L. Holmström

[15] - Relationships between λ-nuclearity and pseudo-μ-nuclearity, Trans. Amer. Math. Soc. 201 (1975), 291-303.

- [16] T. Terzioğlu, Die diametrale Dimension von lokal konvexen Räumen, Collect. Math. 20 (1969), 49-99.
- [17] Stability of smooth sequence spaces, J. Reine Angew. Math. 276 (1975), 184-189.

UNIVERSITY OF HELSINKI DEPARTMENT OF MATHEMATICS Hallituskatu 15 00100 Helsinki 10 Finland

152

Received March 19, 1981

(1679)

STUDIA MATHEMATICA, T. LXXV. (1983)

A reverse maximal ergodic theorem

by

RYOTARO SATO (Okayama)

Abstract. A reverse maximal ergodic theorem is proved for a d-parameter discrete semigroup $(T_g\colon g\in Z_+^d)$ of measure preserving transformations on a σ -finite measure space (X,\mathscr{F},μ) which is ergodic in the sense that if $E\in\mathscr{F}$ with $E\neq X$ is T_g -invariant for all $g\in Z_+^d$ then $\mu E=0$ or ∞ . A continuous version follows from standard approximation arguments.

1. Introduction. Let (X, \mathscr{F}, μ) be a σ -finite measure space and $(T_g\colon g\in Z_+^d)$ a d-parameter discrete semigroup of measure preserving transformations on (X, \mathscr{F}, μ) . For $0\leqslant f\in L_1(\mu)+L_\infty(\mu)$, the maximal function f^* is defined by

$$f^*(x) = \sup_{n \geqslant 1} n^{-d} \sum_{g \in \mathcal{V}_n} f(T_g x) \quad \text{where} \quad V_n = \{0, \dots, n-1\}^d.$$

It is then known (cf. [11], [4], [1]) that the maximal inequality holds:

(1)
$$\mu\{f^*>a\} \leqslant \frac{1}{B_{d^a}} \int_{\{f>B_{d^a}\}} f d\mu \quad \text{for any } a>0$$

where B_d is a constant dependent only on the dimension d.

The purpose of this paper is to show that a reverse maximal inequality holds provided that the semigroup $(T_g\colon g\in Z_+^d)$ is ergodic in the sense that if $B\in \mathscr{F}$ with $E\neq X$ is T_g -invariant for all $g\in Z_+^d$ then $\mu E=0$ or ∞ . Here it should be noted that N. Dang-Ngoc [2] has shown a similar inequality for an ergodic d-parameter group $(T_g\colon g\in Z^d)$ of measure preserving transformations on a probability measure space. However, the maximal function f he considered is defined by

$$f^{\sim}(x) = \sup_{n\geqslant 1} (2n-1)^{-d} \sum_{g\in W_n} f(T_g x)$$
 where $W_n = \{-n+1, \ldots, n-1\}^d$,

and he remarked that his argument is not modified if f^{\sim} is replaced by f^* . Nevertheless, we shall modify his argument to prove our result. For the particular case $(T^n: n \in Z^1_+)$ where T is conservative and ergodic in the usual sense, the inequality was already obtained by Derriennic [3] in a

slightly different form. We think that Derriennic's argument cannot be applied when the dimension d is greater than one. See also Ornstein [8], Petersen [9], Marcus and Petersen [7], and the author [10].

2. Reverse maximal ergodic theorem.

Theorem 1. Let $(T_{\sigma}: g \in \mathbb{Z}^d_+)$ be a d-parameter discrete semigroup of measure preserving transformations on a σ -finite measure space (X, \mathscr{F}, μ) which is assumed to be ergodic in our sense. Then there exists a constant $C_d > 0$, dependent only on the dimension d, such that

(i) if $\mu X = \infty$ then for any $0 \le f \in L_1(\mu) + L_{\infty}(\mu)$ and any $\alpha > 0$

(2)
$$\mu\{f^*>\alpha\} \geqslant \frac{1}{C_d \alpha} \int_{\{f>C_d \alpha\}} f d\mu,$$

(ii) if $\mu X < \infty$ then for any $0 \le f \in L_1(\mu)$ and any a > 0 with $\int f d\mu$ $< \alpha \mu X$, (2) holds.

To prove the theorem we proceed as in [2]. We need some lemmas. A quasi-cube Q of Z^d is a set of the form $Q = \{a_1, \ldots, a_1 + b_1\} \times \ldots$ $\ldots \times \{a_d, \ldots, a_d + b_d\}$ where $b_i \ge 0$ for each i and

$$\sup_{1 \leq i, i \leq d} |b_i - b_j| \leq 1.$$

If Q is a quasi-cube of the above form, let $l(Q) = 1 + \sup_{i \in I} b_i$,

$$Q' = \{a_1 - b_1, \dots, a_1\} \times \dots \times \{a_d - b_d, \dots, a_d\},$$

$$\overline{Q} = \{a_1 - 2l(Q), \dots, a_1 + 3l(Q)\} \times \dots \times \{a_d - 2l(Q), \dots, a_d + 3l(Q)\}.$$

LEMMA 1. There exists a constant C > 0, dependent only on the dimension d, such that if Q_1, \ldots, Q_n are disjoint quasi-cubes of Z^d then

$$\sum_{j=1}^{s} |Q'_{k_j}| \geqslant C \sum_{k=1}^{n} |Q_k|$$

for some disjoint $Q'_{k_i}(j=1,\ldots,s)$, where |Q| denotes the cardinal number of Q.

Proof. Without loss of generality we may assume that $l(Q_1) \ge ...$ $\ldots \geqslant l(Q_n)$. Take $k_1 = 1$. Next take $k_2 = \min\{j: Q_1' \cap Q_j' = \emptyset\}$, and continue this process. We obtain disjoint Q'_{k_i} (j = 1, ..., s) such that

$$\bigcup_{k=1}^n Q_k \subset \bigcup_{j=1}^s \overline{Q}_{k_j},$$

from which the lemma follows immediately.

LEMMA 2 (cf. [2], Lemma 3). Let $f \ge 0$ be an integrable function on \mathbb{Z}^d . Then for any a > 0 there exist disjoint quasi-cubes Q_1, \ldots, Q_n such

that

(i)
$$g \in \mathbb{Z}^d \setminus \bigcup_{k=1}^n Q_k \text{ implies } f(g) \leqslant \alpha,$$

(ii) for each $1 \leq k \leq n$

$$a < \frac{1}{|Q_k|} \sum_{g \in Q_k} f(g) \leqslant 3^d a$$
.

If f is a non-negative function on \mathbb{Z}^d , define

$$Mf(g) = \sup_{n\geqslant 1} \frac{1}{n^d} \sum_{h\in V_n} f(g+h)$$
 where $V_n = \{0, \ldots, n-1\}$

LEMMA 3. There exists a constant C' > 0, dependent only on the dimension d, such that if $f \geqslant 0$ is an integrable function on \mathbb{Z}^d , then for any $\alpha > 0$

Proof. Let Q_1, \ldots, Q_n be disjoint quasi-cubes in Lemma 2, and let Q'_{k_i} $(j=1,\ldots,s)$ be as in Lemma 1. Since

$$g \in \bigcup_{i=1}^{s} Q'_{k_j}$$
 implies $Mf(g) > a/4^d$,

we have

$$\begin{split} |\{g\colon Mf(g)>\alpha/4^d\}| &\geqslant \sum_{j=1}^s |Q'_{k_j}| \geqslant C \sum_{k=1}^n |Q_k| \\ &\geqslant \frac{C}{3^d \alpha} \sum_{\{f(g)\colon g\in \bigcup\limits_{k=1}^n Q_k\}} \\ &\geqslant \frac{C}{3^d \alpha} \sum_{\{f>a\}} f(g), \end{split}$$

which establishes the lemma.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Suppose $\mu X = \infty$, $0 \le f \in L_1(\mu)$ and $\alpha > 0$. It follows from (1) that

(3)
$$\mu\{f^* > a\} \leqslant \frac{1}{B_d a} \int_{\{f > B_d a\}} f d\mu < \infty.$$

On the other hand, since the semigroup is ergodic in our sense, the pointwise ergodic theorem (cf. [11], [4]) shows that

$$\lim_n n^{-d} \sum_{g \in \mathcal{F}_n} f(T_g x) = 0 \text{ a.e. on } X.$$

Hence by (3), given an $\varepsilon > 0$ there exists an integer $N \ge 1$ such that

$$\mu\left\{x\colon N^{-d}\sum_{g\in V_{N}}f(T_{g}\,x)\geqslant a\right\}<\varepsilon.$$

Put

$$F(g, x) = egin{cases} 0 & ext{if} & g \in Z^d \setminus Z_+^d, \ f(T_a x) & ext{if} & g \in Z_+^d, \end{cases}$$

and

$$F_N(g, x) = 1_{V_N}(g)F(g, x).$$

Define

$$MF(g, x) = \sup_{n \geqslant 1} n^{-d} \sum_{h \in V_n} F(g+h, x)$$

and

$$MF_N(g, x) = \sup_{n\geqslant 1} n^{-d} \sum_{h\in V_n} F_N(g+h, x).$$

Write

$$\begin{split} E &= \big\{ (g,x) \in \{-N, \, \dots, \, N-1\}^d \times X \colon \, MF(g,x) > \alpha \big\}, \\ E_g &= \{x \colon (g,x) \in E\} \quad \text{and} \quad E_x = \{g \colon (g,x) \in E\}. \end{split}$$

Then we observe that

(5)
$$\mu(E_q) \leqslant \mu(E_q) = \mu\{f^* > \alpha\} \quad \text{for all } q \in \mathbb{Z}^d.$$

In fact, if $g \in \mathbb{Z}^d_+$ then

$$\begin{split} E_{g} & \subset \{x \colon MF(g,x) > a\} = T_{g}^{-1}\{x \colon MF(0,x) > a\} \\ & = T_{g}^{-1}\{f^{*} > a\} = T_{g}^{-1}(E_{o}); \end{split}$$

it follows that $\mu(E_g) = \mu(E_o)$, because T_g is measure preserving. If $g \notin Z_+^d$, let $g' = (a_1, \ldots, a_d)$ where $g = (a_1, \ldots, a_d)$ and $a_i = \max (0, a_i)$ for each $1 \le i \le d$. Then we have

$$n^{-d} \sum_{h \in \mathcal{V}_n} F(g+h, \, x) \leqslant n^{-d} \sum_{h \in \mathcal{V}_n} F(g'+h, \, x) \leqslant MF(g', \, x)$$

for each $n \ge 1$; thus $MF(g, x) \le MF(g', x)$ and $E_g \subset E_{g'}$. This yields

$$X_{\varepsilon} = \left\{x \colon \, N^{-d} \, \, \sum_{g \in \mathcal{V}_N} f(T_g x) < \alpha \right\}.$$

By (4),

(6)
$$\mu(X \setminus X_s) < \varepsilon.$$

We then deduce that

(7)
$$x \in X$$
, implies $\{g: MF_N(g, x) > \alpha\} \subset E_x$.

To see this, let $x \in X_s$ and $g \notin \{-N, ..., N-1\}^d$. We have

$$n^{-d}\sum_{h\in \mathcal{V}_n}F_N(g+h,x)iggl\{ =0 & ext{if} & n\leqslant N, \ \leqslant n^{-d}\sum_{h\in \mathcal{V}_N}f(T_hx) & ext{if} & n>N, \ \end{cases}$$

and hence $MF_N(g, x) \leq a$. This, together with the fact that $MF_N(g, x) \leq MF(g, x)$ for all $(g, x) \in Z^d \times X$, proves (7).

We apply (6), (7), Lemma 3 and Fubini's theorem to get:

$$\begin{split} (2N)^d \mu(E_o) \geqslant & \sum \left\{ \mu(E_g) \colon g \in \{-N, \dots, N-1\}^d \right\} = \sum_{g \in Z^d} \mu(E_g) \\ \geqslant & \int_{\mathbb{X}_s} |E_x| \, d\mu(x) \geqslant \int_{\mathbb{X}_s} |\{g \colon MF_N(g, x) > a\}| \, d\mu(x) \\ \geqslant & \frac{1}{C'a} \int_{\mathbb{X}_s} \left(\sum_{\{g \colon F_N(g, x) > C'a\}} F_N(g, x) \right) d\mu(x) \\ = & \frac{1}{C'a} \left(\int_{\mathbb{X}} - \int_{\mathbb{X}_s} \right) \left(\sum_{\{g \colon F_N(g, x) > C'a\}} F_N(g, x) \right) d\mu(x) \\ = & \mathbf{I} - \mathbf{\Pi}, \end{split}$$

$$\mathbf{I} = & \frac{1}{C'a} \int_{\mathbb{X}_s} \left(\sum_{\{g \colon F_N(g, x) > C'a\}} F_N(g, x) \right) d\mu(x) \\ = & \frac{1}{C'a} \sum_{g \in V_N} \int_{\{x \colon F_N(g, x) > C'a\}} F_N(g, x) d\mu(x) \\ = & \frac{1}{C'a} \sum_{g \in V_N} \int_{\{x \colon F_N(g, x) > C'a\}} f(T_g x) d\mu(x) \end{split}$$

 $=\frac{N^a}{C'a}\int\limits_{\{f>C'a\}}fd\mu,$

$$\begin{split} &\Pi \leqslant \frac{1}{C'a} \int\limits_{X \searrow X_{\varepsilon}} \left(\sum_{g \in V_N} F_N(g, x) \right) d\mu(x) \\ &= \frac{1}{C'a} \sum_{g \in V_N} \int\limits_{X \searrow X_{\varepsilon}} f(T_g x) d\mu(x) \\ &\leqslant \frac{N_d}{C'a} \; \eta(\varepsilon) \quad \text{ where } \quad \eta(\varepsilon) = \sup \left\{ \int\limits_{X \searrow X} f(T_g x) d\mu(x) \colon g \in Z_+^d \right\}. \end{split}$$

It follows that

$$\mu\{f^*>a\} = \mu(E_{\mathrm{o}}) \geqslant \frac{1}{2^d C' a} \left(\int\limits_{\{f>C'a\}} f d\mu - \eta(\varepsilon) \right);$$

and since $\lim_{\epsilon \to 0} \eta(\epsilon) = 0$ by an easy approximation argument, (3) holds, with the constant $C_d = 2^d C'$. Applying this and an approximation argument, it is easily seen that if $\mu X = \infty$ then for any $0 \le f \in L_1(\mu) + L_\infty(\mu)$ and any $\alpha > 0$, (3) holds with the constant $C_d = 2^d C'$.

The proof of (ii) is similar and omitted.

As a corollary to the proof of Theorem 1 we have the following continuous version of Theorem 1.

THEOREM 2. Let $(T_g\colon g\in R_+^d)$ be a d-parameter measurable semiflow of measure preserving transformations on a σ -finite measure space (X,\mathscr{F},μ) which is assumed to be ergodic in our sense. For $0\leqslant f\in L_1(\mu)+L_\infty(\mu)$, define

$$f'(x) = \sup_{r>0} r^{-d} \int\limits_{V_r} f(T_g x) \, dg \quad \text{ where } \quad V_r = [0, \, r]^d.$$

Let C_d be the constant introduced in Theorem 1. Then we have:

(i) If $\mu X = \infty$ then for any $0 \leqslant f \in L_1(\mu) + L_{\infty}(\mu)$ and any $\alpha > 0$

(8)
$$\mu\{f' > a\} \geqslant \frac{1}{C_d a} \int_{\{f > C_d a\}} f d\mu.$$

(ii) If $\mu X < \infty$ then for any $0 \le f \in L_1(\mu)$ and any $\alpha > 0$ with $\int f d\mu < \alpha \mu X$, (8) holds.

Proof. We shall only prove (8) for $0 \le f \in L_1(\mu)$ and a > 0 under the assumption $\mu X = \infty$ since the other parts of the theorem are proved similarly as in Theorem 1.

For each $n \ge 1$, let

$$f_n(x) = 2^n \int\limits_{\boldsymbol{\mathcal{V}}_{n-n}} f(T_g x) \, dg \quad \text{ and } \quad f_n^*(x) = \sup\limits_{k \geq 1} k^{-d} \sum\limits_{g \in \boldsymbol{\mathcal{V}}_{n-k}} f_n(T_g x)$$

where

$$V_{n,k} = \{0, 2^{-n}, \dots, (k-1)2^{-n}\}^d$$

Since the semiflow is ergodic in our sense, the pointwise ergodic theorem shows that

$$\lim_k k^{-d} \sum_{g \in V_{n,k}} f(T_g x) = 0 \text{ a.e. on } X.$$

Thus the proof of Theorem 1 gives

$$\mu\{f_n^* > a\} \geqslant \frac{1}{C_d a} \int_{\{f_n > C_d a\}} f_n d\mu.$$

On the other hand, by the definition of f_n^* we have $f_n^* \leqslant f_{n+1}^*$ and $\lim f_n^* = f'$ a.e. on X. Further, since f_n converges to f in the norm topology of $L_1(\mu)$, we may assume (if necessary, take a subsequence) that $\lim f_n = f$ a.e. on X. Thus

$$\lim_{n} \inf 1_{\{f_n > C_d a\}} \cdot f_n \geqslant 1_{\{f > C_d a\}} \cdot f,$$

so by Fatou's lemma,

$$egin{aligned} \mu\{f'>a\} &= \lim_n \mu\{f_n^*>a\} \ &\geqslant rac{1}{C_d a} \liminf_n \int\limits_{\{f_n>C_d a\}} f_n d\mu \ &\geqslant rac{1}{C_d a} \int\limits_{\{f>C_d a\}} f d\mu, \end{aligned}$$

which completes the proof.

3. Application. Given a constant $w\geqslant 0$, define the subclass $R_w(\mu)$ of $L_1(\mu)+L_\infty(\mu)$ by

$$R_w(\mu) = \Big\{f \colon \int\limits_{\{|f| > t\}} |f| \big(\log(|f|/t)\big)^w d\mu < \infty \ \text{for all} \ t > 0\Big\}.$$

Fava [6] proved that $R_w(\mu)$ is a linear space, that $R_{w+1}(\mu) \subset R_w(\mu)$, and that under the assumption $\mu X < \infty$, $f \in R_w(\mu)$ if and only if

$$\int_{\{|f|>1\}} |f| (\log |f|)^{w} d\mu < \infty.$$

Also Fava [6] proved that the subclass $R_w(\mu)$ is important in pointwise ergodic theory.

Using the maximal inequality (1) and the reverse maximal inequality (2), we can prove the following dominated ergodic theorem.

THEOREM 3. Let (X, \mathcal{F}, μ) and $(T_g: g \in Z_+^d)$ be as in Theorem 1. Then $f \in R_w(\mu)$ if and only if $f^* \in R_{w+1}(\mu)$.

Proof. By Fubini's theorem we have

$$\begin{split} \int\limits_{\{f*>t\}} f^* & (\log(f^*/t))^w d\mu = \int\limits_{\{f^*>t\}} d\mu(x) \int\limits_{t}^{f^*(x)} \left([\log(s/t)]^w + tw \left[\log(s/t) \right]^{w-1} \right) ds \\ &= \int\limits_{t}^{\infty} \left([\log(s/t)]^w + tw \left[\log(s/t) \right]^{w-1} \right) \mu\{f^*>s\} ds \,. \end{split}$$

Thus we may apply (1) together with a well-known argument (see e.g. [5], p. 676) to infer that $f \in R_{w+1}(\mu)$ implies $f^* \in R_w(\mu)$. Similarly, (2) may be applied to infer that $f^* \in R_w(\mu)$ implies $f \in R_{w+1}(\mu)$. The details are omitted. (Cf. [10].)

References

- A. Brunel, Théorème ergodique ponctuel pour un semi-groupe commutatif finiment engendré de contractions de L¹, Ann. Inst. H. Poincaré Sect. B (N.S.) 9 (1973), 327-343.
- [2] N. Dang-Ngoc, On the integrability of the maximal ergodic function, Proc. Amer. Math. Soc. 79 (1980), 565-570.
- [3] Y. Derriennic, On the integrability of the supremum of ergodic ratios, Ann. Probability 1 (1973), 338-340.
- [4] N. Dunford and J. T. Schwartz, Convergence almost everywhere of operator averages, J. Rational Mech. Anal. 5 (1956), 129-178.
- [5] N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory, Interscience, New York 1958.
- [6] N. A. Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271-288.
- [7] B. Marcus and K. Petersen, Balancing ergodic averages, in: Ergodic theory (Proceedings, Oberwolfach, 1978), Springer Lecture Notes in Math. 729, 126-143, Springer-Verlag, Berlin 1979.
- [8] D. Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77-79.
- [9] K. Petersen, The converse of the dominated ergodic theorem, J. Math. Anal. Appl. 67 (1979), 431-436.
- [10] R. Sato, Maximal functions for a semiflow in an infinite measure space, Pacific J. Math. 100 (1982), 437-443.
- [11] N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1-18.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE OKAYAMA UNIVERSITY OKAYAMA, 700 JAPAN

Received June 11, 1981

(1693)

Applications of autoreproducing kernel moduli to the study on interpolability and minimality of a class of stationary Hilbertian varieties

by

B. TRUONG-VAN (Toulouse)

Abstract. The autoreproducing kernel modulus $\mathscr{H}(F)$ of an operator-valued spectral measure F is constructed. All of its elements are operator-valued measures. These measures are said (as suggested by the results obtained in [23]) to be Hellinger square integrable relative to F. Then the class of Hilbert space-valued stationary processes ($X_g)_{g\in G}$, having operator valued spectral densities is considered. For such processes, some characterizations of $\mathscr{H}(F)$ are given and compared to that obtained by Makagon in the recent paper [9] on Hellinger square integrable vector measures. From the results on $\mathscr{H}(F)$, the interpolable and minimal processes $(X_g)_{g\in G}$ are then analytically characterized.

Introduction. It is shown in [23] the impossibility for a minimal $\mathcal{S}(U, H)$ -valued stationary processes to be of full rank. However this notion can be defined for Banach space-valued stationary processes. So a special class of these processes is considered here.

First it is constructed from a spectral bimeasure a unique autoreproducing kernel Loynes modulus $\mathscr{H}(F)$, all the elements of which are operator-valued measures (cf. Theorem 2). When F is a spectral measure, by analogy with the results obtained in [23], the measures in $\mathscr{H}(F)$ are said to be Hellinger square integrable with respect to (w.r.t.) F.

Then, Hilbert space-valued stationary processes $(X_g)_{g\in G}$, possessing operator-valued spectral densities are considered. The operator time-domains of these processes are proved to have the Radon-Nikodym property w.r.t. F (Theorem 4) and some characterizations of $\mathscr{H}(F)$ are obtained (Theorem 5). Afterwards, analytic conditions for interpolability and minimality studied by [19], [20], [23], [24], [27] are extended to the processes $(X_g)_{g\in G}$, and a criterion for such processes $(X_g)_{g\in G}$ to be minimal of full rank is also given.

We learned quite recently that Makagon in [9] has given a definition and a criterion for vector measures to be Hellinger square integrable w.r.t. a spectral measure. His definition is proved to be equivalent to our Definition 3 (cf. Theorem 3) whereas our criterion (Theorem 5) may be considered as an operator version of Makagon's criterion ([9], Theorem 1.5).