
Regular neighborhood theory supplies a PL homeomorphism p, of
bdy (B¢?,) which fixes Cifl and takes BYZ onto N(B$%: (bdy(BYZ))).
There also is a PL map p,: N(B44, (bdy(B¢A))") — B¢, that fixes BI¥,
and collapses the rest of N(BYZ), (bdy(B4%))) onto bdy(BY#). We can
assume (p,0po|bdy (B3#))) = identity. Define a homotopy H of Z by
H = p,o®; 'op,0G: ZxI—E"

We have Ho=Gg; also @7 ‘opo(G(Z x I))=(N(BIZ, (bdy(BLA)Y)— By )
so that p;o®; 'opy(G(Z x I)) = bdy(BIP)). Finally, if xe(N,(R(D))nICL1),
we see that ((x, 0), Ciy (x, [0, p]) = (0S8’ *toa)oy,. Thus, appropriate
choices of po, p;, and @, allow p;06~'op, = (@oS'* *ox)oF,|E" x {0}). Since
G < aoS"ca, condition (i), implies H = p;o#~1op,0G < ¢'oS"o¢’. Condition
(iii), insures H(ZxI) = N,.(R (DY), concluding the proof of the claim.

We verify the hypothesis of Lemma 3.2 for
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{4 (8)} = {bdy(B,4;) " Ng(R(DY)) there exist sequences C*,...,C/*! and
By,...,B;,, satisfying conditions (1) and (2) of Lemma 3.3 for § > 0}.

Given ¢>0, let ¢ (Claim)=¢ and choose ¢ = ¢'(Claim). Suppose
§26*>0 and Z < (bdy(Bj4,)) N Ns, (R(DY)) = M* e {.#(5%)}. Applying the
Claim with C/=B; = added to the sequences of .#(6*), we obtain
C%,...,C5™t and Bf,...,B%,, satisfying (1) and (2) of Lemma 33 with ¢
replacing & and also with (bdy(B%,,)) containing a (j, &)-homotopy of Z.
Thus, we are free to use Lemma 3.2.

Given & > 0, choose a, 0 < & < ¢ according te the conclusion of Lemma
3.2. Then choose &, 0 <8 <a, using the Claim. Suppose C*,...,C’ and
By,..., B; satisfy (1) and (2) of Lemma 3.3 for 6%, 0 < &* < 6. If h =}, let (o
= C" and B¥=B,. If h <j, then the Claim produces C%,...,C{"", Ck =C’
and BY,..,Bf,, Bf =B satisfying (1) and (2) for >0 with a (j, o)-
homotopy H of X in (bdy (B},))n N,(R(D)). We apply Lemma 2 (.# () as
above) with M* = (bdy (BX, ,)) " N,(R(DY)), C* = C’, and X(3.)) =X if h =}
or X(32)=H(XxI) if h<j We obtain sequences C¥%,...,C4"' and
BY,... BY , satisfying (1) and (2) for ¢>0. Let Ci¢=C(3.2 and
BY = N(CK, (bay (B ).

The resulting sequences satisfy (1)~(5) of Lemma 3.3 for ¢ >0

LemMMA 34 ([Mi®, Lemma 12]) (1 <j<k). For each ¢> 0 there are
sequences C*,...,C' and B,,...,B; such that for j<r <k

1. C" is an (r, &)collapse in N,(R(D"))(bdy(B,,)).

2. B, = N(ICY, (E"") and B'(|C"], (bdy(B,+,))")-

3. There is a PL map g,—,: D'~ * —|C7 such that g~ < so{RD"™ "),

Proof. The proof is generalized directly from that of Miller. The proof
is by downward induction on j.

Case 1. j=k. Suppose ¢>0 is given. Let e(3.3)=¢ and choose
§=5(33). Let gy_,: D' > Ns(R(DY)) be a PL map with
i1 = 00(R|D¥~ 106 chosen by the Approximation Theorem. Apply Lemma
33 with j=k C*(33)=0 and X(33)=g,—;(D*"!). Then set C*(3.4)
= C5(3.3) and B,(34) = Bf(33).

Case 2. j <k. Choose o, 0 <a <g, according to Lemma 3.3; then
choose B, 0 < § <a, so that if f: D/™' — E" is contained in Bo(R|D)op, then
f = ao(R|D'~")oo.. Finally choose &,0<3d<p, in the manner as a was
chosen in Lemma 3.3. Induction on Lemma 34 yields C*,...,C’*' and
By,..., B;+1 satisfying (1)-(3) above for &> 0. Let g,: D/ —|Ci*1| be the PL
map. As in Lemma 3.3 we push g;(D)) into bdy(B;,,) via a PL map p,
constructed using the inverse of the collapse of |C7*!| past g;(D’). Since
pog; = Bo(RiD)op, we have pog|Di ™! < ao(R|DY~")ou. Apply Lemma 3.3 to
the above sequences with C' = B; =@ added and X(3.3) = pog;- (DY),
The result satisfies Lemma 3.4.
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Lemma 3.5. ([Mi®, Lemma 13]). For each & > 0 there exists a 6 > 0 such

that if C%,...,C' and B,,...,B; are complexes satisfying conditions (1)-3) of

Iemma 3.4 with ¢ replaced by 6, then for each j, 1 <j<k, there is a PL
embedding p;: DY — B; such that p; < eo(R|D)oe.

The proof is by upward induction on j. For j =3, we have a PL map
g2: D? —|C3|. Without loss, we can assume g,: D — bdy(B;) (see proof of
Lemma 3.4) and g, is a PL embedding (dim (bdy (B5)) > 5). An application of
Lemma 3.1 yields a PL embedding p;: D® — Bj.

For j> 3, choose «, 0 <o <g using Lemma 3.1; then choose d,
0<d<a by induction on Lemma 5. We obtain a PL cmbedding
pj-1: DI1 =By, with p;_; < ao(RID'~"ox. Apply Lemma 3.1 with C(3.1)= ¢V
and. M(3.1) = bdy(B,;4+;) to obtain p;: D'— B; = N(/C/, (bdy(B;.,))")
with p; < ¢o(R|D)os. ’

The case j = k finishes Theorem 3.0.
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