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Abstract. 'Wo obtain a neecssary and sufficient condition for a subalgebra of
O{X % Y) to he identifinble as thoe weak tensor product of a subalgebra of 0(X) with
a subalgebra of J(¥) and show that the Bolr eompactification of the product of a fami-
ly of topological groups is (ikomorphic to) the product of their Bohr compactifications.

Tor a topolegical space X and o Banach space B, let ¢(X, B) denote
the sup-normed Banach space of all B-valued bounded continmous func-
tions on XL If B = R, the reals, ¢(X,R) = C(X). The following facts
are well known: For o closed subspace B of C(X) and a Banach space B,
the weak tensor product FB may be defined as a closed subspace of
O(X, B) [7], p. 356. Thus for any X and ¥, 0(X)&C(X) is 0(X, 0(T)),
which ean he identified as a subspace of §(X x ¥), [7], p. 89. Moreover,
it X and ¥ are compact, then by the Stone—Weierstrass theorem 0(X)&
EU(Y) = O(X xX), [T], p. 357, where the symbol = denotes linear iso-
metrie hijection. In this note we exploit these facts to obtain a character-
jzation of subspaces of C(X x¥) which can be identified as weak tensor
produets of subspaces of ¢(X) and 0(Y), and note some consequences of
thiy characterization.

Let X and Y be Hausdorff and completely regular (hence Tychonoff
and uniformizable). A subbocof is a closed subalgebra containing constant
functions, [7], p. 236. A full subbocof is one which separates points from
closed sets. Let B and I be full subbocofs of 0(X) and O(Y), respectively
and let 8, V denote the H-compactification of X and F-compactification
of Y, respectively, so that B == O(8) and ' = (V) where, as usual, § and
¥ty bo faken as subsets of F* and F* (tho normed conjugates of B
and ) with the weak® topologies. Now

BET = C(8)QO(V) = 0(8, C(V)) = C(SxT)

and C(8XV) is of course identified with a full subbocof ¢ of C(X xX).
* Homo of the results reported in this papoer are included in a thesis for the
Ph.D. at the University of Nebraska~Lineoln.
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Moreover,
B={g,ylgetyec¥} and F={g( )

Suppose (eonversely) that (i) & is & {ull subbocof of C(X xX); und
(ii) B and F (defined as abeve) are {full subbocofs of OX) and O(Y), re-
spectively; and (iii) Z&F may be cancnically ambedded into ¢, The fol-
lowing lemma gives a necessary and sufficient eondition for ¢+ = B8 I under
this embedding.

OHARACTERIZATION LEMMA, Wilh G, B, I' as above, G == H@T if and
only if for each g €@, the set § = {g(x, )| e X} is norm precompact in I
(or equivalently, in C{X)).

Proof. The necessity of the condtion. is easy to check. Thus, assume
that each set § is precompact. We need only to prove that cvery g e @
can be identified as an element of BGF. For given ¢ e, define T',[s](y)
=s(g(+, ) for each se§ and y ¢ ¥ where § is the B- oonlpmdlfuc(diou
of X. Glemly T,[s]is a real-valued function on ¥. We show that T [s] e I
for each s € §, as follows. Let {#,} De & net in X such that & = w* — lim & wu,
where &, is the image of @, in 8. Then s{g(-,9)) ==lima,(g( v))
= limg(w,, ¥). Now since the set § is precompact, ﬂwm exists o auhu@t
{mg} such that limg(my, -) = ¢ exists in the sup norm and ¢ eF. This
means that limg(ws, y) = @(y) uniformly in y and so

gel, relX},

$(g( ) =limg(@, y) = hnw(wa,y) = @(y)

for each y € Yand T,[s] e F' as claimed, Thus, 7', maps § into &' Moreover,
T,[s] is an element in the norm closure clg of the set g for cach s e &.
A similar aurgument shows that every element in clg is a Z/,[s] for some
s e 8. Thus clg is T,[8], & compact subset of F. Hence, given ¢ > 0 there
exists a finite set {91, ., 8y} & 8 such that for each fixed s e g,

1) 15 [s]~ T ls:]l < &

for some i; 1< 4 N Also (from the definition of sip norm) there exist
¥; € Y (L i< N) such that

(2) 1T, (81— Ty L8y 1 < 1T L8 1 (00) — Ly (8,1 (w0)| -+ &

We shall show that Ty: §-+# is continuous, Suppose that limes, == ¢ in §
{(w*-topology) and

(3) ITpl8]— Tyl < e, Legi, < N,

Then lims,(g (-, 4,) = s(g(, ;) for L <15 N and so there oxists aq such
that for a > q,,

18a (00 9:) =3 (g0 wa))| < e.
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That is, ‘
(4’) ‘ lTﬂ[”a](yf) ""Tg[&](y{)l <8 )

Thus if > ag, we have from (1)-(4),

IKigh.

1Ly (801~ Ty T8 1M

< g 86T Ty Ly 1N 1Ty I8y 1 — T, I8

< o [Ty l8y, My, )~ T, (81 Yy, e
(L) [8a1(H,) | + 1Ty [8a1(ys,)
= 2e-+ 1Ty [8,]— Ty [8a]ll 48 < de.

< 2o+ |1 (8, Uy, — =T, [8](y;)|

This proves that Iy e 0(8, ) it § is precompact. Hence g can be identified
with an element of O(8, C(V)) = B and the lemma is completely
proved, )

" Finally, we note that the roles of X and ¥ can be interchanged and
50 an eqyivalent characterization is that the set § = {g(-, ¥)| v Y} iy
norm preéompact in B (or equivalently, in ¢(X)) for each g e @,

The following consequences are noteworthy:

(1) 0(X)80(X)isidentitied by the lemma as the subspace of 0(X x )
consiyting of the set of all functions f with the property that the set f is
norm precompact in 0(Y) (equivalently, f is morm precompact in ¢(X)).
Thus, in general, ¢(X)@C(Y) is a proper subspace of (X x ¥).

In the next three examples X and ¥ are Hausdorff topological groups.

(2) Lot A(X) denote the space of almost periodic functions on the
group X, [4], p. 247. From the lemma it follows that -

X)8AY XxI’)

a faet proved alse by I'.-W. Ma [6], Thm 2.1, by using the property that
eweh almost poriodie funetion can be uniformly approximated by trigono-
metric polynomials which are finite linear combinations of entry functions
of eontinuous unitary representations of the group. Our proot, via the lem-
ma, iy move direct and elementary; and the Bunach—Stone theorem [1],
P. L15, implies thut the Bohr compactification of the produet group X x Y
is (isomorphic to) the product of the Bohr compactifications of X and Y.

(8) Lot W(X) donote the space of weakly almost periodic functions
on X, [3], p. 38. From the lemmau it follows that, in general, W (X) BW(Y)
is a proper subspace of W (X x ¥). This can be geen, for example, as follows:
Let ¢ & W(X)NA(X) and write f{a, y) = p(oy). Thon feW(XxX)butf
is not norm precompact as requived in the lemma.
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(4) Let U(X) denote the space of uniformly continuous functions on
the group X; similarly U(Y) and U(X xY) (see [B], p, 210, for uniform
continuity on topological groups). From the lemma it follows that, in
general, U(X)& U(Y) is a proper subspace of U(X x ¥), This is immediate
from (3) since every w.a.p function is uniformly continuvus [3], p. 38.

() The examples (1), (3) and (4) can be replivased in termy of compacti-
fications as follows: From (1), in general, the Stone~Uech compactification
B(X xY) is not equal to (X)X B (X); similarly for the w.ap and uniform
compactifications. By Glicksberg’s theorem [2], p. 371, if X x ¥ is proudo-
compact, then fXXY) == f(X)xp(¥); and so for any full subboeot
G of 0(X'xY) and the corresponding B and P sutisfying the conditions
(D-(iii) of the lemma, it follows that the G-compactification of X x Y is
(homeomorphic to) the product of the H-compactification of X with
the F-compactification of ¥. Thus, in particular, if the group X XY is
pseudocompact, then the w.a.p or the uniform compactitication of X x Y
is (isomorphic to) the product of the respective compactifications of X
and Y.

{6) The equation. A(X)&4(Y) =A(XxY) can be extonded to an
arbitrary family of topological groups. First of all, it ix clear that
Brerd(X,) 22 A(P,epX,) for any finite family {2 Cotyerr 0F topological
groups. It {X,}. is any family of Hausdorff topological groups, then
the family {§,.,4 (X,)| I a finite subset of I'} is a direct family [7], p. 212,
p. 359, of Banach spaces and e pA.(X,) is the divect limit. With product

topology, X = P,.,X, is a Iausdorif group and

-A-(X) = -A (Pysl‘»lyy) =) @ysl“A‘ (.X’,) .

This ean be proved by using the unitorm continuity of almost periodic
functions and the following approximation property (which follows from
definitions in [5], p. 182): Let {&X,}yer be a family of uniform spaces and
X = P,.rX, be the product uniform space, [B], p. 182, If f is unitormly
continuous on X and ¢ > 0, there exist: o finite subset 77 of / Tand o funetion
S uniformly continuous on the finite product Pw iy SUCh thats [|f~ fll < e
In other words, every wniformly continuous function on o product space
can be uniformly approximated by @ uw.e function on o finite subproduct,
Again, the Banach~Stone theorem implies that the Bohe compactitiention
of an arbitrary family of topological groups is (isomorphic to) the produt
of their Bohr compactitications.

(7) For locally compact spaces X and Y, Grothendicek proved thab
Co(X)&Us(Y) 2= Uy(X x V),

[71, p. 367. This does not follow from the characterization lenmg by one-
point compactifieations. Indeed, if we write WY == Gy (X)DOR and sinis

icm®
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larly for ¢4(X) and Oy (XX Y), then ¢4(X X ¥) is a proper subspace of
0,(X)& ¢, (Y) and condition (iii) of the lemina cannot be fulfilled. However,
it is clear that one can prove a similar characterization for subalgebras
of Co(X xY) and show, for example, that

A (X XY) = 4y(X)Q A(Y)

for any groups X and ¥, where 4,(X) denotes the space of almost periodic
functiony on X with mean zero.
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