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Therefore
(61) (L4167 (2)—B)"
— max (7%, (2—1/p)"") > fr Ve > m%:((;; _

On the other hand

<V

-1 < <)/ (%JX-)NMI :
1 ;

and

The last two inequalities gi-{m ‘

N \N—T
(6.2) (14167 (@)= BT < l/(/;:,((;v)) ) ’

Sinee inequalities (6.1) and (6.2) hold for almost all # € 2, we conclude
by the definitions of K __, and K, that

Kaq}l/‘l—i‘; ad K

S VEFT,

which is nothing but (0.22).
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On convergence in the Mikusifiski operational caleulus

by

JOZEF BURLYK (Katowice)

Abstract, A now description of the convergence of type I’ in the field of Mikusifiski
operators is given in terms of some family of functionals on the space L of locally inte-
grable functions on [0, o). As a consequence, sequential completeness of # and charac-
terizations of boundedness and precompactness in L, # and in some subalgebra #,,
of # are obtained. In particular, it is shown that a set 4 in & is precompact if and only
if 4 i bounded (with respect fo type 1’ convergence). .

1. Introduction. The field & of Mikusitgki operators, considered
in [7], has various applications, and is interesting also from fheoretical
point of view. A convergence used in the Mikusifski operational calculus,
called type I convergence, is not topological (see.[2], [9]). In spite of
this, it is sensible to consider completeness with respect to type I conver-
gence. In fact, wo can define Cauchy sequences in every abelian group en-
dowod with a convergence. We shall give two definitions (see [8], [6]).

Let X be an abelian group with a convergence &. A sequence {z,}
(@, € X) is called :

(i) P-Oauchy if w, . —oy —0 in G as n—oo0 for every increasing se-
quence {p,} of positive integers;

(i) @-Cauchy if @, — w4 —0 in G as n—>co for every pair of increasing:
soquences {p,} and {g,} of positive integers.

An abelian grouwp X with a convergence G is called P-complete (or
Q-complete) if every P-Oauchy (@-Oauchy) sequence is convergent in G.

Of course, cach P-complete group is also @-complete but not conver-
sely. The converse implication bholds if the convergence G satisties the
Urysohii eondition and, additionally, some¢ other natural conditions
(se0 [R)). o ‘

O prafessor J. Mikusinigki has posed the problem of P-completeness.
and  Qeeompletencss of the fleld # equipped with type I conver-
geneo, A ‘ ‘ ‘

* I this paper (Section 9) we shall show that & with type T convergence
(which does not satisfy the Urysohn' condition) is @-complete. The problem
of P-completeness of & (wiht type I convergence) remains open..
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On the other hand, we shall obtain (Section 9) I-completoness of F# with
respect to another convergence, introduced by T. X. Boehme and called
by him type I’ comvergence. ‘ '

The definitions of type I and type I' convergences will be given in
Section 2.

The above results concerning the completeness of # are consequences
of a new deseription of type I’ convergence, given in Section 6. Tn Section 2
we introduce a family {B; .} (1, s > 0) of nonnegative functionals on tho
space I of locally infegrable funetions on [0, oo), used in a characterization
of type I' convergence.

Our deseription of that convergence allows one to characlerize bound-
edness and precompaciness in the spaces L, #F (Beetions 7,8) and somo
subalgebra &, of # (Section 10) introduced by T. K. Bochme in [3].

In particular, the following result seems to be espeeially interesting
(Theorem b in Section 8): a set 4 « & is precompact iff A I8 bounded.
Here boundedness is meant with respeet to type I' convergence and
precompactness with respect to any of types I and I’, beeause both types
of precompactnes are equivalent. ’

More exactly, a set A o F is said to be bounded if for cach sequence
{w,} of clements of A and each sequence {4} of numbers such thut
20, wo have A,2,—0 type I'; a sot A <= F is said to bo precompact

it each sequence {,} of elements of 4 has a subsequence which is convor-

gent type I or type I’, not necessary to an element of A.

Note that the above definition of precompactness is equivalent to
the definition with using & topology introduced for type I’ convergence by
T. X. Bochme (see [3]).

In Bection 10, we shall extend the functionals By, , onto the subalgebra
F, and characterize, in terms of those functionals, type I convergenco
in #,. As a simple consequence, we shall obtain some resulty of T. XK. Boch-
me concerning type I’ convergence in F, Finally, lot us moention about
the methods used in the proofs. ‘

In the proof of the main theorems (Theorems 1 and 2 in Section 6),
which are characterizations of type I convergence in L and &, we shull
apply as a fundamental tool Lemma 6 proved in Section 4. In this Jemma as
well as in several other situations, we shall need varvious auxiliavy facts;
they are collected in Section 3 in the form of lemmus. As a mattor of fact,
Lemmas 2-5 are slight moditications of lemmas proved by T. K. Boehme
in [1]. They concern an approximation property conneeted with XFoiag’
theorem [6] (see Section 2) and & construction of a common multiple for
a sequence of functions of L. We present these lommas in u slightly
stronger form than in [1] and therefore we give complete proofs of them.

Moreover, some facts about a common denominator of operators will
be needed. We prove them in Section 5.
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There and also in other places, the Titchmar

sh theorem (see Secti
2) will be applied. (see Section

2. Notation and definitions. Tt will be convenient to consider the

field # of the Mikusitiski operators ag the quotient field formed from

13?10 ring L of locally integrable functions on [0, o) with the usual addi-
tion and the followig multiplication:

t .
() = [ft—n)g(z)dr  where f,geL.

) {&s in [7], the symbol I will be used for the function which is equal
identically 1 for ¢> 0 and the symbol &* with 2> 0 for the translation
operator:

0t 4,

" _ for
(0} i

[0
T WfeE—=2a  for

We endow the space I with the seminorms:

r
Ifle = [ f0)a@ (T > 0).
0
‘We have
(1) 179l < 1z~ gl
for dll f,¢gel and T > 0. :
The subspace Qf L consisting of all functiong f sueh that 1l > 0 for
any T > 0 will be denoted by L, Using Boehme’s concept of the support
number of function f, i.e. a maximal number A(f) such that f vanishes
a.0. (almost everywhere) in [0, A(f)] (see [2]), we can write
Ly = {feL: A(f) = 0}.
The convergeniee in all the seminorms [I*llzy T > 0, will be called the
convergence in L.

. We can say that the gequence @, € F converges to w e F type 1 if there
(‘.xm'lz. 1'(\1)1‘0&(*1113;141_ulms‘ Oy = Jults @ = flg (fnfr9el, g % 0) such that
Jur o8 w00 in L. Now, we say that Ty € F converges to @ e F type 1’ if
ench subsequence of {m,} possesses subsequence which converges to @
type I.

Binee overy funetion from I can be treated as an operator, we shall
also consider operational convergences in L type I and type I'.

Tho lunetionals By, on L, mentioned in Introduction are defined in
the following way:

(2) By, o(£) == mt{|{fglle: g € Lo, lglly < 1, fi—lglp < 8}
Tor each feli and T, ¢ > 0.

8 — Studia Math, 753
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It is evident that

(i) By, ,(0) =0
and

(i) By () = |UBg,o(f)

for any T, & > 0. Note that By () is not a seminorm for fixed T, s >0,
but we have the following inequality:

(AeR,fel)

(iid) Bryogay (fr+13) < By (1) +Buya, (f2) -
In fact, for arbitrary » > 0 there exist functions g, ¢4 € Ly such. that
(3) fgalle <L, ligally <1,
(4) W—Tguly < &1y W—1galln < &
and
(8) fagalle < B:l',al (F)-Fn/2  Ifagally < -B",ez (fa)+n/2.
‘We have
(6) 191920z < gl - lgalle < 2,

by (1) and (3), and

(1) W—Tg:g0lp < WGl + [l ~10:90llzr < &1-F gallpll — Ugully < 21+ &4
by (1), (3) and (4). Moreover,

(8) i +r2) g:g:llr < 1fagagalle -+ fog192 )2

< Ifsgallz lgellm =+ Ifegallzligally < B, (f1) - By o, (f2) =
by (1), (3) and (B). Relations (6), (7) and (8) imply
BT,AI+32 (fit+fa) < BT,sl(f1)+'B’ ,sz(fz) + 7,

which proves (iii) since % > 0 was chosen arbitrarily.
It can be proved that

li'l)(;l By,o(£) = Ifle

for any T'> 0 and fe L.

Note that the family of functionals By, (T, ¢ > 0) induees & conver-
gence different from that in L. For instance, if f,(t) = ¥, then it can be
shown that ||f,llp—>o0 for every T' > 0, but By o (f)0 for every 1, & 2> 0.

We shall further apply the following theorem of O, Foiay ([6]):

For any fived feL, geL, T >0 and ¢ >0 there exists a funclion
ke L such that |f—kglly < e;

and the Titchmarsh theorem:
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If fg = 0 a.e. in (0, T), where f, g € L, then there are Ty, Ty > 0 such
that Ty-FTo 2T and f =0 a.e. in (0,T,) and g = 0 a.e. in (0, Ty).
For a proof of the Titchmarsh theorem see e.g. [7].

Applying the concept of the support number, we can write the Titch-
marsh theorem in the form:

Afp < Af)+Alg)  (fgel)
or, since the converse inequality is obvious, in the form
A(fg) = A(f)+Alg)  (figeL).

As corollaries, we obtain the following two implications:
(9) If fel, and g €L, then fg e L,.

(10) I fely, gel and fg =0 a.e. in (0, T), then g = 0 a.e. in (0, T).

The Titchmarsh theorem ensures the consistency of the following
definition of the support number of an operator:

A(flg) = A(f)—A(g).
This concept will be used in Section 4.

3. Some auxiliary facts. We start with the following lemma:

Lemma 1. Let g € L. The transformation f->fg from L into L takes
bounded sets into precompact seis.

Proof. If a set 4 is bounded in L, then for every T > 0 there exists
a constant number M, such that ||fly < My for all fe A (of course, we
can agsume that Mg << My for 8§ < T'). By (1), the set {fg: f € A} is bound-
ed in L. Moreover, by simple calculations, we obtain

7

T {r|
I 10fg) (6+1) = (fg) (B)] @t < MT+.h.[f lg(u+1)—g () du+ [ lg(w)du].
0 0

Hence, by the Lebesgue theorem, it follows that for every & > 0 thereis a
é > 0 such that

m
[ 1) e+ — (fg) (1de < s

forallf € 4, T > 0 and || < 4. This proves the lemma, in view of M. Riesz’s
theorem on precompactness in I.

Now we shall deduce, from Foiag’s them em ([6]) a lemma of Boehme
([1]) in a little modified form.
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LM 2 (cf. [L)). Given g e Lo and 1'; & = 0, There is « Junction b & Ly
such that |kglly < L and |- Tkgly < &
Proof. Given ¢ and T, let o be o pogitive number sueh that

L—edl < a<1.

There exists a function f € Ly such that |flly = aand [l —lflly < &/2. In fact,

o
it sutfices to choose f e Ly such that f= 0, f [ o= aand f(t) == 0 for ¢ =1,
where 0 < t, < min(e/4, T). Then !

ty ¢
B—=Ulp<< [ [1— [f@)de] did- (1 —a) T < of2
0 0

and, of course, [fly = a.
By Foiag’s theorem, there ix o function kel such that {[f— &gllp
< 1—a We have

Vgl << U fllp - 1F —Fogllp < 1
and

(6 — Vgl <5 M0~ Ufllp -t Wbl BF = gl < (3[4}

I & ¢ Iy, ic., & =0 a.e. in some neighbourhood of 0, then we can pub
k = k4, where 4 eL, with

Imlle << llglly* min.(e/4T, 1 |bglly)

and the statement of the lemma is sabisfied for k =k e L,

The next Lemms concerns type I convergence in Iy we formulate
and prove it in two alternative cascs: for the convergence to an arbitrary
fonetion in L and to 0.

Lmywva 8. If the sequence {f,}, fueL (n = 1,2,...) is type L conver-
gent (o 0), then given T, ¢ > 0 there is a function g such that g e Ly,
llgly <1, F—1glly < & and the sequence {gf,} converges (to 0) in L.

Proot. By the definition of type I convergence, {here exists
a function § such that §e L, § # 0 and §f, converges (to 0) in L. Let
A= wup{T: |Flp = 0} and § = A%, whero the symbol A% denotes the
translation operator (see Introduction), Obviously § € Ty and the sequence
§f, = W*gf, converges (to 0) in L.

By Lemma 2, wo can find & suceh that & e Ly, [kflly <2 L and |1 Ul
< & Owing to Titchmarsh’s theorem (9), woe have g == kf & L, and the
sequence gf, == kgf, converges (to 0) in L, us desired.

Now we prove, also in two alternative versions, a lemma which is
a modifieation of Theovem 2 from [17].
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Lemma 4 (cf. [1]). Let T> 0. If g, € Ly lgulle <1, P—1gullr < 2,
0
(or lgolly <1, W—1g,ll, < e,) for n=1,2,..., where } e, < oo, then the

M=l
sequence {lgsgs ... g,} 98 convergent in the seminorm ||y (or in L) to a function
g € Ly such that
(11) g = PG, ON (or on [0, o))

with @, € Ly for n=1,2,...

[0, 77,

Moreover, the inequality |fglly < ifg,lly holds for every fel and
n=1,2,..."

Proof. First that g, el lgulr <1, W—Ilg,llr<se,

o0
(n =1,2,...) with J'e, < oo for a fixed T > 0. For m ># we have
nel

assume

g 392 - 9m—19:92 - Gullw < 9392 -+ Gullr WlGngr -+ Gn— Ul

m—1

< Z %01« Gigr— W1 -+ gelllr
i=n

m—1
< 2 191 - Gella 10941 — Ul
il
mn
< 2 &g
i=n+1
and this means, by the assumption, that {Ig.g, ... ¢.}, » =1,2,..., 18
a Oauchy sequence in the morm [!|[z.
Let 19495 ... go—>¢ a8 n—>00 (in ||-lly). We shall show that g € Ly Given
any positive 8§ < T, we can find an index n, such that 3 e, < §/2. The

n=ng

SeqUence g, gy 11 Jngrer -+ Satisfies the assumptions of the lemma.

Therefore
Zgnognovl-l g,,—>h as N—> 00

in the seminorm ||, and, consequently, in |-|lg. Moreover,

Bllg = Ml (=Tl = 8 —Hm |l —1Ig,, ... gullg > 8/2
=00

in' o similar way as previously.
In view of Titchmarsh’s theorem ((9) and (10)) we have g, ...
and thus Jlgy ... gy, bllg > 0. Since § is arbitrary, it follows that

gno € Lo

g = Nmlggy ... n = §102 -+ Guyh € Ly,
k-

a8 desired.
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Thus we have proved the fivst part of the lemma under the assum-
ption that lg,le <1, P—lulr <& (m=1,2,...). I the alternative

agyumptions are satisfied, i.0., [gull, <€ L and [I—Ig,ll, < 8, (n =1, 2, ey

the assertion immediately follows from the case just proved.

Given an index #, the sequence gy, gay -+« y Jnety Frary «-» 480 sabisfios
the agsumptions of the lemma (in the both versions). Denoting by ¢, the
limit of this sequence, we get (11).

Finally we have, for m > n,

”lfgl pee .(Im"m 5 “lfgn”'['

and, consequently,
| Wl == T hfgs - ol < 1T
ki Caeal= ]

for every » =1, 2,...

At lagt we prove a lemma connected with Theorem 3 of [L],

Lmvma 5 (ef. [1]). If g, € L and |lg,llp > 0 for some T'> 0 (n =1, 2, ...),
then there ewists a function g in L such that |lglls > 0 for every 8 > T and
g =@uf (n=1,2,..) for some functions ¢, in L.

Proof. At first lot g, e L, (n =1,2,...). By Lemnu 2, there are
functions &, € L, such that

Won @ulls <Ly W=l gyll, < 27" for o =12 ...

The funetions s, = k,g, (n =1,2,...) satisfy the assumptions of

Lemma 4. Thus there exist functions g e Iy and y, € L, such that
9= YuSn =08, (n=12..),
where ¢, =y, k, and, by Titchmargh’s theorem (9), we have @y € Ly

Now let us suppose that |jg,lly > 0 for » =1, 2, ... and some 7' >0.

Let 2, = sup{S: (g,]s = 0}. Of course, we have A, < T. It is onsy tio
see that §, = h~*ng, e Ly, where h=% ave translation operators,

It follows from the firsh part of the proof that there are g el
and §,eL, such that § = .8, = ¢, g, Hoenco g = @0, where
Pn = hz'li;nh"’m’ g = hmlﬁ-

Since 4, < T, we have ¢, elL, Moreover, llgllg >0 for 8§ =1, by
Titchmargh’s theorem. Thus the proof is complote, '

4. The main lemma, The basic tool in what follows ig the following
lemma. .

Ly 6. Let T > 1. If for every &> 0 the sequence {Bag,o (i)} »
=1, 2, ... is bounded, then there ewist a subsequence {fp,} of {£u} and o fune-

rl

F
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tion heL such that hlly > 0 and the sequence {Bfp,hy =1,2,... is con-
vergent in the seminorm |:|gp.

Proof. By the assumption, we can choose functions Orn € Loy such that
ety <1, W—lgnlly < 27% (n,k =1,2,...) and for cvery % the
sequence {||f,gunllbor}, v = 1, 2, ..., is bounded. Using Lemma 1 and applying
the diagonal process, we can choose a sequence {g,,} such that for every &
the sequences {00, } 208 {Wig, s » =1, 2, ... are convergent in the ge-
minorm (Illog Lot fn ;”fqn’ Gren, = Ira,, and
(12) Gm—>G, a8

an glm_*-Fkl >0

in || lp. Multiplying the above convergent scquences by Gy, and F,, respect-
ively and subtracting them, respectively, we obtain
(13) WG —T) >0 a8 m—>oo
in | p for every k =1,2,..., by virtue of (1).

8ince ([0 — gy lly< 2~ #*1, it follows from (12) that [l — Gylly < 1/2 for
all k. Hence (Gl > [@lyje— F—Gyllyy > 0 for & =1,2,...

According to Lemma 5, there exist functions ¢, ¢, e I F=1,2..)
such thai; ligll: > 0 and g = ¢, @, for every k.

Lot f, = ¢, . Multiplying the sequence in (13) by g, we get for evers &

N—> 0o

(14)

mn |fg.
Now, we shall show that all functions f, are equal one to another on
[0,27—1]. Let ¢ and j be arbitrary indices. Of course,

Z(]ng"‘fk) gkn"'}o as

1Fen Fp oz < 1Fenllomlimller < 1

and. thus, by Lemma 1, the sequence {17, Timh m=1,2, ..., containg a sub-
sequence which converges in [, to some function y from L. Since for
arbitrary n

W~ en Finllor < 10— Winllaw + [Finlloz* I8 — Wyl < 27640 427U < 12,

wo have Tyl < [F—pllyy <1/2 and thus (), > 0.
On the other hand, it follows from (14) that for arbitrary indices i, j
we havo
W ~FTa G0, UTag =) GjnGin—0
and, consequently,

Uf—5) Gin G0
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ag m—»co in [|*|,; Henee
( f; -f;)y) =0 on
Now since |pl, > 0, we obtain, owing to Titchmarsh’s theorem,
fi=Ff on [0,27-1],

[0, 27].

as desired. .
Let f denote the common value of the functions f, (k =1, 2,...) on
[0,27 —1]. Evidently, by (14),

Ung —F) Gin—>0 a8

in {|flyp_y and thus also in ||y Lor & =1, 2, ...
We can choose & sequence 7y < #, << ... of positive integers such that

”l(f;-ﬂg""./‘) ﬁnr.n“.’l' < 1/”'

T2 00

(15)
By Lemma 4, we have

]inl(lglrl gzrz e g”"n) = (7 GLG

Nr00

and

o0 =Dl < 10 (Foo 0 =) G,
for every n =1,2,..,
Therefore, putting % == ¢j, we have
hfy—ff a8

Ho=r OO
in |l owing to (15). ‘

Since g e Ly and |gll; > 0, we obtain, by virtue of Titchmarsh’s theorem
(10), b > 0. This completes the proof, becauso {f, } is a subsequence

of {fu}-

5. Common denominator. Now we shall show situations, noeded in
the next sections,y when all operators involved in a given sequence {w,} bave
a common denominator, i.6. @, == f, /g with f,, g € L, g 54 0 for 4 == 1,2,...

We start with some fact relative to Fupport numbers of operators,

Prorosieron 1. If A(w) < Aly), then A(w-)- y) == A(w).

Proof. I @ and y ave funetions from I, then the wssertion is obvious.

Now let @ = fi/g, y == folgy (For for 91 92 € Ly g4y g 5% 0) andl

A@) = A(fy)~ A(g2) < A(y) = A(fa)— Alg,).
Hence, by Titchmarsh’s theorem, we have

Afig2) = A(f2) + Algs) < A(f)+ Algy) = A(fugs)
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and, congequently,

Az+y) = A(fige+Fg1) — A(g:92)
= A(f19:) —~ A(g92) = A(f1) —Alg,) = A(@).
Thus the proposition is proved.
PropositioN 2. The operators o, (n =1, 2, ...) have a common denomi~
nator if and only if the sequence {A(x,)} is bounded from the left.
Proof. If w, =f.l9, fu, 9€L, g #0, then

A(@,) = A(f)— Alg) = — Alg),

i.e., the sequence {A(aw,)} is bounded from below.
Note that if

(16) (c>0)

then @ can be represented in the form » =f/g (f,g €L, g # 0), where
A(g) < ¢, i.e. |jgll, > 0. In fact, it @ = f)§ with A(§) < A(f), then, applying-
the shift operator, we can defined functions f, g such that # = f/g and
A(g) = 0 < ¢. On the contrary, it A(f) < A(§), then we can tind f, g L,
g # 0 such that z = flg and A(f) =0, which implies, by (16), A(g)
< A(f)+e¢ =o¢.

Therefore, if A(x,) > —e¢ (¢ > 0), then we can find the representation.
@, = f,/g,, Where |g,ll, > 0. By Lemma 5, there exists a function g eL,
g # 0 such that ¢ = g, k,. Hence

Ty, = fnhn/gnh’n = fnhn/g7

i.e., the operators {w,} have a common denominator.

A sequence #, of operators is called precompact if the set {,: n.
=1, 2,...} is precompact, i.e., if each subsequence of {#,} has a conver-
gent subsequence (not necessary to the same limit). Of course, both the
convergences: type Iand type I’ lead to the same precompact sequences.

ProrosrtIoN 3. If a sequence {w,} of operators is precompact, then the
operators m, (n =1,2,...) have a common denominator. In particular, if
the sequence {m,} is convergent (type I or I'), then the operators {m,} have
a common denominator. .

Proof. Suppose that the operators @, have no common denominator.
By Proposition 2, there is an increasing sequence {p,} of positive integers
such that A (a, )~ occ. On the other hand, one ean select from {p,} a sub-
sequenco {g,} such that the sequence {w, } is convergent type I. Thus the
operators @, huve n common denominator and, by Proposition 2, A(x, )
> ¢ 3> -- oo, Thig contradiction proves our assertion.

A sequence {i,} of operaters is called bounded type I if the set {z,: n
=1, 2,...} is boundcd type I, i.e., if for every subsequence {w, } of {z,}

A(z) > —¢
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and sequence {4,} of numbers sucl. that 4,--0 we have 4, ., >0 Lype I,

PrROPOSITION 4. If {w,} is bounded type I', then the operators x, have
@ eommon denominator.

Proof. Since (1/n)a,—0 type I, the operators (L/m)a, (n=1,2,..,)
have a common denominator, by virtue of Proposition 3. This implics
that also the operators «, (w=1,2,...) have a common denominator,

ProposITION B. If {m,} 48 a P-Cauchy sequence (with respect o type I
or I' convergence), then the operators w, have a common denominator,

Proof. Suppose, on the contrary, that the operators @, have not o com-
mon denominator. By Proposition 2, it follows that there exisis o sequence
of positive integers gy << py << ... such, that

Ay, )00 4N p=roo.

Since @, | — o, 0 with respest to type I or I’ convergenee, the sequence
A{wy,  —,,) i8, by Propositions 8 and 2, bounded from the left. On the
other hand, by Proposition 1, we have

A(mp I’n) == A(m

@ Wn+1)~+°°

k1
which proves Proposition 5.
, ’ . . .
6. Type I’ convergence. In this seetion wo give some characterizations
of type I' convergence in L and in .

. TI*IE.OREM 1. A sequence {f,} converges type 1’ to f (f,, f € L) if and only
if Bro(fo—f)=>0 a8 n-o0, for amy T,e>0 (see Introduoction).

By Lemma 3, if f,—0 type I’, then ocach subsequence of {By ()}
{T, £ > 0) has a subsequence tending to 0, i.0., By, ,(f,)-=0 for all T, 2> 0.

Now let By,o(f,)—0 for any T, > 0. It sufficos to prove that {f,}
possesses a subsequence {fy, } which converges to 0 type I,

There exists an increasing sequence of positive integers {p,} and
functions g, e L, such that ‘ "

lgnl <2y B=Tgulln < 1/2%  |fp, Fully << Lin.

g
By Lemma 4, we have gy oo gp—+g in L a8 n-»00 and ¢ € Ly, Wo ghall
show that fp, gllp->0 85 m—>o0 for avbitrary ' 0, . '
Let m >y > 1. Bince (g, <1 (4 =1, 2, wi)y WO may write
1F2n W1 <+ Ol < Ny, " Gull 1T + v oyl
o < ”fpn'gn“n '”lgl A gno[lno < (1/'"')“191 rae !]nonna'
Thus Iz, 9z >0 a8 n—+oco and the.proof is complete,
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As o simple consequence of Theorem 1 and of the second part of
Proposition 3 we obtain the following’

THEOREM. 2. 4. sequence {w,} of Mikusitiski operators converges type I’
to @ if and only if there ewist representations @, = f,/g, © = flg, where f,, f,
geL, g %0 and By, (f,—f)—0 for every T,s>0.

7. Precompactness. Now we egtablish a characterization of precom-
pact subsets of L considered in # and of precompact sequences in &.
Precompactness is meant in the sense of type I or I’ convergence (see
Sections 1 and 4).

TurorEM 3, A set A < L is precompact in F if and only if the set
{Bp.(f): f e A} is bounded for arbitrary T, e> 0.

Proof. Beeause of Lemma 3, the precompactness of A implies boun-
dedness of the set {Bg,(f): fe A} for any T, 6> 0.

In order to prove the converse implication, it sutfices to prove that if
a sequence {f,}, f, € L, has the property that for each T, & > 0 the sequence
{Bgp (f.)} is bounded, then there is a-subsequence font 2nd 2 function
h €L, b # 0 such that {hfpn} converges in I to a funetion of the form Af,
felL.

By Lemma 6, for every integer % > 2 there exists a sequence {py,}
(n = 1,2, ...) of positive integers such that py,—oo as n—>oo and a function
hy, € L, |byll, > 0 such that {k, fpkn} is convergent in the seminorm (. Of
course, we can assume that {p,,,.} (n =1,2,...) is a subsequence of
{Pim} (n=1,2,...) for every k¥ =2,3, ...

By Lemma 5, there exist functions g, b e L such that b =g,k
(k= 2,3,...) and ||blly>0 for '>1, ie., b %0,

Multiplying % fp,. by @y, we get thus the convergence of the sequence
{hfpkn} in |, a8 n—co for k =2,3,... By diagonal method, putting
Dp = Pyny. W Obtain the convergence of sequence {ff,, }in all the seminorms
I'll; (& = 2,38,...), i.e.,, in L. This eomplotes the prool.

Direetly from Theorem 3 and Proposition 3, we obtain

TuRoREM 4. A sequence {w,} of operalors is precompact if and only if
there cuwist reprosentations %, = f,|g with f, 9L, g # 0, and the sequence
{Byp,o(f,)} is bounded for all T,e>0. )

8. Boundedness and compactness. Now we shall prove that the
boundedness of sets in L and in & with respect to type I' convergence
(see Introduction) is equivalent to their precompactness (type I or I').
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In other words, a set A in & (in L) ix compact type I" if and only if 4 is

bounded and closed type I'.

THEOREM B, A set A = F is precompact if and only if A is bounded
type T'.

In particular, the same statement holds for sels in L.

Proof. At first we shall prove the theorem in the case of sels in L.

Let 4 be a precompact set in L (type I or I'). By Theorem 3, the set
{Bp.(f): fe A} is bounded for any T, e > 0. Hence, for any sequence of
nambers {4}, 2,—~0 and any sequence {x,}, @, € 4 we havo

B.'l‘,a(z'nfn) = ]”ln,[’,’;’,u(fw.)"”)'o as

This means, by Theorem 1, that 4,f, -0 type I, which shows that 4. is
type I’ bounded.

Conversely, suppose that .4 is not precompaet (type Ior I'), By The-
orem 3, there are T, e >0 and a sequence {f,}, # == 1, 2,... with f, e 4
such that By ,(f,)-co. Let 2, = [Bp,(f,)17% Of course, 1,0 and
By, o (A fo) = Ay By o(£,) = 1, i.e, By (4, f,) +0. It follows, by Theorem 1,
that 4, f,+0 type I'. Thus 4 is not bounded type I’, us desired.

Now we pass to the general case. Suppose that 4 « & is precompact
and let @, € 4, 4,-0. Of course, the sequence {w,}, n =1, 2, ... is also
precompact. By Theorem 4, we have a, = f, /g with f,, ge L, g % 0 and
the sequence {By (f,)} is bounded for all T, e > 0. Now, by Theorem 3,
the sequence {f,}, n = 1, 2, ... iy precompact and, in view of the tirst part
uf the proof, we obtain 4,f,-0 type I'. Consequently we obtnin A,a,
= Apfulg—0 type I', which means that the set 4 is bounded type I’.

In turn, suppose that 4 < & is bounded type I' and let v, ed, n
=1, 2,... Of course, the séquence {m,}, n =1, 2, ... s also bounded. By Prop-
osition 4, we have u, = f,/g with f,,, ¢ € L, g % 0. Hence by the definition
of boundedness the sequence {f,} is bounded type I’ ITn view of the first
part of the proof, the sequence {f,} it precompact and thus it posseses a sub-
sequence {f }, which is convergent (type I or I'). Hence the sequence
B, = [, /0 18 also convergent, which moeans that the set 4. is precommpact.
Thus Theorem B is proved.

From Theorems 3, 4 and 5 wo obtain thoe following two corollavies.

COROLLARY 1. 4 set A < L is bounded type 1’ if and only if the set
{By,o(f): fed} is bounded for any Ty e 0.

CoroLTARY 2. A sequence {n,} of operators is bounded type 1’ if amd
only if there ewists o representation w, == f, /g with Jwgely g 0 and the
sequence {Bp,o(f,)} is bounded for all T, e > 0,

' 9.. Cm.”npletenesa. In this seetion, we shall prove that the field of
Mikusiriski operators is P-completo with respect to type I’ convergence and
@-complete with respeet to type I convergence, '

P> 00,
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We staxt with the auxiliary
PRrOPOSITION 6. Suppose v, € F (f, e L) for n =1, 2, ... If {z,} ({f})
@8 a P-Couchy sequence, type I or I', then the sequence {w,} ({f.}) is precom-
pact, type I or I'.

Proof. First we shall prove the proposition for a sequence {f,} of
functions from L.

Suppose that {f,} is not precompact, i.e., the sequence {Byp,(f,)}
n =1,2,... is not bounded for some T, &> 0, by virtue of Theorem 3.

We can choose a sequence of positive integers p, < p, < ... such that

(17 Bro(fopp) =Wyl >1  (n=1,2,...).
Let g e Ly, lglly < 1, and |I—1Igly < 8. We have

l](fpn_l.""—fpn)»g "_’l’ 2 llfpn+1 g“l‘ - "fpn”Tng”T = B:[',a(fﬂn+1) - "fpn”T
and, by (17),
” (fpn.*_!—'fpn) g“T >1.

Since g from L, (satisfying the above inequalities) was chosen arbitrarily,
we have

(18) ’B.’l’,a(fpn.f_l ’"fpn) =1.

IE |f,ll is o P-Cauchy sequence with respect to type I convergence, then
Som e Jp, >0 88 m—oc0 in type I’ convergence. Hence, by.Theore.m 1, we
obtain By, (fp, . —fp,) >0 88 000, which contradicts inequality (18).

I {f,} is & P-Cauchy sequence type I, then it is also P-Cauchy type
1’ and the proof is reduced to the preceding case.

In the general case, if a sequence {,} of operators is P-Cauchy (type
T or 1), then we have w, = f,/g with f,g9eL, g #0, n =1,2,..., by
Proposition 5. Hence also {f,} is a P-Cauchy sequence. By the first part
of the proot, the sequence { f.} is precompact. Consequently, {x,} is precom-
pact, too, and the proof is finished.

Truonrsy 6, The ficld F endowed with type I' convergence is P-complete.

Proof. According to Proposition 6 and since type I’ convergence sat-
infies the Urysohn condition, it remains to prove that two different sub-
goquences of o P-Cauchy sequence {m,} cannot possess different limits,

Tt ay, ~>w and w, -y Tor some inereasing sequence {p,} and {g,} of
positive integers, Wo can choose subsequences {B,}, {7} of Py, ¢y, rospect-
ively such thut

P <G <De<fo<...
Since {@,} is o P-Oauchy sequence, the sequence
@

,21 w—-m:ﬁl, w,;;z——m;u, x;ﬁ mmﬁl, e
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and its subsequence {w; — 5, } converge type I” to 0. On the other hand,
WG, — B, >0 — Y. This y1el< s “the identity @ =y and the proot is over
(see aAlso [8])-

As the corollary, wo obtain finally

TEEOREM 7. The fidld F endowed with type 1 convergence is @-complete.

Proof. Let {w,} be a @-Cauchy sequence of operators with respect to
type I convergence. Of course, the sequence {w,} is @-Cauchy and, con-
sequently, P-Cauchy with respect to type I’ convergence (see [8]). By The-
orem 6, thereis an operator » such that o,- type I'. By the definition
of type I’ convergence, there is a gequence {p,} of positive integers such
that @, —w» type L. Since {z,}is @-Oauchy type I, we have w, —m, ->0type L,
I‘mally, we obtain 2, = @, —a, +o, ~>» type I a8 n->o00, w}uch completes
the proof (cf. [5]).

10. The subalgebra #,. Following T. K. Bochmo (soe [2]), we denote
by &, the algebra of all operators of the form f/g, where f e L and g € L,.
We can introduce the following functions By ,(v) for o e #:

By,o(@) = nt{liflp: & =flg, lgly <1, =gl < &}

which evidently coincide with those introduced eaxlier for @ e.L.

Now we shall give, in terms of the functions By, characterizations
of type 1’ convergence and of precompactness in #,.

TEBOREM 8. A sequence {&,} converges type I' 1o  (w,, @ & F ) if and only
if By (%, —2)—0 as n->co for any T, s> 0,

Proof. Of course, we can restrict ourselves to the cagse o = 0,

Assume first that By ,(#,)->0 as n-»oco for all T, s> 0. To prove
that @,—0 type I’ it suffices to select a subsequence {2y, } of {w,} such that
@, —>0 a8 #—>oco, with respect type I convergence. We h&we, in particular,

By {®,)—>0 a8 n->c0

for k =1,2,.
We therefore can choose an increasing sequence {p,} of positive into-
gers and functions f, g, (5 = 1,2, ...) such thut

Wl <1f%y  lgile <1y W= Tgll, =< 275, Jeely gyely
and
(19) By =Tl (B = 1,2 ..).
By Lemma 4, if n->o00, fhen
lg:lg‘.! [ERN Mud) in L’
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where g € L,. Moreover,

(20) =g (b=12,..),

where ¢, = limlgygs ... gpyGryr+.- ¢ 0 L.
>0

By (19) and (20), we have

(21) By, =Fuwnlg kB =1,2,...

Now, we shall prove that \
IfPellz—>0  an

for any T > 0. Let T be fixed and let %, > 7' Since |lg,lly << llg;]l; for ¢ > Ko,
we have

It 0o

(22)

g« G141 -+ Gulle < Wga -~ Gllr
and, consequently,
lpell < g -« Grgll-
We therefore obtain, for & > &,
Wfeeulle < 1fille leele < Wllellgs -« Gegle << (LT -« Ggllieg >

which implies (22). Hence, by (21) ,,—0 type I, as k—oo as desired.
Now we assume, conversely, that w,~-0 type I'. We shall show that

By, (@,)—>0 a8 n—oc0 for any T, ¢ > 0. By Theorem 2, we have

(23) &y = fn/ g

and, for any T, &> 0,

(fargeL, g #0)

BT,a(fn)_>'0 as

i.e., there exist functions g, eL, (n =1,2,..

Nn—>co,

) such that

(24) gl <2y W—Iglr < (1[2)e (v =1,2,...)
and
(26) Mfoufulp=>0 a8 #—>oc0

for any T, ¢ > 0.
On 1,110 other hand, since o, € F, wo have w, = f,/j, with fae L,
Gn €Ly for n=1,2,... Henee, by (23),

fn/g =fn/§n n=1,2,....),
which implies the equalities

Alg)+ A = Algf) = Alf,§.) = A(F).
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Thus

A <Alf) (v =12 ...)
and. consequently,

@, =Wy /by (m=1,2,..)

where h = h~40 (the shift operator), hy € Ly and hf, ¢ L (n==1,2, ...).
By Lemma 2, there is a funetion & € L, such that

(26)
for any T, &> 0.

Whglp <1,  [1—Tbhglly << (1/2)e

Finally, we have

By = Tl 0| Thg gy, (=, 2, .00),

where khgg, € L, and, in view of inequalitios (24), (26), we got

Ryl < (KRGl 1l < 1 ,
and '

0~ g,y < 8~ Vel + Uy —~ Uehgg, o < e
Moreover,

By, o (@) < 0 Gl < [Tehll - s Gl

and, Dy (25), the desired assertion is proved.

TrmoruM 9. A set A < F, is precompact if and only if the set
{Br.(®): ® €A} is bounded for every T,s>0 (precompaciness of lype
I or I').

Proof. Note that for any T,&>0 the boundedness of the sets
{Br.(®): @ € A} is equivalent o the boundedness of all sequences
{Bu,o(#,)}, where {&,} is a sequence from 4. In turn, this is cquivalent to
the fact that », e d (n =1,2,...) and A,~0 implics

1Al Bryo(#,) = By o(2,)~>0 a8 g—roo.

However in view of Theorem 8, the Ist statement is equivilent 1o
the assertion that 4, a,--0 type I, provided 4,-»0 and @, 6 4 (1 =1,2,...).
This means that the set 4 is boundod, and, by Theorem 5, that 4. i pre-
compact, Thus the chain of equivalent agsertions is closed and the prool
is finished.

In [4], the following theorem is proved:

Let X be a group with a convergence. If there is a funclion A3 X-» R+
such that
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(i) A(@,)>0 and A(y,)~0 implies A(w,—1y,)~0,

(ii) A(@) =0 iff # =0,
then there ewists a norm ||| in. X (i.e. the conditions: (i) ol = 0 ¢ff # = 0,
(i) | =l = fiel, (i) lo+yll < ol +lyll are satisfied), such that A(z,)—-0
Yf -0,

Applying this theorem and Theorem 8, we obtain in a simple way the
fact of metrizability of &, (see [2]).

TumorEM 10. &, is a Montel complete metric space.

Proof. It suffices to see that the function

A(m) == 22"”13.”’1/” (ﬂ))/(l +Bn,1/n(m))7 @ EFD

nwe=1

satisfics the assumptions of the theorem given above and that type I’
convergenee in &, is equivalent to the convergence defined by A (see
Theorem 8).

Now, we shall apply Theorém 8 to the proof of the following theorem
of T. K. Boehme (see [3]):

TumorEM 11 (Boehme [3]). Let o, 2 e F(n = 1, 2,...); @,— type I’
if and only if there ewist representations , = f,/g,, @ = flg such that fnf& 5
L
9a =g and A(g,)—A{g).
The proof will be preceeded by a lemma.
LeMmA 7 (Boehme [2)). If f,5f, 9,5 g € Ly, then f,/g,~fg type T'.
Proof. Note that it suffices to prove our assertion for f = 0. Let
b, =k~ g, and y, = f,/h, € L,, We have
(@7) ha g,
Since g € Ly, for any T, e > 0 there exists k €L, such that

gl <1, I—Tkgly <e,
in view of Lemma 2. By (27), we have also
Welplly <1y Vo

for sufficiently large n.
Now, we can write y, = If,/kh, and thus

(28) o By (Yn) < [efullzs

by the definition of By (@) for & € #,, given at the beginning of this
section. By (28), we have

By (y,)~0 as n->o0.

7 — Studia Math, 75.3
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Owing to Theorem &, we get 9,-»0 type I' and, consequently,
@, = b4y, 0 type I as desived. . i

Proof of Theorem 11. Suppose that @, == £/, @ = fg, fo=r Fr 4> ¢
and A(g,)—A(g). |

Lt 4, == f,/pn Where @, = k=40 g, . By Lemma 7, we have g,->flp
type I', where ¢ = h~4@g je., a, = b=y, —u type 1.

Now let o, type I'. We can assuine that = 0, By Proposition 3,
we have &, ). Of course, we have
y,->0 type I, where ‘

Yn = Lol ™4 0g.

By Theorem 8, there exists an increasing sequence of positive inbegers
15, such that

By (yu) < 1k

for m > r,. That means, there exist functions ¢, e L, y, 1, such that

(29) Yn = (pn/"/’m ”anlllc < 1/765 ”"/)n”k < 17 ”l o l"l’w”k < ']‘/k‘
or # >, Henee we can write

Yy == Z‘}"n/ l"/)n
and wo have

20, Iy, BL Ally,) =0 = A(),
in view of (29).
Finally, we have a, ==f,/g,, where

Jo = W10, 50, g, =Ty, 50 and  A(7,)-A(),

i.e., the proof iy finished.
It is pleasant duty to express my warmest thanks to Dr. A, Kaminski
for his efficient help in preparing this paper to print.
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