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A reverse maximal ergodic theorem

by
RYOTARO SATO (Okayama)

Abstract. A roverse maximal ergodic theorem is proved for a d-parameter diserete
semigroup (T,: ¢ EZ+) of measure preserving transformations on a o-finite measure
space (X, #, u) which is ergodic in the sense that if B e# with ¥ # X iz Ty-invariant for
allge Z‘l then uF =0 oroco. A continuous version follows from standard approxlmamon
arguments.

1. Introduction. Let (X, #, ) be a o-finite measure space and
(T,): g €Z%) a d-parameter diserete semigroup of measure preserving
transformations on (X, #, u). For 0<feL,(u)+ L,(u), the mazrimal
Junction f* is defined by

F* (=) = sup'rrd 2]’(1’ z) where 7V, ={0,.

0cVy

It is then known (cf. [117], [4], [1]) that the maximal inequality holds:

cyn—1}.

1) pif* > ap <

fau  for any a>0

a {f>Bga}y
where B; is a constant dependent only on the dimension d.

The purpose of this paper is to show that a reverse maximal in-
equality holds provided that the semigroup (7;: geZ ) is ergodicin the sense
that if Pe # with B+ X is T,-invariant for all ge Z% then uE =0 oroc. Here
it should be noted that N. Dang-Ngoc [2] bas shown a similar inequality for
an ergodic d-parameter group (T,: g € Z% of measure preserving transform-
ations on a probability measure space. However, the maximal function f~
he considered is defined by =~
where ,n—1)%,

f (@) = sup(2n—1)~¢ ' f(T,) W, ={—n+1,...

nz=l oEW,

and he remarked that his argument is not modified if f~ is replaced by f*.
Nevertheless, we shall modify his argument to prove our result. For the
particular case (I™: n e Z}) where 7' is conservative and ergodic in the
usual senge, the inequality was already obtained by Derriennic [3] in a
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slightly different form. We think that Derviennic’s argument cannot be
applied when the dimension @ is greater thaw one. See also Ormstein [8],
Petersen [9), Marens and Petersen [7], and the author [10].

2. Reverse maximal ergodie theorem.

TumorEM 1. Let (T,: g € Z%) be o d-parameler diserele semagroup of
measure preserving transformations on @ o-finile measure space (X, 7, 1)
which is asswumed 1o be ergodic in our sense. Then there ewists a constont
¢, > 0, dependent only on the dimension d, such that

(i) if pX = co then for amy 0<f e Ly(u)+ Lo(p) and wny >0

1 }
@) pr >z [,
T PP
(i) if uX < oo then for any 0 <[ e Ly(p) and any o> 0 with frdu
< auX, (2) holds.
To prove the theorem we proceed as in [2]. We need some leminas.
A quasi-cube Q of Z% is a vet of the form @ = {ay, ..., ¢;-+b} X ...
. X {0y -y @g+b;} where b,z 0 for each i and
sup [b;—b,l<1.
1<t j<d
If Q is a quasi-cube of the above form, let 1(Q) = 1+ sup by,
1.
Q = {y—byy ey @} X oor X g =gy 1., 05},
Q@ = {a;—21(Q); ..., 6y +3UQ)} X ... x {a;—20Q), ..., ay-+-3L(Q)}.
LeMMA 1. There exists a constant C > 0, dependent only on the dimen~
sion d, such that if Q,, ..., Q, are disjoint quasi-cubes of Z% then

2 101=0 )j 1€

Fm=l o1
for some disjoint Q,’L.j(j =1,...,8), where Q| denotes the cardinal number
of Q.
Pioof. Without logs of generality we may assume that 1(Q,) ...
2 1(@,). Take ;= 1. Next take k, == min{j: @) n@; = @}, and con-
tinue this process. We obtain disjoint Q;cj (4 =1,...,8) such that

n 8
U Qk < U Qlcj 4
k=l Joml

from which the lemmsa follows immediately.

LemmA 2 (cf. [2], Lemma 3). Let f = 0 be an integrable funetion on 2%
Then - for any «>0 there ewist disjoint gquasi-cubes @y i.., @, Such
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that

n
a g Ez’Z\kL_J1 Q. implies f(g) < a,

(i) for each 1<E<n

1
a < TQ‘J Zf(g) < 3%q,

0@y

It f is a non-negative function on Z% define
1 .
HMflg) = sup — Zf(g—|—h) where  V,, = {0, ...,n—1}
=l heVy,

LEMMA 3. There exists a constant 0" > 0, dependent only on the dimen-
sion d, such that if > 0 is an integrable function on Z%, then for any a >0

1 !
fo: Mf@) > aH = D) Fla):

{o:f(@)>C'a}

Proof. Let Qy, ..., Q, be disjoint quasi-cubes in Lemma 2, and let
Q}q (j =1,...,) be as in Lemma 1. Since

8
gelJ Q}c, implies  Mf(g) > o/4°%,
=1

we have

-8

s JF(g) > a4 > D) 1G4 > 0 D104l
. k=1

j=1

<

3%,
c

3%

v

{f(g)= g ‘—:ICL:JIQk}

1@,

{f>a}
which establishes the lemma.
Now we are in a position to prove Theorem 1.
Proof of Theorem 1. Suppose pX = oo, 0 < fely(u) and a>0.
Tt follows from (1) that

1
* < — oo,
(3) pif* > <5 [ fau<
{f>Bga}
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On the other hand, since the semigroup is ergodic in our sense, the
pointwise ergodic theorem (cf. [11], [4]) shows that

llm'n‘de(Tm) =0 a.e. on X.

0evy,
Hence by (3), given an ¢ > 0 there exists an integer N > 1 such that
(4) ,u{a;:.N'd Zf(Taw),Za} <&
weV N
Put
it gezh\z¢
F(g,2) = . . 7
f(T ) it geZf,
and
Ty(g, 9) = Ly (9) F(g, @).
Define
MF(g, ») = supn~? ZF(g+h @)
n1 KV,
and
UFy (g, @) =supn= 3! Fy(g-+h, o).
nz1 heVy,
Write

B ={(g,0) e{—N,..., N-10xX: MF(q, ) > al,

B, ={z: (g,0) e B} and B, ={g: (g,2) e B}.
Then we observe that
() HEB,) < p(B,) = u{f* > o}
In fact, if g €22 then

B, < {s: MF(g, »)

for all g e 2%,

>a} =T {w: MF(0, 2) > o}
= T;{(f* > o} = T;\(B,);
it follows that u(#,) = u(B,), because T, is measure preserving. If g ¢ 24,

let g.’ =(ay, ..., az) where g = (ay, ..., wd) and o; = max (0, ;) for each
1<¢<d. Then we have
n=t M B(g+h, 2) < nl D PG +h @) < MB(g, o)
heVy, heVy,
for each n3>1; thus MF (g, ») < MF(g",v) and B, < E,. This yields

icm®
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w(B,y) < p(Ey) = p(B,). Write
X, = {a:: Nt N f(T,) < a}.

0EV N
By (4),
(6) w(XNX,) <
We then deduce that
) velX,
To see this, let # ¢ X, and ¢ ¢ {—N, ...,

implies {g: MFy(g, ) > a} < B,.

N —1}%. We have

=0 i 2N

n—d " R
> Pylga)) _
KePy, 2 f({Tymy if

eV

n >N,

and hence MF y(g, ) <
< MF(g, ») for all (g, #) € 2% x X, proves (7).

We apply (6), (7), Lemma 3 and Fubini’s theorem to get:

N1 = D ()

@NPu(B,) > D) (u(B): g e{—T, ...,
gezt
> [1Bldu@ > [ lg: MEylg,a) > a}ldna)
XB &
1

> e Tylg, ) ap(@)

X, {@: F (0,a)>C"a}

aal = S

XNX, {&Fylox)>C'a}

Fylg, w)) du (@)

Fylg, o) dpu(0)
{0: P yto,2)>C"a)
Py (g, @) dp (o)
geV {2 Fy(g.2)>C'a}
1 -~y ' .
T FT,0) du (o)
geV y {2:f(Tyry>0"a}
Nd
= d
0! a f ey

{f>Ca}

157

a. This, together with the fact that MF(g, x)
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. 1 F0
<z [ (3 xle,0) @)
INX, 9eVy
=gz > [ s@miue)
geVy XNX,
‘N he 7 d wd
<~0—,——77(a) where  #(e) = sup { J(T @) adu(w): ¢ eA,,,}.
AN
It follows that

1
wif* > ap = wB) > e ([ fIu-ne);
{f>0'a}

and since lim y(¢) = 0 by an easy approximation argument, (3) holds,

-0
with the constant 05 = 2%C’. Applying this and an approximation argu-
ment, it is easily seen that if uX = oo then for any 0 < f e Ly (u) - Lo (1)
and any e > 0, (3) holds with fhe constant €, = 24¢".
The proof of (ii) is similar and omitted.
As a corollary to the proof of Theorem 1 we have the following con-
tinnous version of Theorem 1.

TrrEOREM 2. Let (Ty: g € RY) be a d-parameter measurable semiflow
of measure preserving transformations on @ o-finite measure space (X, F, u)
which is assumed 1o be ergodic in our sense. For 0 <5 f & Ly (u) L (u),
define

Fl(®) = supr“"_ff(.’l’gm)dg where  V, = [0, r]*.
>0
%

Let Cy be the constant introduced in Theorem 1. Then we hawe:

i) If uX = oo then for any ng €Ly (u) -+ Ly (p) and any o >0

00Z J fau.

{>0ga)

(i) If uX < co then for any 0 < f € L, (u) and any o > 0 with [fdu
< auX, (8) holds. ’

Proof. We shall only prove (8) for 0 = f & L, (u) and o > 0 under the
assunption pX = co gince the other parts of the theorem are proved
similarly as in Theorem 1.

For each n> 1, let

(8 p{f' > a}>

hi@ =2 [ f(T,)dg and  fi@) =suph=® 3 £,(T,a)
Ik

9—n =1 ey
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where
Var =1{0,27% ..., (E—1)27"}.

Since the semiflow is ergodic in our sense, the pointwise ergodic theorem
shows that

llm]c“z Z'fT @) =0 a.e on X.

9V, 1
Thus the proof of Theorem 1 gives

" 1

wifs > 0> 5= [ ads.
T s
On the other hand, by the definition of f, we have fj < fy,, and

limf; =f a.c. on X. Further, since f,, converges to f in the norm topology
n

of L, (u), we may assume (if necessary, take a subsequence) that hm fn =f
a.e. on X. Thus

lim inf 15500 T = Yrschm -f,
n
g0 by Fatou’s lemma,

pif > 0} =Tmulfl > a}

1
> —liminf f fodp
Cya .
{Fp>Cga}
1 .
Z = fau,
Caa
{f>Caa}

which completes the proof.
3. Application. Given a constant w > 0, define the subclass K, (u)
of Ly(u)+ Ly (u) by ‘
Ro(w) ={f: [ 1fillog(fI/t))*du < co for all #> o}.
1> ' '

Fava [6] proved that R, (u) is a linear space, that R, (u) = R, (u), and
that under the assumption uX < oo, f € B, (u) if and only if

f lfI(IOngI)wd,u< oo,

Also Fava [6] proved thmt the subclass R, (u) is important in pointwise
ergodic theory.
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Usihg the maximal inequality (1) and the reverse maximal inequality
(2), we can prove the following dominated ergodic theorem,

THEOREM 3. Let (X, F, p) and (T,: g €2Z%) be as in Theorem 1. Then
FeR,(pu) if ond only if f* € Rypi(n).

Proof. By Fubini’s theorem we have

()

ff*(log(f*/t))“’dy: fd,u(a?)f ([10g(s/t)]“’~E-tw[log(@/t)]“""1)ds

{r*>t} {f%>t} ¢
= [ (Dog(s/t)1°+tw[log (s/6) 1~ w{f* > s}ds.
i

Thus we may apply (1) together with a well-known argumont (see e.g,
[5], p. 676) to infer that f ¢ R, (#) implies f* € B, (u). Sinilarly, (2) may

be applied to infer that f* e R, (u) implics f e By, 1 (p). The details are
omitted. (Cf. [10].)
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Applications of autoreproducing kernel moduli to
the study on interpolability and minimality of
a class of stationary Hilbertian varieties

by
B. TRUONG-VAN (Toulouse)

Abstract. The autoreproducing kernel modulus o (F) of an operator-valued
spectral measure F' is constructed. All of its elements are operator-valued MeAsUres.
These measures are said (as suggested by the results obtained in [23]) to be He?lmger
square integrable relative to F. Then the class of Hilbert spa;cejvz:nlued stationary
processes (X,)yeq having operator valued spectral densities is cohsidered. For s.uch
processes, some characterizations of # () are given and compared to that obtained
by Makagon in the recent paper [9] on Hellinger square integrable vector measures.
From the results on #(F), the interpolable and minimal processes (X;)yeq ave then
analytically characterized.

Introduction. Tt is shown in [23] the impossibility for a minimal
(U, H)-valued stationary processes to be of full rank. However this
notion can be defined for Banach space-valued stationary processes. So
a gpecial class of these processes is congidered here. )

First it is constructed from a spectral bimeasure a unique auto-
reproducing kernel Loynes modulus # (F), all the elements of. which are
operator-valued measures (cf. Theorem 2). When F' is a spectl_'al meagure,
by analogy with the results obtained in [23], the measures in i (F) are
said to be Hellinger square integrable with respect to (w.r.t.) F'. )

Then, Hilbert space-valued stationary processes (X;)eq possessing
operator-valued spectral densities are considered. The olrerator time-
domaing of these processes are proved to have the Radon-Nikodym prop-
orty w.r.t. F (Theorem 4)and some characterizations of # (F) are obtaufle.d
(Theorem B). Afterwards, analytic conditions for interpolability and mini-
mality studied by [19], [20], [23], [24], [27] are extended ﬁt? 1':he processes
(X,)per and a criterion for such processes (Xy)geq 0 be minimal of full
rank is also given. o L

We learned quite recently that Makagon in [9] has given a definition
and a criterion for vector measures to be Hellinger square integrable W.I‘.1.i.
a gpectral measure. Elis definition is proved to be equivalent to our. Defi-
nition 3 (cf. Theorem 3) whereas our criterion (Theorem 5) may be considered
a8 an operator version of Makagon’s critexion ([9], Theorem 1.5).
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