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On permanent radicals in
commutative locally convex algebras
by
W.ZELAZXKO (Warszawa)

Abstract. In this paper we introduce a coneept of permanent radical in topological
algebras and characterize it in the classes of locally convex algebras and By-algebras.

§1. Introduction. All algebras considered in this paper are commuta-
tive complex algebras possessing unit elements. The unit element of an
algebra A will be denoted by ey, or by e in case when there is no need
of explicit mention of the algebra in question. The radical rad A of an
algebra A is the intersection of all its maximal ideals. Denoting by G(4)
the group of all invertible elements in A we have

1 . radA = {wed: e—areG(4) for all a in A4},

A topological algebra is a topological linear space together with an
associative jointly continuous multiplication making of it an algebra over C.
In terms of neighbourhoods of the origin the joint continuity of multipli-

cation means that for each such a neighbourhood U there exists another
neighbourhood V of zero satisfying

(2) Ve U.

It 4 is, moreover, a locally convex space, then its topology can be
given by means of a family (|lzfl,) of seminorms, and (2) reads in the fol-
lowing way: for each o there is an index f such that

(3) Nzl << Neollglly Il
for all @,y € 4. It can be also assumed that for « and f§ satisfying relation
(8) we have also

lelle < Yol

for all » e 4. In case when the seminorms ([#|.) can be chosen so that

(4) loylle < I llallylla
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we say that the algebra in question is multiplicatively convex (shortly
M-CONVET).

In this paper we shall consider only complete algebras, i.e. topological
algebras being complete topological linear spaces, Relation (2) implios
that the completion of a topological algebra is again such an algebra under
the naturally defined multiplication, thus every topological algebra is
a dense subalgebra of a complete algebra. We shall consider also By-al-
gebrag, i.e. completely metrizable locally convex algebras. Their topology
can be given by neans of an increasing sequence |l << [zl << ... of semi-
norms satisfying

(8) sy lly << ol 19 lir 5

for i =1,2,... and all o,y e 4. In case when a Bgalgebra is m-convex
relation (5) is replaced by

(6) '

Denoting by 7, L%, M, B, M,, & the classes of all topological, locally
convex, m-convex, of type By, m-convex of type By, and Banach algebras,
respectively, we have obvious inclusions I > $€ o> M > My> B and
LEC > By My }

Let o be any class of topological algebras and 4 e 2. We say thatb
an algebra B e o is a A -ewtension (superalgebra) of 4 it there is & topologi-
cal isomorphism ¢ of A into B with @(e,) = ez In this case we can treatb
A as a subalgebra of B and write simply A < B.

L.1. DErFINITION. Let #° be a class of topological algebras and leb
A eA. The A -permanent radical of A is the set

eyl < llsliiyll-

() radyd ={wed: veradB for each X -cxtension B of A4}.

Obviously rad,4 is an ideal in A contained in its radical. Also for
Ay > Ay we have

rady 4 < rady, A
for each A e A ,.
1.2, DEmNITioN. We say that for a class & of topological algebras
the concept of o -permanent radical hay an absolute character it
(8) rady 4 = radgs 4

for each A e . If this fails we say that the concept of permanent radical
has a relative character in the considercd class 7.

In this paper we characterize £%-permanent radicals as ideals con-
sisting of elements possessing small powers (cf. definition helow). In §2
we describe these ideals in an arbitrary topological algebra, while in Seetion
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3 we show that for elasses 2% and @, these ideals coincide with permanent
radicals relative to these classes. We observe also that for the classes 2%
and #, the concept of permanent radical has an absolute character, while
in the classes .#, .#, % it has a relative character.

For an additional information on topological linear spaces and top-
ological algebras the reader is refered to [2] and [4]. '

§2. Elements possessing small powers.

2.1. DEFINITION. Let A be a topological algebra. We say that an el-
ement & .4 has small powers if for each neighbourhood U of the origin
in 4 there i3 a positive integer # such that

A"eU
for all complex scalars A.

The set of all elements in 4 possessing small powers will be designated
by I(4). The concept of elements possessing small powers is related to
the concept of short lines ([2], p. 114), i.e. families of elements (z,) of a top-
ological linear space X such that for each neighbourhood U of the origin
in X there is an index « such that the (complex) line Cw, is contained in U.

2.2. LeMMA. Let A be as above and let » € A. Then the element z has small

powers if and only if for each neighbourhood U of the origin in A. there ewists
an integer m such that

(9) A" < U,

i.e. the powers o™ generate “small ideals”.

Prootf. Let U be aneighbourhood of the origin in 4 and choose a neigh-
bourhood V satistying relation (2). Choose & positive integer # so that
Cs™ < V. Let a € A and choose a positive scalar A so that 2a € V. We have

' " =la-a"[AeV- Vel
and relation (9) follows. The converse statement is obvious.

2.3. COROLLARY. If 2 e I,(4), then relation (9) holds true for any exten-
sion B of A taken instead of A. Of course, U should be then an arbitrary
neighbourhood of the origin in B.

2.4. COROLLARY. If & e I,(A), then for each meighbourhood U of the
origin in A there exists a positive integer n(U) such that

(10) - Ci"c U
Jor all = n(U). The comverse statement is also true.
2.5. ProPOSITION. Let A be as above. We have &  I,(4) if and only

if for each sequence (a,)® of complex scalars the power series > a;al is con-
vergent in A. -

3 — Studia Math. 75.3
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Proof. Let & € I,(4) and let (a,) be any sequence of complex numbers.
Let U be an arbitrary neighbourhood of the origin in 4. By relation (9)
there is a natural number » such that for any positive integer % we have
a4k . ' )
Z ! =a”e U,
J=n
what means that the series in question is convergent in 4.
Suppose now that # ¢ I, (4). By Corollary 2.4 there is a neighbourhood
U of zero in A such that relation (10) fails for infinitely many natural
numbers n, say for n € (n))f° (one can easily show that for some U relation
(10) fails for all natural ). Thus there exist complex numbers A, j

., such that 4,0 ¢ U for all §. This means that the series Y 4,a™
&0

=1,2,
is dlvergent in 4 and the conclusion follows.
Remark. The above proposition holds true (w113h the same proof)
if we replace the sequence (a,) by an arbitrary sequence (@,) of elements
of 4.
2.6. PROPOSITION For each topological algebra A the set I, (A) is om
ideal in A and '

(11)

i

I(4) c rady 4. e

Proof. In order to show that I (4) is an ideal in A it i3 sufficient,
in view of formula (9), to show that @,y e I,(4) implies oy e I,(4).
Let U be an arbitrary neighbourhood of zero in .4 and find another such
a nexghbourhood V satistying .

V+VeU.
Using Lemma 2.2 we find a positive integer % such that Aax* < V and
Ay c V. Setting n = 2k we obtain . . ‘
Mo+y) = et +by* e V4V <= U, - ..

where A is an arbitrary complex number and ¢, b are suitable elements
in A, Thus ®-y el (4).
Let @ € I,{4). By Proposition 2.5 thf, series 2 o/ converges in 4,

itg sum being (e— =)t Thus relation (1) together w1th the fact that I, (4)

is an ideal implies that I,(4) = rad.4. It B is any extension of 4, thon'

obviously I, (4) « I,(B). Consequenﬂy I (A) e rad B for any (mtmnsi@n
B of A and so relation (11) holds true. Conelugion follows. .

Remark. It can happen that I,(4) is a non-closed ideal in A. For
instance, if 4 is a Banach algebra, then. I,(A4) is the collection of all its
nilpotent elements, which is a non-closed subset of the rvadical rad.d in
the ease when A possesses nilpotents of arbitrarily high orders.
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§3. A characterization of permanent radicals in locally convex and
By-algebras. In this. section we prove that for # = %% or # = %, we
have rad, 4 = I,(A) for each A e . We observe also that this is not
true for A" = M, M, or B. .

We need the following simple lemma ([4], Lemma 3).

3.1. LEMMA. Let {a,) be a sequence of positive real numbers with

ag = 1. Then there exists a sequence (b,)>° of positive real numbers, by =1,
such that

(12) ey <Biby,

Jor all non-negative integers i, j. In particular

(13) o<, 1=0,1,2,.,.
Proof. Put b, = 1 and suppose that the numbers by, by, ..., b,_; are
already construeted. Then put

by, = MaX{ayy Gy [B1y Gy [Doy ooey Gyy_y[b, 1, 627},

8.2. LvuA. Let A be a locally comvex algebra and let ([ja]],) be a system
of seminorms défining its topology, so that for each « there is a B such that
relation (3) holds true. Let my € A and w, ¢ I,(A). Then there ewists am indes o
such that

(14) loglla # 0
Jor n =0,1,2,..., where o} = e,.

Proof. If for each index a there is a natural number 'n(a) W11:h
leg@], = 0 then :

Cmgb('l) = Us,u = {.’.0 eA: ”m”a < 'S}'

Since the neighbourhoods of the form U, . form a basis of neighbourhoods
of the origin in -4, we obtain @, € I,(4) and, this confradiction proves
formula (14) for some a. Conclusion follows.

Our main result is based upon the following lemmsv In 1ts proof we
use part of the construction given in the proof of the main result in [4].

3.3. LmmmA. Let A e X, where A =L€ or B, Then

(18) 1ol 4 < I, (A).

Proof. We have to show that if o, ¢ I,(4) then z, ¢ rad,,4. Assume
then that @, ¢ I,(4) and denote by #ll; & continuous seminorm on A
satisfying relation (14) of Lemma 3.2. In the case where o = %, we can.
agsume that it is the first seminorm in a sequence (llzll;) defining the top-
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ology of 4 and satistying relation (5). In the case where A" = L€ we sil‘n}?ly
agsume that [@], is a seminorm belonging to a system. ([z]l,) defining
the topology of A and satisfying relations (3). .

Tn order to show @, ¢rad,A we shall construet an extension
B o A, Be, such that z, ¢rad B. First we construct a cgrimcin matriz
(af) of posibive real numbers, # = 0,1,2,...,] = 1 2. Wc put a) =1
and af = [af|7* for » = 1, 2, ... Setting now a; = aj, we obtain, by Lemma
3.1, 2 sequence {b,) and define a} = b,. Setting again in Lemmsy 3.1 @ = at
we obtain & = b, and so on. Obtained in this way matrix (a7) satistics,
by formulas (12) and (13), the following relations

(16) =1 n=12..

(17) d<ah,, n=1,2.., i=012..,
and

(18) ara e, n=12 .. 4j=012 ..

Let B be the algebra of power series > ;1 with coefficients in A and with
i

the variable f, such that the defined helow seminorms are finite. Assuine
first A e 8, and put

o) | Do), = 3 aligl, k=12 ..
I ]

Relation (17) shows that this is an increasing sequence of sominorms
since the sequence [#]|, increases for any # € A. The space B of all power
series for which the seminorms (19) are finite iy a By-space. This is also
a-B,-algebra under Cauchy multiplication of power series. The joint con-
tinuity of this multiplication follows from the estimation below. We take
here into aceount relations (5) and (18).

il%’mnzng?/ltz I = “;(Zmndyl) tﬂ“,‘,
= 2“73 Z”’n;z?lz

n 3
“[ Sl Znr

The algebra B is an extension of 4 under identification of elements of 4
with constant power series. This follows from relation (16) which implies
that the seminorms (19) restricted to A became original seminorms defining
the topology of A.

U T W AP
RS Z @1 Bt 10—l Wl o
W]

!lc-l-x‘
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The above construction works as well when 4 is an m-convex By~
algebra, or a Banach algebra. In the first case by the inequality

ey ll; < Nl Ny ll; << 2| P 7 Py

we obtain the previous situation. In the second case all seminorms 1l
coincide with the Banach algebra norm |ig]] of A, but then the seminorms
(19) define, generally speaking, a Bg-algebra which in certain cases be-
comes m-convex, or even a Banach algebra, still being an extension of A4.

Congider now the case of an arbitrary locally eonvex algebra. Starting
from the seminorm [, and taking in (3) 1 as « we find a suitable §, which
we call 2. Then for a = 2 we find a f called 3 ete. In this way we obtain an
increasing sequence of seminorms (which in certain instances can reduce
to a single seminorm) satisfying relations (5). To this system there corres-
ponds an at most countable system of seminorms of the form (19). The
same process we can perform starting from any other continuous seminorm
izl satistying relation (14), obtaining in this way corresponding seminorms
of the form (19). The space B of power series for which all these
seminorms are finite is a complete locally convex space and a locally con-
vex algebra under convolution multiplication, what can be seen in exactly
the same way as in the case of a By-algebra. Moreover, Bis a superalgebra for
A gince the seminorms (19) restricted to A give there the original topology.
It remains to be shown that o, ¢ rad B. Suppose then that x, erad B and
try to get a contradiction. By relation (1) the element e — ¢ is invert-
ible in B, and so there is a sequence (z;) = 4 such that 2t e B and

i

(e—-wot)Zz,-t" = e.
=0

The above implies

(Bo—€)+ D (21 m0—2)t =0,
F=1
from which by an easy induction we obtain 2, = af, k = 0,1, ... But the
series Zr{,‘t’c does not belong to B, since by (19) we have
1,-

s
|5 e
k=0

and the right hand series diverges. The contradiction proves formula (15).
The relation rady 4 < rad, 4 for any 4 e o together with formulas
(11), (15) and Proposition 2.5 imply our main result.
3.4. TEROREM. Let A be a locally convex algebra (resp. a By-algebra).
Then the permanent radical 1ad gy A (resp. radg A) is the ideal I,(4) of all

=2 aflafl = ) i okl
k=0 k=0
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elements in A possessing small powers. Or equivalently, for the classes of
Tocally convex or By-algebras, the permanent radical of an algebra iy the set
of all its elements on which operate all formal power sevies.

Remark. The above characterization shows that the coneept of per-
manens radical in the classes £% or %, has an absolute character (cf, Defi-
nition 1.2). This is not true for such eclasses as 4, Mo or . In fach in
these clagges we have rad,A = rad A, what follows from the fact that
for A e # its radical ig given by

radd = (M {# e d: lim L == 0},
o e

where the intersection is taken with respeet to all eontinuous seminornms
on 4 satisfying relation (4). )

3.5. COROLLARY. If A is o Bamach algebra then dts LE-permanent
radical, or B,permanent radical coincides with the set of all s milpolent
dlements, and equals to rady,A.

Let us remark (cf. remarks at the end of Section 2), that if 4 ed
and rad 4 contains elements of arbitraxrily high orders, then the set radg A
is & non-closed ideal in 4. This was, in fact, kuown to Rolewicz, who
used it in [1] to the construction of a By-algebra possessing a non-closed
radical. '

We do not know whether Theorem 3.4 is frue for the class of all
topological algebras.

ProBuEM. Let 4 be a topological algebra, Does the ideul I(4) of
all elements of 4 possessing small powers coincide with the Z -per-
manent radical rad,4 of 42
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Holomorphic functional calculus and quotient Banach algebras
by
L. WAELBROECK (Bruxellos)

Abstract. Lot & be a commutative associative Banach algebra with unit, and
o an ideal of o with a Banach norm stronger than the norm induced by that of w.
Let @,, ..., @, be clements of & /a. We define sp (@5 +«- @y). We congtruct a homomor-
phism O (sp &, of [a)-+57 [a, mapping ¢; onto F;, and unit on unit. This relative holomor-
phic functional calculus (mode) generalizes classical holomorphic functional cal-
culus (where a = 0).

Let of be a Banach algebra, which is commutative, associative, and
with unit. Let ¢ be a Banach ideal. Let @, ..., &, be elements of [a, or,
if you prefer ay, ..., a, elements of o, where of course a; € @;. The gpectrum
8P (Byy «ovy W)y L0 BDG(ay, ..0y @,) I8 the set of (sy,..., 8,) € C* such that

D (@—s)l]a # o[a,
1

ie.

"

D (=) +a ~ .
1

Let now Ug C* be open in €% U 2 sp(@y, «uey Gy), Lot
o(U, ooy = O(U, &)]0(U, a).

Oall L the constant function on U, equal to 1, and 2 the holomorphie
mapping 2 (81, .oy 8,)->8;. Wo ghall construet o homomorphism

O(U, &]a)~+sf]|a

which mups & on @, 1 onto 1, This homomorphism is induced by a conti-
nuons lineur mapping O(U, o)-+of which maps 0(U, o) into o. If U is
a schlicht domain of holomorphy, the homomorphism above is unique.

This iy the firgt of two papers. In the second paper, we shall prove
that every ideal of & quasi-Banach algcbra has at least one quasi-Banach
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