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Abstract. Lot 4; (@) bo a nuclear finite type power series space. We characterize
the open polydises Dy in A, (a)}, for which the space (H (Dy), %) of all holomorphic
functions on D, under the compact-open topology 7, is a power series space. This
characterization implies the existence of open polydises D, and Dy with finite radii
for fvhich (H (Dy), 7) and (H (D), 7y) are not isomorphie. Furthermore we give suf-
ficient conditions on nuclear Fréchet spaces A(P) and on a e A(P) implying that for
the open polydisc D, in A (P)}, the space (H (Dy), 7) is isomorphic to a subspace (resp.
2 quotient) of a power series space.

Preface. Let B be a nuclear Fréchet space and let U be an open subset
of F;. Then the space (H (0, -r(,) of all holomorphic functions on T, en-
dowed with the compact-open topology 7, is a nuclear Fréchet space by the
theorem of Boland [7] and Waelbroeck [27]. I ¥ is, moreover, a Kothe
sequence space A(P), then Boland and Dineen [8] have shown that the
monomials in the coordinate functions form an absolute basis of (H’ (o, 10)
for all open polydises U in A(P);,, where for a e A(P), a0 (for con-
venience), the sets D,: = {y e A(P)’| sup ly;la; < 1} are called open poly-

) JeN

dises. From this result Borgens, Meise and Vogt [3] have derived that
H(4y(a), 7o) is isomorphic to A (B(a) and that in A,(a), there exists
an open polydisc D with (H(D), 1) = 4, (f(a)). Furthermore, they
have determined §(a) up to equivalence for many interesting sequences a.

The main result of the present article is the following: Let 4,(a) be
nuclear and teke a e dy(a), @3> 0. Then (H(D,), 7y) i3 isomorphic to
Ay (ﬁ(a)) if and only if (H(D,), To) iy isomorphic to a quotient space of
a finite type power series space, and this happens if and only if ¢ > 0 and
1/a € Ay (o) which is equivalent to &> 0 and Lm (1/e;)Ina; = 0. This
mplies in particular that there exist abe Al(a),ja > 0,b >0 such that
(z(D,), 7o) and (H(D,), 7) are not isomorphic as locally convex spaces;
& phenomenon which does not oceur in the finite dimensional situation.
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The proof of this result is based on a linear topological invariant (2) which
has been used by Wagner [28], to characterize the quotient spaces with
a basis of stable power series spaces of finite type.

Knowing this, it was natural to consider also the other linear topologi-
cal invariants from the structure theory of nuclear Fréchet spaces which
have been used to characterize the subspaces and quotients of stable
nuclear power series spaces. These characterizations are given in terms of
the Ay (resp. the A,)-nuclearity and of one of the invariants (DN), (DN), (2)
and (&) (see Dubinsky [11], Vogt [21]-[24], Vogt and Wagper [2b], [26]
and Wagner [287). Since optimal theorems on the A(y)-nuclearity of spaces
of type (H(U), 7,) have been given by Borgens, Meise and Vogt [4], and
since f(a) is always stable, the characterization theorems can be applied
to (H(D,), 10) as soon as this space hag one of these invariants. In this
direction we prove the following: If A(P) is a quotient of Ay(a), then
(H(D,), 7o) is isomorphic to a quotient space of 4, (f(a)) if and only if
a satisfies a certain condition. If A(P) is a quotient of 4, (a) (resp. a sub-
space of A;(a)), then (H(D,), 7,) is isomorphic to a quotient of A (8(a))
(resp. a subspace of 4, (8(e)) for all open polydises D, in A(P),. The proofs
rely on the fact that for X6the spaces A(Q) the invariants can be exipressed
in terms of the Kothe set . Hence the basis theorem of Boland and Dineen,
mentioned above, gives the opportunity to check the invariants by direct
caleulation. Furthermore we apply an extension theorem of Boland [5],
a duality theorem of Boland and Dineen [8] and the isomorphism H (s;) =~ s
proved by Boérgens, Meise and Vogt [3]. ’

Concluding, we briefly indicate the content of the four sections of this
article. In the first section we recall some definitions and results and fix
the notation. In the second one we state the basis theorem of Boland and
Dineen in an appropriate form and provide some lemmas. These are applied
in Section 3 to obtain our main result as well as the invariants related with
finite type power series spaces. The same topic for infinite type power
series spaces is treated in Section 4.

1. Preliminaries. In thig section we introduce some notation and

conventions used throughout the whole article. We algo mention some re-.

sults which we shall use in the subsequent sections without further ref-
erences.

Notation. The symbols C, R, R, N and N, denote the sebs of complex,
real, non-negative real, natural and non-negative integer numbers, re-
spectively. All locally convex: (l.c.) vector spaces 7 are agsumed. to be com-
plex vector spaces and Hausdorff, For an l.c. vector space 1, the strong
dual is denoted by H;. An lc. space # is called a subspace (quotient space)

of an Le. space I if B is isomorphic to a topological subspace (quotient -

space) of F. The space CV of all complex sequences is denoted by w, while
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¢ < o denotes the space of all complex sequences which are eventually zero.
For a € w the set

N, ={weo| |z,|< |4, for all n N}

is called the normal hull of a. For a, b € w we denote by a/b the sequence
¢ which is defined by ¢, = a,/b, it b, % 0 and ¢, = 0 if b, = 0. Results
from the theory of l.c. spaces which we use without any reference can be
found in the books of Kothe [13], Pietsch [16] or Schaefer [20].

1.1. Kothe sequence spaces. We use the Kothe sequence spaces A(P)
as they are defined in Pietsch [16], 6.1.1. Then the Grothendieck—Pietsch
criterion (see Pietsch [167], 6.1.2) tells that the nuclearity of 4 (P) is charac-
terized by the property: For any p eP there exist geP and ¢ el* such
that p < ¢-¢. If A(P) is nuclear, then a subset B of A(P) is bounded iff B
is contained in the normal hull of some b & A(P). If A(P) is nuclear and ref-
lexive, then & subset K of A(P); is relatively compact iff K is contained in
the normal hull of some ¢ & A(P)’, where we identity A(P)’ with the linear
span of L1J= N, in . This description of the relatively compact subsets

DE.
of A(P), also holds if A(P) is a Mackey space for which A(P)y is complete
(see Borgens, Meise and Vogt [3], 1.1).

1.2. Power series spaces. Let o be an increasing sequence of positive
real numbers with lim a, = oo (a will be called an exponent sequence). For

n—+00

0 < B< oo we define the power series space

Ap(a): = {m e w| m(®): = Z{mn]¢“”< oo for any 0 < r < R},

n=1

which i3 given the L.c. topology induced by the semi-norms {m] 0 <7< R}.
Obviously Az(a) is a Fréchet space.

Ag () is called power series space of finite type i B < oo and of infinile
lype if B = oo. For afixed and 0 < R < oo all the spaces Ag(a) are isomor-
phic. A power series space of infinite type cannot be isomorphie to a power
series space of finite type.

For B =1 and B = oo the identity Az(a) = Ag(a) holds iff a and &
are equivalent in the following sense: There exists D > 1 such that

1
-—a,< 4, < Da,

) for any n eN.

The nuclearity of A, (e) is equivalent to sup (1n(n+1)/an) < oo, Whileb
neN

the nuclearity of A,(a) is equivalent to lile(ln(n—]—l)/an) = 0.
n—+oo
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An exponent sequence o is called stable if sup(ay,/a,) < oo, which is
neN

equivalent to the isomorphism A, (@) XA, (e) = 4, (a) (see Dubingky
and Ramanujan [12], 2.10).

If A4,(a) is nuclear (resp. if 4,(a) i3 nuclear) then one can define
the class of Ay (a) (resp. Ax(a); resp. A, (a))-nuclear lc. spaces, ag it was
done by Dubinsky and Ramanujan [12], Robinson [19] and Ramanujan
and Terzioglu [18]. Since the definitions of these classes are a bit in-
volved, we do not give them but refer to the articles eited above. A bricf
introduction which suffices for our purposes, is given in Borgens, Meive
and Vogt [4], 1.4.

For stable nuclear power series spaces Ay (a), B = 1, oo, the subspuces
and quotient spaces have been characterized by Vogt and Wagner (seo
[24], [26] and also Dubinsky [11], where further references arve given).
They have shown that & Fréchet space F is isomorphic to @ subspace
(resp. a quotient space of 4 (a)) iff B is Ay(a)-nuclear and has property
(DN) (resp. (£2)). The same characterization holds true for 4,(a) provided
that - “Ay(e)-nuclearity” is replaced by A,(a)-nuclearity and that (DN)
(resp. (R)) is replaced by (DN) (vesp. (£2)). Since we do not want to give
the definition of these properties, we just indicate that they are linear top-
ological invariants and that (DN) and (DN) are inherited by topological
linear subspaces, whereas (2) and (2) are inherited by separated quotient
spaces. For Kothe sequence spaces A (P) these propertics can be expressed
in terms of the Kothe set P. In this form some of them have already been
introduced by Dragilev [10].

1.3. Analytic functions. Let B be an lc. space and let £ 5% @ be
an open subset of F. A function f: Q-C is called i

(a) G-analytic if for any a, b e B the function zi—=f(az 4 b) is a holomor-
phic function in one variable on its natural domain of definition,

(b) hypoanalytic if f is G-analytic and continuous on any compact
subset of 0, ) .

(e) holomorphic if f is G-analytic and eontinuous on Q.

H,, (9Q) (resp. H(L)) denotes the vector space of all hypoanalytic
(resp. holomorphie) functions on 2. The compact-open topology on Iy, (£)
and H(2) is denoted by z,. ' .

For further details concerning analytic functions on lLe. NPACes Wo
refer to the book of Dineen [9].

2. Some fundamental lemmas and results. Tn this section we introduce
some more nebation and give a sequence space representation of the space
of hypoanalytic functions on open polydiscs in the strong dual of a reflexive

nuclear Kothe space 4(P). From this we draw a eoroliary and then we.

provide several lemmas which will be applied in the subsequent sections.
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2.1. Notation and remarks.

(a) Let A(P) be a nuclear Kéthe space. For any a € A(P) with a > 0
the sct

D,: = {ge A(P)| suplz,la, <1}
neN

is an open subset of A (P);, called an open polydisé. For a given open poly-
dise D, we call r; the j-th radius of D,, where 7; is defined as 1/a; for a; > 0
and as co for a; = 0.

(b) We put
M: = {m e N| m; = 0 for almost all j e N}

and define for any @ € v and any m € M the m-th power of % as

m. __ ﬂlj
o™= | [ a7,

jeN
(¢) If « is an exponent sequence with sup (ln(n-i-l) Ja,) < oo, we put
neN
(alm) = %ajmj. Then we define the exponent sequence f = fla) as
Je.

the increasing arrangement of the family (o a]m))mEM and we fix a bijection
b: N->M with the property , = (alb(n)) for any n e N. We remark that
B(a) has been determined — up to equivalence — for a large number of
sequences o which are of importance in analysis in Bérgens, Meise and
Vogt [3]. Explicit formulas and examples are given in Section 5 of
[3]. Moreover, it was shown in [3], 3.4 (b), that f(a) iy always a stable
sequence. .

(d) If D, is an open polydise in A(P), and fe H(p N D,), then for
any m = (My, ..., My, 0,...) € M the m-th Taylor coefficient of f (with
respect to the origin) is given by

) = () [ [ty g

27.”‘ ”1n1+1 Mgy A1
- 2y

lel=ry  legl=r, 71

where 0 <<r;<1/a; for 1<j<n are arbitrarily chosen real numbers.

Since A(P) is assumed to be nuclear, ¢ N D, is sequentially dense

in D, with respect to the topology B(A(P), A(P)). Hence f is uniquely
determined by the family of its Taylor coefficients.

The importance of nuclear sequence spaces in connection with the
Taylor expangion by monomials in the coordinate functions was demon-
strated by Boland and Dineen [8]. The following theorem is essentially
due to them [8], Thm. 11. We repeat it here because it is fundamental for
our results; its proof is given by an easy modification of the proof of Bér-
gens, Meise and Vogt [3], Thm. 2.1.
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9.2, THEOREM. Let A(P) be nuclear and reflewive and let D, be an
open polydisc in A(P)y. Let @ be a subset of A(P) consisting of non-negative
sequences, such that {N,| qeQ} is a fundamental system for the compact
subsets of D,.

(a) For fe H(p 0 D,) let (@y)menr denote the Taylor coefficients of f,
defined as in 2.1 (d). Bquivalent are:
(1) f=gllpn Da) Jor some g EHhﬂI(D(L);
(2) FI(N, N ) is bounded for any g€Q;
(8) SUD [a 4" < o0 for any g <Q;
TME.

(£) 2 lanlq" < oo for any q€@Q.
M

(b) The mapping T': (Hh'u(Du)y TO)’"’A(My QM)7 I(f) = (a’m(f))meM7 isva
topologioal isomorphism, where Q™ = {(§™mem| ¢ € @} The epace A(M, Q™)
s nuclear.

Remark. (a) Since A(P) is reflexive and nuclear, it follows from 1.1
that there exigts a set @ having the properties required in 2.2.

(b) In 2.2 the reflexivity of A(P) is only used to get a convenient
formulation. If A(P) is assumed to be only nuclear, then 2.2 holds if
H,,(D,) is replaced by the space of all G-analytic functions on. D, which
are bounded on the equicontinuous subsets of D, endowed with the top-
ology of uniform convergence on fthese scts.

The following covollary of 2.2 hag already been stated in Bérgens,
Meise and Vogt [3], 2.5.

2.3. COROLLARY. Let A,(a) be nuclear and let 1 e, (o) denote the
sequence identically 1. Then (H (Dy), vo) is nuclear and isomorphic to A (8(a))
by the mapping

T: fH(“b(n) (f))neN‘

Proof. It is easily seen that @ = {(+™),en| 0 < r < 1} is a fundamental
system for the compact subsets of D;. Since any hypoanalytic function
on a (DFN)-space is already continuous, we get from 2.2 that (H (D), 7,
is isomorphic to A (M, Q™). However, this space is isomorphic to A (o)
by the mapping

( am)me]ll = ( ab(n))naN .

In the subsequent sections wo shall use the sequence spuce represen-
tation given in 2.2 for a number of computations. For this purpose it will
be useful to have a convenient description for the systems @ = Q(P, a)
appearing in 2.2. Therefore we now indicate how such gystems can bo
obtained for nuclear Fréchet spaces A(P).

e ©
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2.4. LeMMA. Let A(P) be a nuclear Fréchet space and let a € A(P),
a0, be given. We assume that the Kothe set

P = {(pn)ien! k N}
satisfies

(¢) D5, < Pjpex for all jeN and all T e N;
B) }im(pj,k/pj,k+1) =0 for all ¥ eN.
J—roo

(i) Then there emist striotly increasing sequences (W )en it N and (o) pen
i (0,1) with the following properties:

(a) supap,, < g, for any % e N;
jzng

(b) 1> g, >Verr >0 for any & >1.
(ii) The set @ = {g;| % € N}, where q; = (4 1) 15 defined by

oxlt;  if oy #0 and 1<<j<my,
G =150 o & =0 and 1<j<my,
Pip  H G=m,

i8 contained in D, and (N,

qk)kEN %8 an tnoreasing fundamental system for
the compact subsets of D,.

Proof. (i): The sequences (fy)ien and (05)zen are defined induetively

as follows. First we choose g,, with 0 < ¢, < 1. Since & belongs to A(P),

we have lima;p; ; = 0. Hence there exists n, € N such that supa;p,, < ;.
J-ro0

izn
Now assume that n, and g, are defined for L< k< m in suchla way that
(a) and (b) hold for 1 < k < m (putting g, = 0). Then we choose g,,,; With

Vo < Omi1 < 1. Since ;im @;D; 11 = 0, there exists n,,.; > n, such that
—00

SUD 4P ;i1 < Omy1- Hence (a) and (b) are satisfied for 1< k<< m-+1
=
Janng%le existence of the sequences follows by induction.

(ii): From the definition of @, (a) and (b) it follows that @ is a subset
of D,. Since A(P) is nuclear and reflexive, this implies that N, is compact
in D, for any ¢ge@.

If L is an arbitrary compact subset of D,, by («) there exists 1e N
with I = Ny, N D,. Since (b) implies that g, > Q‘i_k, we have lim g, = 1.
Hence () and (p) imply that we can find % > with f>oo

supsup oo, < o

and - sup (p;/p5:) < LM
zel, jeN izng,

From this it follows easily that L < N, , hence (N, Jrav is a fundamental

system for the compact subsets of D,. This system is increasing since we
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have g;;, < g;541 for all jeN and ull ke N. Since g is increasing, this
follows from (o) and (a).

The following two lemmas will be needed in the next sections.

2.5, LeMna. Let B be an l.c. space and let I be a nuclear Fréchet space.

(a) If B is a subspace of F, then (H (Hy), 7o) 48 a subspace of (H (), 7).

b) If B is a quotient space of F, then (H (), 7o) is @ quotient space of
(H (), 7o)- )

Proof. (a): Let B denote the eompletion of H. Then it follows from
Kothe [13], §29,6 (1) and §27,2 (5), that B, = ﬁ,’, Hence it follows
from the Hahn-Banach theorem that the restriction map =i Fj-»J,
is surjeetive and open, If one defines

ws (H (B, vo)—{H (F}), 74)
by
Ya(f)
then "z i an injective topological homomorphism since any compact seb
in B, is the m-image of a compact set in I,

(b): Let #: F—F denote the quotient map. Then F; can be regarded
as a subspace of Fj by means of the adjoint % of = and hence the exten-
sion theorem of Boland [5], 3.1, tells that

= fom,

@z (H(F), o)+ (H (By), 7),
q(f): = fo'n,

is surjective and open.
The-proof of the following lemma is an eiwy consequence of the Cauchy
inequalities (see e.g. Aron and Schottenlcher [1], Thm. 2.2, (¢)=-(d)).
2.6. LeMMA. Let B be a Fréchet—Montel space and let U = @ be an
open subset of B, Then F is a complemented subspace of (H(T), o).
"Remark. From 2.6 and the inheritance properties of (DN), (DN), (Q)
and (2) it easily follows that a necessary condition for (H(U), To) having
one of these properties is that B has the corresponding one.

3. Subspaces and quotients of finite type power series spaces. This
section in which we deal with the properties (8) and (DN) containg the
main result of this mtmlo, numoly o characterization of those open polydises
D, in a nuclear space 4,(a), for which (H D,) r(,) is & power series space,
Thc proof of the main ‘rhom e 8 prepared by the following two lemmag.

3.1 LeMmA. Let Ay(a) be nudlear. A diagonal map D: A 2 (@)-+ Ay (a)y
Dz = (dm;)sen, 45 an automorphism iff dedy(o) and 1/d € 4,(a).

Proof. Since 4,(e) is nuclear, we have 1e 4,(a). Hence d = D)
€ Ai{a) and 1/d = D™'(1) e dy(a) if D is an automorphism. In order to
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prove the converse implication it suffices to show that D is continuous for
any d e A;(a). However, this is a econsequence of the following estimate
which holds for all # € 4,(a) and all 7 with 0 < r < 1:

x, (D) = E;djij sup |d;1V7%) lejﬂ/f < 7y (d) g7 ().
=1
3.2. LeMMA. Let A(P) be o nuclear Fréchet space, where P = {(pjn Jiew!
keN} For aecA(P), a2 0, the following are equivalent:

(1) (H(D,), %) has (B);
(2)  For any s e N there exists t > s and j, e N such that

p], J.pf i fOT all .7 = js .

Proof. We may assume that P satisfies 2.4 (x) and (B). Then we have
by 2.4 and 2.2 that (H(D,), v,) is isomorphic to A (M, Q™), where Q is
defined as in 2.4.

(1) =(2): First we show that (1) implies a; 0 for all j e N. In order
to prove this we put D; = {¢ € C| || < 7;}, where 7; = 1fa;. Then it is
easy to see that H(D;) = Ar(n) is a quotient space of (H(D,), 7o), Hence
(1) implies that 4, (n) has (22). By Wagner [28], 1.11, this shows 7; < 00,
le. a; > 0.

Then we remark that property (£2) of A(M, @™) implies by Wagner
[28], 1.11, that the following holds true:

(3)  For any s e N there exists ¢ > s such that for any % e N there exists
¢ > 0 such that

Ieg™ < Ogf™  for all m e M.

By choosing m = ng; (¢; = (9is)ien) for m € N and taking n-th roots we get
from (3) by going to the limit n-—>oo:

(4) TFor any s e N there exists ¢ > s such that for any ke N

U08,s < G4 for all jeN.

In order to see that (4) implies (2) we choose § > #,; arbitrarily. Then the
definition of @ in 2.4 and (4) imply that for any & with j < n, we have

Or 2
9,6 Pj,5 = —7‘17/ s S Pyee

Beeaunse of limg, =1, hnm, = co and a@; # 0 this implies
Je—r00 I-ro0

Do < aypj,  for all j=m,

hence (2) holds.
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(2) =(1): As the proof of 2.4 shows, we may assume that the sequence
(np)gexy D 2.4 (i) is constructed in such a way that ng 2 j; for all s e N.
Then we get from (2):

(8) TFor any s e N there exists ¢ > s such that
Py < Py for all j=m,

Now we show that (5) can be used to prove that @ satisties (4). This implies
that Q™ satisfies (3), which gives by Wagner [28], 1.10, that A (M, Q™)
has (£2), i.e. that (1) holds.

In order to prove (4) we first remark that (5) implics &; = 0 for all
j € N. Then, for a given s € N, we choose ¢ > s such that (5) holds. Now
we remark that for any I with j > n;, we get from 2.4 (a) that p;, < g/a;.
Hence g;,; < g;/a; forall j € Nand alll e N by the definition of @. Using this
and 2.4 (b) we get for j <m; and ke N

2
Or @, Q¢—1 Q) _ =
YGnis < — o a: < s \(a_j) = (js-

If j > n,, then we get by the same arguments and (5) that for any ke N
we have

1 2 2
Gl S 5= Pis < Pia = Gy
4

This shows that @ satisties (4), which completes the proof.
Remark. (a) If in 3.2 A(P) has a continuous norm, we muy assume
that p; , > 0 for all j and & in N. Then 3.2 (2) is equivalent to

(2) TFor a>0 and for any s e N, there exists #>s such that
limint (ap],/p;,) > 1
J->

(b) In the proof of 3.2 we have shown that (1) implies aj > 0 for all
j € N. Hence it follows from the definition of § that A(P) = A(Q). But
then (4) in connection with Wagner [28], 1.11, proves that (1) implies
in particular that A(P) has (2), which has already been remurked Lo be o
consequence of 2.6.

In 2.3 we have scen that for any nuclear space (e} we have
(H (Dy), 10) = A, (f(a)) for the open polydise Dy in 4,(a),. The following
theorem gives a characterization of all polydises D, in 4, (a); for which
(E (D), 7o) is isomorphic to 4,(8(a)) and shows thaut this property also
characterizes the polydises D, for which (H(D,), v,) has ().

3.3. THEOREM. Let A;(e) be nuclear and let a e A,(a) salisfy a3 0.
Then the following are equivalent:
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(1) a> 0 and lim ¢;'Ing; = 0;

J—reo

(2ya>0 and 1l/a € 4,(a);

(3) (H(Dy); 7o) =2 A, (B(a));

(4) (H(D, zo) s a power series space;

(5) (H(D, to) is @ power series spaces of finite type;

(6) (H(D,), 7o) is a quotient of a power series space of finite type;
{E(Da), 7o) has ().

Proof. (1)=(2): For an arbitrary » with 0 <r<1 we put &:
=1In(1/r) > 0. Then there exists J = J () such that |¢; Ina,| < e for all
j=dJ. This implies In(1/a;) < se; and hence 1/a; < €™ = (1/r)% for all
j=J. Since 4,(a) is nuclear, we get 1/a e 4,(a).

(2)=(3): Since ¢ and 1/a belong to 4,(a), we get from Lemma 3.1
that the diagonal map A: A,(a)—>A;(a), Az: = (aj;)jeny 18 an auto-
morphism of 4,(«). Obviously we have 4 (D,) = D,. Hence 4 induces
an isomorphism between (H(D,), 7o) and (H (Dy), 7,). Because of 2.3 this
implies that (3) holds.

(3)=(4) and (B)=(6) hold trivially.

(4)=(8): By 2.6 (H(D,), vy) hag a subspace which is isomorphic to
Ay(a). Hence (4) implies that (5) holds.

(6)=(7): This follows from the remark that any power series space
of finite type has (&) and that () is inherited by quotient spaces (see
Wagner [28], 1.11, 1.2).

(7)=(1): We choose a strictly increasing sequence o in (0, 1) with
limoy, = 1. Then P = {(0}f);enl % € N} satisfies 2.4 («) and (B) and we have

Koo

A{P) = 4,(a). Hence we can apply 3.2, which shows that &> 0. Since

a € 4,(a) implies 11msu1) oy ' Ina; < 0, it suffmes to show 11mmfaj lnaj> 0.
e

This follows from 3. 2( ), which implies that for any s eN there exist
t =1(s) > s and j, e N such that

. 9
aj>—2’~-=( 2) for all j > j,,
and consequently

liminf o Ina; > lim inf In = 0.

Jroo 8-r00 t(s)

3.4, COROLLARY. Let A,{a) be nuclear and let a, be A,(a) satisfy
>0 and b>0. If 1/acdy(a) and 1[b ¢ A(a), then (H(D,),7,) end
(H (D), 7o) are mot isomorphic.
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Remark. (a) Theorem 3.3 holds if A,(a) is replaced by Adg(a), 0
< B < co, provided that (1) (vesp. (2)) is replaced by (1) (resp. (2)):

(1) a>0 and lime;'Ing = InR;

oo

(2) @ >0 and 1/a e dyp(a).

(b) Theorem 3.3 is optimal in the following sense: If # is a nuelear
Fréchet space for which there exists an open subset U in B, such that
(H(U), 7,) is isomorphie to a pewer series space and contains a bounded
function which is not constant, then # is isomoerphic to a power scries
space of finite type. This is obtained in the following way: As the proof
of Vogt [21], 2.6, shows, (H(U), 7,) does not have (DN), hence (H(U), 7,)
is isomorphic to some 4, (y), which is nuclear by the theorem of Boland [7]
and Waelbroeck {27]. From 2.6 we get that B is isomorphic to a subspace
and a quotient space of A,(y). Hence ¥ is isomorphic to some nuclear
Ay (8) by a result of Mityagin [15] (see also Vogt [24], 1.6).

(e) I Ay(e) is nuclear and if for the open polydises D, and D, in
A, (a); the spaces (H(D,), v,) and (H(D,), 7,) have (), then they are not
only isomorphic as L.e. spaces but even as topological algebras. This follows
from the proof of 3.3 since it shows the existence of an automorphism
4 of 4,(a) with A(D,) = D,. This can also be derived from Meise and Vogb
[14], where a classification of the algebra isomorphisms between (H(D,), TO)
and (H (D), 7o) iy given.

(d) It is an obvious consequence of 3.3 that for any open subset U
of 4(a) which is biholomerphically equivalent to Dy, the space (H(U), v,
is isomorphie to 4, (f(e)). Furthermore, it follows from 3.3 that for any

analytic subvariety V of D, (whatever the right definition will be) for .

whieh o: (H(Dy), 7o)>(H(V), 7o), ¢ the restriction, is surjeetive and
open, (H(V), 7o) has (22). Up to now almost nothing is known in this gituation,
except if V' is the intersection of Dy with a closed hyperplane (see Raboin
[17], Cor. 3 of Thm. 3).

3.8. PROPOSITION. Let A(P) be a guotient of a nuclear space Aq(w),
where P = {(p; )en| % € N}, For a e A(P), a3 0, the Sfollowing are equi-
valent:

(1) (H(D,), 7o) is a quotient of A,((e));

(2) a satisfies 3.2 (2),

There emists b e A(P) satisfying condition (2).

Proof. Since A(P) is a quotient of 4,(a), it is 4, (a)-nuclear. Tenee
it follows from Borgens, Meise and Vogt [4], Thim. 4.1, that (H(D,), 7)
is 4, (ﬂ(a))-nuolear. Since f(a) is stable by Borgens, Meise and Vogt [3],
3.4 (b), we get from Wagner [28], Thm: 2.5, that (]I (Dy), 10) satisfios (1)
itf it has (). By 3.2 this is equivalent to (2).

e ©
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In order to show the existence of some b e A(P) satisfying (2) we
remark that A(P) has (9). Hence we may assume by Wagner [28], 1.11,

(3) Py Prs S Phopy for all jeN, all seN and all kel.

For any j € N there exists g € N such that p; , > 0, hence (3) implies
that
Planr

7t = SUPP; p < < o0
keN

ha

and that m; > 0. Moreover, (3) implies that b: = 1/n satisfies
Dy < bPiesn forall jeN and all seN.

Hence b satisfies 3.2 (2) and its definition shows b e A(P).

In Theoremy 3.3 it iy surprising that (H (D,), 7,) is isomorphic to
A.l(ﬂ(a)) iff it is a quotient of some 4, (y). The reason for this is explained
by the following proposition which shows in particular that for any open
polydise D, in 4, (a), the space (H(D,), ) is & subspace of A(8(a))-
Hence the equivalence of 3.3 (3) and 3.3 (6) also follows from the result
of Mityagin [15] mentioned in Remark (b) behind 3.4.

3.6. PROPOSITION. Let A(P) be a subspace of a nuclear space A,{a).

, Then (H(D,), 7o) 18 a subspace of Ay(f(a)) for amy open polydisc Dy in

A (P

Proof. Since A(P) is a subspace of A4,(a), it follows from Vogt [23],
2.3, that it has (DN). From Vogt [23], 41 and the nuclearity of A(P) it
follows that we Iﬂa,—y' assume that P = {(p;x)hen! * € N} has the properties
stated in 2.4 («) and (8) and satisfies, moreover, (y) and (3):

(y) For any & e N there is ¢ >k such that

kp;p<p;, foral jeN.
(8) For any ke N there exists >0 such that
p;,‘,“fgp]-,k“p;,l for all j e N.

Then we get from 2.4 and 2.2 that for any a e A(P), a0, we have
(H(D,), 7o) =~ A(M, ™), where @ = {(¢;);enl % € N} is given according
to 2.4 and (y) by ‘ . ‘ :

' W, i a; #£0 and L § <y,

= e ,
G = \py i G=my orif g =0,

We claim that (3) holds for the Kothe set . This will be a consequence of
the following statements (1)—~(4) in which ke N is arbitrary but fixed.
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(1) Since Lm(g,/g;)* =1 and since g, < g4y, there existy g >0
a0

such that for all ¢ with 0 < << &; we have g;/op.1 < (01/05)°. Hence we

have for 0 <e<\g and all § with a; %0

148 F
(_@zi) < Ot (_gl_)_
o a; \ g
(2) Since A(P) is Hausdortf, (y) implies that p,, = 0 all j € N. Hence
we have lim(ajp“)‘ =1 for all § e N with «; # 0. Since g < g;4.1, this

implies ﬂnﬁ there exists ¢, > 0 such that for all ¢ with 0 < e < g, and all
J with n, < j<my, and a; % 0 we have

( K3 ) < Qa1 9k+1 LT
&

(8) Since hm(p, UPix) =1 for all jeN and since supajﬁ, E< e

< @p41 Y 2.4 (i ( ) (a) there exists & > 0 such that for all ¢ Wlth O<eg
and all § with a@; # 0 and n, <j < m;,,; we have

Qh +1

PES Bine
(4) From (3) we get that the existence of & satistying p, P T

< (D1,1/P;,1)" for all j € N. Since p; 1/, 2 1 by (a), wo oven have for all
0< s g and all j eN

1
DI < Pjrgabf -

If we choose & = min(sy, &y, &y, &), then it follows from the definition of
Q and (1)~(4) that

G < G,  for all jeN.

Since k was arbitrary, we have shown that for any k e N there exist s > 0
such that

(5) ghtom < gty gim

Because of Vogt [23], 4.1, (B) implies that A(M, Q™) and consequently
(H(D,), 7) has (DN) Since A(P) is a quotient of A, (a), it is A, (a)-nuclear.
Hence (H )» 7o) 18 Ay (B(a))-nuclear by Borgens, Meiso and Vogt [41,
Thm, 4.1. Smce B(a) is stable, an application of Vogt [23], Satz 3. 2, gives
that (H(D,), 7, is a subspace of A, (B(a).

From 3.6 we get the following corollary which also shows that 3.6 is
in a gsense optimal,

for all me M.

icm®
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3.7. COROLLARY. An l.c. space E is a subspace of a nuclear power series
space of finite type iff (H (Hy), ) has this property.
Proof. If H is a subspace of some nuclear space 4, (a), then by 2.5 (a}
(H (Bp), 7o) is & subspace of (H (Ay(a)g), -zo), which is a subspace of A,(B(a))
by 3.6. If (H(H;), 7o) is a subspace of some nuclear space A4, (y), then B
is a subspace of A,(y) by 2.6. .

4. Subspaces and quotients of infinite type power series spaces. This
section contains some results on subspaces and quotient spaces of power
series spaces of infinite type. The proofs are more easy than in Section 3
since (H (A (a)y)s -:0) is isomorphic to A{f(a)) for any nuclear space

(@)

4.1. ProPOSITION. Let 4 (a ) be nuclear and let B be an l.c. space.

) If B is a subspace of A, then (H By), vo) is & subspace of A, (B(a)).
b) If B is a quotient space of A ), then (H (Hy), 7o) is a quotient space
of A,(B(a)).

Proof. (a): If B is a subspace of A (a), then (H (B;), 7,) is a subspace
of (H(A(a)),7) by 2.5 (a). Hence the result follows from Borgens,
Meise and Vogt [3], Thm. 2.1, which tells that (H (4, (a)), 7o) is isomorphic
to Af{a)).

(b): The same arguments as in part (a) apply if 2.5 (a) is replaced
by 2.5 (b).

4.2. CoROLLARY. Let B be a Fréchet~Montel space.

(a) B is a subspace of s iff (H(By), v,) is & subspace of s.

(b) B is a quotient space of & iff (H(Hy), v,) is & quotient space of s.

Proof. The “if” part follows from 4.1 sinee for a = (In(n+1)),ur
the sequence f(a) is equivalent to o by Borgens, Meise and Vogt [3],
Thm. 2.4. The “only if” part follows easily from 2.6.

Remark. Because of the characterization of the subspaces (resp.
quotient spaces) of s given by Vogt [21] (resp. Vogt and Wagner [25])
Corollary 4.2 tells that a nueclear Fréchet space B has (DN) (resp. (2)).
iff ( (B, 10) has (DN) (resp. (£2)). Because of Vogt [21], Satz 2.6, it can-
not be expected ’rhat (DN holds for many open subsets of Hj. Indeed, it
follows from this result (resp. from Vogt [21], 2.4) and the preceding remark
that for a nuclear Fréchet space A(P) the space (H(D,); 7o) has (DN) iff
D, = A(P);. We shall show now that more can be obtained for the property
(.Q), gince the dual form of (2) can be localized in a sense.

In order to do this we recall the definition of the space H(K) of
germs of holomorphie functions on a compact subset ¥ of a metrizable l.c.
space H. We choose a decreasing open neighbourhood bagis {U,)ew of K
and let H*(U,) denote the space of all bounded holomorphic functions
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on U, endowed with the sup-norm. Then {H*(U,), 7, uen I8 an induetive
system if #,,,: H*(U,)»H>(U,) denotes the restriction map for m > n.
The inductive limit of this system is denoted by H(K). We remark that
H(K) does not depend on the particular choice of the neighbourhood basis
( Un)nEN .

4.3. PROPOSITION. Let B be an l.c. space.

(a) If B is a quotient space of s, then H(K), is a quotient space of s for
any compact set K @ in .

(b) If B is a Tyréchet-Schwarte space and if there ewists a compact set
K # @ in B for which H(K), is a quotient space of s, then B is a quolient
space of s.

Proof. (a): If B is a quotient of s, then (H(Hy), 7o) is u quotient of
¢ by 4.2 (b). Since T is nuclear, Hy({0}) is & (DFN)-space by Bierstedt
and Meise [2], Thm. 7. From this and the duality result of Boland [67,
Thm. 1 and Remark 2 (a), we get that Hy({0}); is isomorphic to (H (), 7).
Then Satz 1.8 and Lemma 2.1 of Vogt and Wagner [25] imply that H. =({0})
has the following property:

(x) Tor any peN there exists g e N such that for any & e N thero
exist 7 e N and € > 0 such that for all » > 0 and any feHy({0})

sup [f(@)| < Orsup | (@) +— sup (@),

=V, acVy, zeVy

where (V,)n I8 a decreasing abgolutely convex neighbcurhood basis of
zero in B and where the supremum is allowed to be infinite.

Now. let K # @ be a compact subset of B and define U; = K4V,
for all j e N. Then we have H(K) = indH*(U,) and it follows fiom (+)

n—>
that H(K) satisties () if we replace in (x) V by U. Since T iy nuelear, it
follows from Bierstedt and Meise [2], Thm. 7, that H (X is (DEN)-space.
Hence () implies by Vogt and’ Wagner [28], 2.1, that. (K), has ().
Since H(X), is nuclear, this proves by Vogt and Wagner [25], 1.8, that
H(E); is a quotient of s. '

" (b): Beeause of Bierstedt and Meise [2], Prop. 10, B, is a comp-
lemented subspace of H (). Hence I = B,y is a complemented subspaco of
H(K), and consequently a quotient spaco of . .

4.4. COROLLARY. Let A (a) be nuclear and let B be o quotient spaoce
of Ay (a). ‘ )
(a) H(EK), is a quotient space of A (B(a)) for any compact st K in 1.

(b) If B.= A(P), then (H(D,), v} is a guotient space of A (f(a))
Jor any open polydise D, in" A(P),. : ‘

icm
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Proof. (a): Since A, (a) is 2 quotient of 8, we get from 4.3 (a) and Vogt
and Wagner [25], 1.8, that H(K); has () for any compact set K in E.
Since 4 (a) is Ay(a)-nuclear (see Ramanujan and Terzioglu [18], 2.12),
we get from Borgens, Meise and Vogt [4], Thm. 4.4, that H (K ) is Ay (B(a))-
nuclear. Hence Vogt and Wagner [25], 1.8, implies that A (K)j is a quo-
tient space of A (B(a)).

(b): If D, is any open polydisc in A (P);, then it follows from the duality
theorem of Boland and Dincen [8], Thm. 20, that (H(D,), v)) = H(DX),,
where D3 is the multiplicative polar of D,, which is a compact subset of B.
Hence we get from (a) that (H(D,), 7o) is' a quotient of A (B(a)).

+.5. CorOLLARY. If A(P) is a quotient space of 8, then for any a € A(P),
a2 0, there is a closed ideal I in the l.c. algebra (H (sp), 7o) such that
(H (s3), 7){T és isomorphic to (H(D,), 7) as an Lec. algebra.

Proof. By 4.4 (b) there exists a continuous linear surjection m: 8 —
=>(H(Dy), 7o). Its transpose ‘n: (H(D,), To)p—>8;, i continuous and linear.
Hence the mapping ¢: D,—s; defined by @(2) = fno d,, where 3, denotes
the evaluation at the point #, is a holomorphic mapping, i.e. continuous
and weakly Géiteaux-analytic. Since the composition of holomorphic
mappings is holomorphic again, ¢ induces &: (H (53, 7o) (H (D,), 7o)
by the definition &(f) = fog. Tt is easy to see that @ is a continuous algebra,
homomorphism. In order to show that & is surjective, we choose
g € (H(D,), r.,) arbitrarily. Since m is surjective, there exists fes =(s)
< H(sy) with g = =(f), which is equivalent to g = “n(f) = folm. Hence &
is surjective and the result follows from the open mapping theorem for
Fréchet spaces.
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Norm inequalities relating singular integrals and the maximal function
by
ERIC T. SAWYE R* (Hamilton, Ont.)

Abstract. We prove that if the weighted L? norms (1< p < o) of the Riesz
transforms are bounded by the weighted L# norm of the maximal function, then the
weight function satisties the O, condition of B. Muckenhoupt. Conversely we show
that if the weight function satisfies the 0, condition for some ¢ > p, then the weighted
I? norm of any standard singular integral is bounded by the weighted L2 norm of the
maximal function.

§1. Introduction. We consider the problem of characterizing the
non-negative weights w for which (1 < p < o) ‘

1) fle]”'w< Gf]Mf]”w for all appropriate f
where Tf = Kxf is a singular integral in R" with kernel K satisfying the
standard conditions

() 1) < €,
K (2)] < Cla™",

K (z)— E@—y)| < Oylle™ " for |y| < |a|/2.

R. Coifman and C. Fefferman have shown ([1]; Theorem XIII) that (1)
holds for 1 < p < oo provided the weight w satisfies the 4, condition.
B. Muckenhoupt has shown ([7]; Theorem 2.1) that in the case when T
is the Hilbert transform, inequality (1) does not imply that w satisfies
the 4, condition. He has derived ([7]; Theorem 1.2) the following necessary
condition for (1) (with T the Hilbert transform) which he has conjectured
to be sufficient.

(Cp) There are positive constants €, & such that

Jw < CUBIIQN) [ 1M, Pw
P

whenever F is a subset of a cube @ = R™
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