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Applications of a general comparison theorem
for convolution integrals

by
JORGEN LOFSTROM (Goteborg)

Abstract. Lot X be a Banach spacc and B a Banach algebra of tempered distri-
butions on R For f € B put fz)(x) = A%f(Az). The space of all ¢ such that ||fiyep; Qllx
= 0(A%) ad§ A—co is characterized when @ is all of B® or a bounded subset of Re..
The proofs arc based on an extension of a comparison theorem by H. 8. Shapiro [7]-

0. Introduction. The aim of this paper is to extend the results of
H. 8. Shapiro [7] in two directions. First we replace the L,-spaces by more
general Banach spaces X of tempered distributions (for instance a weighted
L,-spaces). Secondly we give a localized version of Shapiro’s results. In
Shapiro’s work the main role is played by the algebra of bounded measures.
Tere we work with a more general convolution algebra B related to the
space X.

Given a function f we put f;(#) = A% (Jx) (d being the dimension).
One of the subjects of the paper is to find the space A7 of allp € X such that.

If ol = 0(27%), A—>oo.

Another, closely connected subject is to find the space Ef of all pe X
whose best approximation with entire functions of exponential type 1 is
of the order 2% as A—>oco. Results of these types are found in Section 3,
(Theorem 3 and Corollaries 1,2 in See. 3). They are deduced as more or
less immediate corollaries of a general comparison theorem (Theorem 1,
See. 1) which is very close to the corresponding theorem in Shapiro [61.
Tor other results of this kind we vefer the reader to a series of works by
J. Boman, see in particular [2] (and references given there), where this type
of comparison theorem in X = L, has been penctrated very. deeply.

Tn order to describe the localized version of the theory we let U be an
open set. Lot flg; Ully be the infinum of x|y, where y is infinitely differen-
tiable with compact support and yx =1 on U, 0<yx<1 everywhere.
Por aiy open, bounded set 2 we let A3(U) be the space of all ¢ e X such
that

ke Ully = 079,  A—oo
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for all U which are compactly included in Q. A characterization of 43(R2)
(as well as the localized version B°(£2) of B°) is given in Sec. 3 (Theorem 4
and Corollaries 3,4) as a consequence of general comparison theorem (The-
orem 2, See. 2). For other results of this kind we refer the reader to Lifstrom
[4] (and references given there).
The Banach algebra B, to which the kernel f above should always
belong, must satisfy several conditions, as must the space X. These con-
- ditions are named (B1)—(B5) and (X1)-(X2), respectively. Conditions
(B1), (B2), (B3) and (X1) are listed in Section 1, conditions (B4) and (X2)
in Seetion 2 and condition (B5) in Section 3. The most important condition
is the local division property (B3) which we diseuss in Section 5. In Sec-
tions 6 and 7 we discuss some concrete choices for the algebra B and the
space X. In a forthcoming note we intend to extend the theory to (somo
cases of) eigenfunction expansions.

1. A general theorem. Let B be a Banach space of tempered disi..ri-.

butions on R? such that every test function is a member of B. We shall
assume that B is a Banach algebra with convolution as multiplication
(with or without unit). Moreover, we shall make a few additional assumnp-
tions on B.

If ¢ is a test function we write
p®) = A% (de) and oA (@) = p(x/l).

Writing @ for the Fourier transform of ¢ we have

o~ e

‘I’Q}(E) = ¢ (§).
Tf f is any tempered distribution we define f; and @ similarly Dby the
formulas

Fole) = @),  fP@) = flow)

Then
o~ .
‘ Fay = 19
We now arrive at our fivst additional assumption on B, namely
(B1) If feB and 1> 0 then f, e B. Moreover, there arve congtants
A >0 and o> 0 such that
1F s < Amax (1, 27115

We have already mentioned that the space & of test functions is assimned
t0 be contained in B. Our next assumption deseribes an additional in-
clugion:

(2> 0).

(B2) & < B and Bc L, 1000 10, every element of Bis locally an essen-
tially bounded function.

icm
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Our third assumption is a kind of local division property:

(B3) Suppose that f, g1, ..., ¢, € B and that there is a compact seb K
such that gy, ..., g, are continuous on K and

L

N
vl@j(f)[> 0 forall fe K,
=1

Fl&) =0 forall ¢ K.

Then f belongs to the ideal generated by gu, ..., ¢y, i.e. there are
Jyy «.vy by, € B such that

n
f= >ty
i=1
We shall also work with a second Banach space X of tempered distri-
Trutions. This space is related to B by our next assumption:
(X1) For every f € B and every g € X we have fxp ¢ X. Moreover, there
is & constant ¢ such that

Ifxpllx < Cllflislelx-

Tollowing Shapiro [6] we &hall say that a function F' on R? gatisties the
Tauberian condition if, on each half-ray through the origin, there is & point
where F does not vanish. Thus for each & # 0, there is a d >.0 such that
F(&/d) 5 0. For continuous functions F' the Tauberian condition is satisfied
if and only if there are positive numbers dy, ..., 4, such that

-

(1) MIF(Ejd) >0  for all [ = 1.

i

(See Shapiro [6], Lemma 11.)" =

The following theorem is given by Shapiro [6] when B is the algebra
of hounded meastures and X = L, (or L) '

TusoreM L. Let B and X be spaces such that (B1)~(B3) and (X1) hold.
Suppose 1hat fy gry -+, §n € B, that gy, ..., §,, are continuous and that 2 145!

M

satisfics the Tauberian condition. Moreover, asswmne F belongs Tocally -at the
ovigin to the ideal generated by Tuy o eey [y that 45, asswmne that there are by, ...
vves By € B such that ‘

"

18y = D' hy(8)35(8)

=

(2)
in a neighbourhood of the origin.

2 — Studia Math, 78.3
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Then there are constants C, r and cqy ¢4, +..
and o constant b > 1, depending on g, ...

y Cpy depending on f, gy, ..y g,y
y On ONly, such that

n

222} ” 9; ((-zbli.)”‘(l)”,;sL

Je=0j=1 i=0

If#elx < Omax(1, 43¢

for all A= 24> 0.
Proof. By (1) there are constants di, ..., d,> 0 such that

»

@ = > M) >0 for

f=1 i=1

[§] = 1.
Now @ iy continuous, so there iy a constant b > 1, such that G(&) # 0

on b7 < |£] < b. Next we choose a test function ¢ such that the support
of ¢ is contained in the annulus b7 < [£]< b and

2;3 “kgy =1 for

(For the construction of ¢ see [1], Ch. 6.) Assuming that (2) holds for |£] < &
we choose a constant ¢ > 0 such that ¢b < 6. Then put

§#0.

$o(€) =1— D'd(e77"e)

k=0

Note that @y(&) = 0 for [£|> § and 4, € &. Thus ¢, e B and

(3) Frdo = D hprgpdy.
j=1
Now
) Ty = (Fedoloyx -+ Z(f"‘(/’(ch’f))(x)*(ﬁ-
k=0

Using the local division property (B3) we see that ¢ belongs to the ideal
generated by g, ; = (gl)(di Thus ¢ is a sum of elements of the form i, g, ;,
where ¢ =1,...,r, § =1, ..., n. Dropping the indices we conclude that
each term in the infinite sum. on the right-hand side of (4) can be written
as a sum of elements of the form (fu#h gt ) *(g(enre). Using the properties
(X1) and (B1) we can estimate the X-norm of every such term by w con-
stant dependmg on b, times the X-norm of giuy*p. Here g = ( i)ay Tor
some j and 4.

Writing ¢; = ¢d; for i =1, ..., we conclude that

n ”
I Feieuey) sl < E/L (g ) g nyrepl -
j=1i=1

icm
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Similarly, using (3),
I(Fedo)oyrrllx < O ) Mg)ayellx-
j=1

If we put ¢, = 1 we therefore get the conclusion from (4).

2. Localization of the main result. We shall now give a localized
version of Theorem 1, along the lines of Léfstrom [4]. We shall make two
more assumptions on the spaces B and X, namely:

(X2) Suppose that y ¢ &. Then yp € X for every ¢ € X and
elx < Clizlzlplx-
(Remark: In many cases a stronger condition iy satisfied, namely

lzelx < Clixllz, lelx-)

(B4) The space B satisfies condition (X2).
Let ¢ be a fixed infinitely differentiable function such that 0 <

tw) =1 for |»| =2, {() = 0 for |#| < 1. Then (B4) implies that
169 mlz < Cliflz - (A=1).

If U is any subset of R? we shall define the local semi-norm of ¢ ab U by
the formula a

1 lp; Ulx = inf{lyplx: x5, 0<

Olearly we have here implicitly nsed (X2).
Next we shall define a new Banach algebra B(m)(m > 0), to be the
space of all f € B such that

||L(E)fz)“B\ (e)™™
The norm on B(m) is
1l = |1an+sup(ex)"‘nc‘“v@)u]g.

(<1,

<1,y =1 on U}.

(A=Lyex=1).

In order to see that B(m) is a convolution algebra we take f, g € B(m}).
Then, with 6 = 8s,

L0 (frg) = Loz )f(z))*g(;))+5( ¢ f(z)—i(g)fz))*f( 9(/1;)
Thus using (B4) and (B1)
6P (feg)aylls < € ||C”f(;.)”ﬂ“ﬂl)“];%‘”f(z 1212 lz)
< C (02" fllzumyll 9l - 1 F 11519 N B ) -
This implies that fxg e B(m) and also that

ll.f*g”H(m) G”f”B 111)”./"13‘(771)


GUEST


icm

202 ' : J. Lofstrom :

The importance of the Banach algebra B (m) is connected with the following
lemma.

Lemva 1. Let U be.a given set and U, the set of points of distance at
most & to U. Then if fe B(m) and ¢ € X we have for A= Ay el = 4

Mllps Udllx+(e2)"lplls) -

Here C is independent of @,f, ¢, U and A.
Proof. Choose infinitely differentiable functions y and y, such thatb
%z =1on U, x = 0 outside U,, and yx, = 1 on U,. Then

2 o) = 2 (Fayr () (0 Fi((L — ) ) -
Now write A = A, where u>1. Then ' ‘
Hg(s“'f(z)”B |(C(M°/4')f(p))(zo Iz < Amax(1, ig* (3)»‘/%)~77“J[f||13(1:z‘)-

The following theorem is a localized version ofv!_tl"}‘.heqr'em 1.

THEOREM 2. Let B and X be spaces such thai (BL)~(B4) and (X1)-(X2)
hold. Moreover, assume that m > 0 and that B(m) has the local division

wroperty (B3). Let f e B(m), ¢y, ...

Ifae; Ullx < Cmax(l, 45¢

. - n 3 oA
s 0 € B(m) be given, so that f = 3 g,
: J=1
tn a neighbourhood of the origin, where y, ..., h, € B(m). Moreover, assume
that gy -..y g, are continuous and >, || satisfies the Tauberian condition.
- , ,

Then there are consiants O, 7, Coy ...y 0,y depending on fy gy ...y dp
and & constant b > 1, depending on ¢y, ..., g, only, such that‘ fordziyel=4

.00 ”

Wte; Ul < Omax (L, 7% ) 2 PN CAEeEY v A+ (1) plx)-

k=0j=11=1

Here U is any set and U, the set of points with distance at most & to U. Here
C< 1) ma,x (Il zenys Wosllzomy), where D is independent of f.

Pro of. Just as in the proof of Theorem 1 we can write

Srdy = Z hj*gj*’fb(u boy Ty, g; € B(m)
=1 Co

and
D\D

f(A)*‘P = (fxdy) (;)*‘I‘ “1' st(w’ **q-
=

Now we observe that & < B(m). To show this write ...

Cnlm) = |o] ™" (), f (o) = jo|™E(20)f (@),

p
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where fe&. Then f,, €% and hence f, s B. Since (U, =
get for /=1 that

I8 E)f(a e < Al (M)f”B A(e2) ™Ml 5

Now the Fourier, transform of £ is (£,,).». Since m > 0, we have &, e I,.
(This follows for instanece from Lofstrom [3], Lemma 1.4.) Thus (B4),
implies thfnt :

(C(‘”’f)m - WE

ISPl <

G”f m”B
Thus

1% s < AC(£A) ™ f 55
ie. feB(m).

Now ¢ belongs to the ideal in B(m) generated by (9,)ay (with the
same notation as in the proof of Theorem 1). Using Lemma 1 we now get

03 D Ia)eatnros U+ (e lplx);

J=11d=1

||(f*(/)(cbk))(z)*fl’; Ulx <

and an. zma,logous estnnmte for (fxdo)y*e; Ulx. Since Y ™™ < 0, we
get the result. =0

In some cases the conditions on f in Theorem 2 can be relaxed. If
15 +++5 §n BAVE compact supports one needs only to assume that %y, ...,
belong to B (not to B(m)).

n

THEOREM 2. Let B and X satisfy (B1)~(B4) and (Xl‘)~(§Q) and assume
that B (m) has the local division propev”ty‘ Suppose that gy, ..., g, have com-
pact supports and belong to B, that §s, ..., j, are continuous and that Y IQJ"

satisfies the Tauberian condition. Moreover, assume that f € B (m) cmd that
f= V‘ kgj in a neighbourhood of the origin, where h; e B.

l’h,en there arve constants Oy v, eqy ...,
cnough

G; b > 1 such that if A is large

3 r

) 2 W e Ul + (o)™l llx) -

0je=1 g=1

713

Ife; Ulx < € ( ).

=
n

Proof. Note first that if g, has compact support then g; e B(m)
since £)(g iy == 0 if 4 is large enongh. Now let y be an infinitely differen-
tiable function with compact support such that y =1 on Uyy and y = 0
outside U,,. Put 9 = yp. Then the proof of Lemma 1 implies that

s Tl < € (Il + (e2) " lplx)-
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Now Theorem 1 implies that

7

vl <€ 3 D D19 epn*vlx-

k=0j=11i=1
Wmtmg; g = g; p = o;p*2 we now note that gyrp = 0 outside Uy, if 2
(and hence w) is large enough. Thus Lemma 1 implies

Wy ¥l = 196*93 Usaalx < C{I90p*@3 Udlle+ (o) ™" lipllx) -
Now the result follows.
3. Applications to approximation theory. Let ¢ be the jth unit vector
in R? and put
&,

5;'((!’) = ‘P(Gj)a j=1,...

3,(p) = ¢(0).

Throughout this section we shall assume that
(B5) eB for j=0,1,...,d.

Note that (&)@ (®) = ¢z —e/i). Thus if (B1) and (X1) hold then the
translation. operators along the unit vectors are bounded on X. CUonse-

quently, the difference operator
;9 (®) = @(@-+-hey) —o ()

and its iterates 4%, M =1,2,3,... are bounded on X. In this section
we shall work with the space X° of all ¢ € X such that for some M > s
(s > 0) we have

||A] h‘P”X = 0(h%),

Similarly, given feB we consider the approximation spaee A, s> 0,
consisting of all ¢ € X such that

fxglle = 0(27%)

Finally, we shall consider the space E° of all ¢ € X whose best approximation
E(2; p) with entire functions of order 2 is 0(A7%). Thus

j=1,.0d (h—0).

(A=>00).

Bilp) = inf{ly —glx: p e X, $(&) = 0 for [£] = A},

and
p e Bell(p) = 0(27%).

‘We shall prove that E® = X*® and that A} = X°® if f satisfies some ad-
ditional conditions. Our pregentation follows closely Shapiro [6] and [7].

i
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TiHEOREM 3. Swppose that (Bl +(B3) and (X1) are satisfied. Assume
that Gy .y §, € B, that gy, ..., 9, are continuous and that Z’ 1g;] satisfies

ihe Tcm;beman condition. Moreover, assume that feB and that F (&)
= H(&)v(&) in a neighbourhood of the origin. Here v € B and H is a positive
homogeneous function of order t which locally at the origin belongs to B.
Let a be the exponent defined in (Bl) and assume that 0<s<1,1> a.
Then
ﬂ Aq c A}
i=1
Proof. Choose a test function y so that  vanishes outside an appropri-
ate nurrhbourhood of the origin and so that w(f) = 1 near & = 0. Put
h=fpand g =(1 —«zp)f Then f = h-+g. Since ¢ vanishes in a neigh-
bourhood of the origin, g belongs locally at the origin to the ideal generated

bY @1 --+s §u- Thus Theorem 1 implies
lgapellx < € 3 D (ep ) <027,  A>1.
k=0 7,1
Since
lgmxelz = 0(27%), A—oco0, '
thus
Fprolx < O(lhpyrolx+247%), Az1.

Tt i no restriction to assume that & (£)
origin. For otherwise let 7,(&) =

= H(£) in a neighbourhood of the
H (&) near the origin. Then & = yxh,

so that
Wepolx < liplphRo)y*ele, 421,
Yrite k(£) = A(&)—27%(28). Then
||7ﬁ(o—l)“12 AMI”LHB
and thus the series
22_1%(2_,)
1=0
converges in B (since ¢ > a). But
h(&) = T"’”k (2%) in I,
g0 (B2) implies
0
I == 22"”&1(2_1).
I=t
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Now k vanishes in a neighbourhood of the origin. Thercfme

Woa-tayopllx < €A™ agal it /1/0’
Vraoiyrply < 27020 it A2,

the second estimate by a new application of Theorem 1. Consequently

o] (7»—" 2 2-—(t-u)l_:_ et Z 2v(t—a—a)l) .

2lna al=a

ezl x <

Since ¢ > s, the conclusion follows.

COROLLARY 1. Suppose that (B1j-(B3), (B5) and (X1) hold. Assume
that fe B and that f is a continuous function satisfying the Tauberian con-
dition. Moveover, let f(&) = H(&w EYD(&) in a meighbourhood of the ovigin,
where v e B and H is posu‘we homogencnous of order 1> a (ML(I belongs
locally at the origin to B. Then A} '= X% for 0 < s<CL

Proof. We use Theorem 3 with

36 = fsiE) 1%

n
where M > s. Then (B5) implies that g, € B. Morcover, 3 kaJ[ is a contin-

F=1
uous function satisfying the Tauberian condition. Thus JfL‘heorem 3 implies
X* <= A if 1>, 1> a. In order to.geb the eonverse inclugion we note
that (elp (i&) —1)" = (1)U, (&) in a neighbourhood of the origin.
Here U; € B. Now (€)™ is positive homogeneous of order I and is locally
in B at the origin. Moreover, f is continuous and satisties the Tauberian
condition. Taking M > s, M > o, Theorem 3 implies A} < X°.

CoROLLARY 2. Suppose that (B1)-(B3), (B5) and (X1) hold. Then
B = X° for all s> 0.

Proof. A proper choice'of f in Corollary 1 will give that X® == 4A* = I",
Conversely, choose feB so that (&) =0 for |& < 1. If ¢ e B® thero iy
for every A>1 a y, e X so that ¢,(£) = 0 for |& = 4 and

lp —pallx << CA™*
Then fix@ = fix(p—1v;) so that
Ifsellx << €272

If we choose § continuous and J (&
1 that @ e X°. Thus F* < X5,
We shall now consider a localized version of the previous results.
Let £ be an open bounded set. We use the notation U7 € V to indicate

Azl.

) # 0 for [£]== 2 we get from Corollary
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#hiat the closure of U hag a positive distance to the complement of V. YWe let
X*(£) denote the space of all ¢ € X such that
147595 UHX = @O(h*) for all U € Q.
Similarly, 4%(R2) is the space of all € X such that
Ifye; Ulg = 0(27%). for all U € Q.
Similarly, we shall let Z°(£2) denote the space of all ¢ € X such that there
is a family ()i, With suplplly << oo, 9,(€) = 0 for £ > 2 and
. Apel .
lps—g3 Ul = 0(A~)  for all U € Q.

TuroreM 4. Suppose that (B1)-(B4), (X1)~(X2) hold and that B(m)
(for a fized m > 0) has the local division property (B3). Let gy, ..., g, € B(m)
and suppose that §yy ..., G, are continuous and that |§/j1 satisfies the

g ,
Tauberian condition. Moreover, assume that feB(m) and that f(£)
= H (&) (&) in a neighbourhood of the origin. Here v e B (m) and H 1is « con-
tinuwous positive homogeneous function of order t > a which belongs locally

- al the origin to B(m). Let s<m and 0 <s <1

Then
2) = A7 (2)

[

for every open bounded set £.

Proof. We write f = h-+g, where g(£) = 0 in a neighbourhood of
the origin and where h(&) = H(&)D(E) in a neighbourhood of the origin.
It is no restriction to assume that & is continuous and satisfies the Tauberifm

condition. Let U € 2 and choose ¢ > 0 so that U, € Q. Takeg ﬂ Aj (Q)

j=1
Then

HE

ligyYayeps Ul < Cmax (L, 2~y max (1, 7).

By Theovem 2 we conclude that
Yy

H‘(/(;‘J)i:('/]; U [\: < (0 ( 2 2 (Cibkl)"‘q _F(Ea)——mn{pu-\.) )
he=0 1,7

Kinee m s, it follows that
lyayses Ul = 0275,

Tu order to estimate g on U we write

2

he) = >o7"h @),

0}
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“where
k(&) = h(&)—27%h(28)

;88 in the proof of Theorem 3. Since v € B(m), it iy no restrietion to assumé
‘that k() = H(£) in a neighbourhood of the origin.

-]
b= 2,y
=0

-In order to show that this series converges in B(m) we note that

169 a-tylls = IR )aylp < A2 (642 ™l
i 2>1 and eA>1. Thus if 130

‘M)

1= ilzpgmy < O max (1, 26-m),

“Therefore the series converges if ¢ > a. By Theorem 2 we now get (for
A= 1) ’

Bu-iy%p; Ullx < 027°2%max (1, 2l 75 01,

Obviously,

Mo—tgyre; Ully < CA7529, 2 9L
-Consequently,

Whayrs Usallx < 0,(370 D) 27011 g-s Fg—t-omax (1, 2(=m))

al>3 alca

since ¢> s, > a. If ¢y, ..., g, have compact supports the conditions on
v and H can be relaxed as a consequence of Theorem 2.

THROREM 4. Suppose that (B1)—(B4) and (X1 (X2) hold and that
B(m) has the looa} division property. Let gy, ..., Un € B have compact supports
-amd assume that ¢y, ..., ¢, are continuous and that _): |§f| satisfies the Tawu-
Derian condition. Suppose thai f e B(m), f(&) = H (E)Y0(8) in a neighbowr-
hood of the origin, where H belongs locally at the ovigin to B and where v € B.

If H is continuous and homogeneous of order 1> a and if 0 <<y =l in,

O < s <t then

N 45,(9) = 43(0)

Jor every open bounded set Q.

COROLLARY 3. Suppose that (B1)=(B5), (X1)~(X2) hold. Let feBm)

-and suppose that f is continuous and satisfies the Tauberian condition.
Moreover, suppose that J(&) = H(&)%(£) in a neighbourhood of the origin.,

icm
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Here v e B and H is continuouswpositive homogeneous of order t and belongs
locally at the origin to B.
Then A5(Q) = X*(R) provided that 0 < s<m and 1> s,1> a.
({OROLLARY 4. Suppose that (BL)—~(Bb), (X1)~(X2) hold. Then

H(Q) = X*(Q)

The proofs are almost word by word the same as the proofs of Cor-
ollavies 1, 2.

Sfor all s> 0.

4. How to choose the space X. In the applications to approximation
problems it is natural to choose the space X first and then try to find & suit-
able Banach algobra B. However it iy also possible to go the other way
round, that is, to start with the Banach algebra B and then try to find X
50 that (X1) and possibly (X.2) hold. This iy the situation we shall consider
here.

Thus let B be a given Banach algebra. Then X = B is a possible choice
since then (XL) holds. If (B4) is satisfied then so i3 clearly (X2). The dual
B* of B is another possible choice for X, provided that B* is a space of
tempered distributions. In faet, if g e X = B* and feB we have

Ifpllx = sup |gaefxp(0) < liflplelx.
llgrl g2

Tf (134) is satistied then (X2) holds for X == B*. To see this take a g e X
and let % bo an infinitely differentiable function with compaet support
sueh that 0 << ¢ << 1. Then (B4) implies

gl = #up lgx (zp) (0)] == sup|(zg)% @ (0)] < Clopllx-
i pp=d Il p<1
oy () == ()
(I“Im;ig(gcls).lf 231{1((1 ]?"‘) L,m possible choices for X, so arc the interpolation
spaces bhetween B and B*. We have proved the following result.
PROPOSITION 1. Let B be @ Banach algebra of tempered distributions such
that (B1) holds and let B*, the dual of B, be a Baﬂwqh space*of 'tgmj)e?-ed
distributions. Then any interpolation space X between B and B* will satisfy
(X 1), If (L) holds then so does (X2). D
Otlher ehoiees for X are the closure of & in B or the closure of f(/) in B
(provided 7 e B*). Tn specifie situations there can of f:ourso be gtill other
possible ¢hoices for X More about this in Section 6.

5. Discussion of the local division property. The most important
condition on the Banaeh algebra B iy tho local division property (B3).
This condition s well known in some cases, for instance Wl.l(‘,ll B = L,.
(See Rudin [8], Lemma 7.2.2.) In that case the (?,hamcters, i.e. the non-
trivial continnous linear and multiplicative functionals are known to be
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the point-evaluations of the Fourier transform. More generally we have
the following lemma: N . ‘

LeMwA 2. Suppose that B is a Banach algebia under convoluiion such
that (B2) holds. Moreover, assume that the characters on B are just the point-
evaluations of the Fourier transform. Then B has the local division property.

Proof. Let ¢y, ..., g, be given elcments of B. Moreover, let K be a
compact set and assume that gy, ..., §, are continuous functions on A
such that g, (&) + ... -+ §,(&)] > 0 for all & e K. For every & e K there
Is a j such that g;(&) 5 0. Then there is a neighbourhood ¥ of &, such
that g,;(£,) #0 on the closure 'V of U.

Now congider for a given t ¢ B the equivalence class of all 7' & B such
that 7' =7 on V. Let # be the Bariach algebra of the equivalence clagses,
{, with norm

[y = inf{ltl: t e}
and multiplication defined by #+5 = (—t;s_). Then # is a Banach algebra
with unit. In fact there is a test funetipn o such that o(&) =1 on V.
Then 7 is & unib on & since (o) = on V- and hence xf = (owl) = £
Now let H be a character on 4, and put G (¢) = H (¢). Then it is easily
seen that ¢ is a character on B and thus of the form G(t) = § (n) for some .
Now choose o as above. Then '

Glowt) = H (I = 6(1),

ie.

a(min) = i(n).
Sinee this is true for all test functions o such that ¢(&) =1 on V , We con-
clude that ne V.
Now we have §;(&) =+ 0 on V. Hence H (@;) 5= 0 for all characters
H on %. Thus g; has an invers hy € B implying that Gpihyhgy == $ for all test
functions ¢ sueh that ¢ has its support in V. Thug ‘

pkhyed = .

For any £, e K we have found a neighbourhood U, a number j and an
h; € B such that g;«hs¢ = ¢ for all ¢ & & such that & has its support in 7.
Now cover K by finitely many such neighbourhoods Uy, ..., U, and assume
that ¢y, ..., ¢, are test functions such thatb $; has its support in U, and ¥ ¢,
=1 on K. Then there are j, and %, e B such that ¢

F=Dlbaf = N g whdf

iff e Bandf(&) = 0 outside K. Thus Jis in the ideal generated by Giy vy Yoo
This completes the proof.

/
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- As an application of Lemma 2 consider a positive weight funection w
such that w(w--y) < cw(x)w(y) and put B = L, (w) with norm

lofly = [ (2)|f(a) da.
Then B iy & Banach algebra. Assuming for instance that
w(@) < o(1+la))™

for some N, we have a situation whére Lemma 2 can be applied, since
then the characters on B are just the point-evaluations of the Fourier
transforim.

Note that the local division property can be satisfied even if there are
other characters than the point-evaluations. For instance put B = L.
IE gy ey 0 € B and &y, ..., §, are continuous and >|g,| > 0 on K then we
cari write

J o= >~’ Iy, where ;= {signg;)f
L : Z 19,1

for any f € B such that f = 0 outsice K. Clearly %, & L, and thus f is in
the ideal generatod DY gy, ivvy go )

In many cases it is possible to extend the Banach algebra B slightly
without loosing the local division property. Define the extended algebra
B as the space of all tempered distributions f such that ¢«f e B for all -
test functions with compact spectrum and

Ifllg = sup {Igefls: gl <1, € CF} < eo.

LnsA 3. If B has the local division property then so does B and any
Banach algebra B, such thet B < By « B. R

Proof. Assume that gy, ..., 9, € By Tisoeer O are eontinuogs and.
~ 1(}]\ > 0 on the compact K. Let fe B and assume f =0 outside Ii:.
Then choose a test funetion ¢ with compact spectrum so thab é = 1 on ?1 .
Then ¢y, & B and ¢«f € B. Clearly the loeal division property on B implies
the existence of h; e B so that ¢*f = > hyx(¢prg;). Hence f= ZJ] Tjiegy
whoers hy € B < By ‘ J N

Loemma 3 ean bo used to extend the local division property from L, (w)
(w a% above) to o (w), the space of all f such that wf is a bounded measure.
I fact, ‘ ' o '

Llp(?u) el (W)

To see this lot ¢ Le o test funetion with compact spectrum such that [wel,
£ 1. Then

o {aef)lly << 1 (ol y(eol 1)l < Mfllg -
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Thus Ly (w) = #(w) < Ly(w) and thus . (w) has the local division prop-

erty. {(We have in fact #(w) = L (w).)
As an additional illustration let B be the closure of & in f... Then
B =10y (Cy) being the space of continuous function tending to zero at
infinity). Clearly B has the local division property (by Lemma 2 or rather
by direct inspection). Moreover, B = ' (0 being the space of continnous
bounded functions) which clearly hag the local division property.
LeMMA 4. Put w(z) = (1+|2])* for some a> 0 and assume that

Li(w) = B < L.

Then B and B(m) has the local division property.

Proof. Since the characters on IL,(w) are the point-evaluations of
the Fourier transform, the same is true for B. Thus B has the local division
property. Now put w,, () = (L |2])*"™. Then it is easily seen that
Ly(w,,) = B(m). In fact, if feL,(w) then, for 4>1,

[l < AN fp< 4 [ (14 |o)f (@) da.
L

|z|>ed

But if f e L, (w,,) we can estimate the right-hand side by a constant times

()™ [ |a™ (L +|e))f @)lde < (A) ™" Iz )~
|zl=ed
Thus I,(w,) < B(m) = B< L,, so B(m), too, has the local division
property.

6. Some special choices for the algebra B. In Shapiro [7] the rale of
B is played by the algebra .# of bounded measures. As we have seen .4
has the local division property. Moreover, Wfale = Iflly so that (BL)
holds with & = 0. Clearly (B2) and (B4), (BB) are satisfied. Here we
can take X = L,, 1< p < co as Shapiro does or more generally any
interpolation space between L, and L, for instance the Lorentz gpaces
L,,,- We also get localized versions of Shapiro’s results.

THEOREM 5. Let X be any imterpolation space Detween Ly and L.
Then B = X°* and B*(Q) = X*(Q) for all s> 0 and all open bounded
sets Q. Moreover, let fbe a bounded measure sueh that F satisfies the Tauberian
condition. Assume that f(£) = H( E)B(&) in a neighbourhood of the origin,
where v 48 a bounded measure and H (£) is homogencous of order t, infinitely
differentiable and positive outside the origin. :

Then Af = X°if 0< s < t. If, in addition, Jor some m such that m = s

(1) f [df (x)] == 0(u="™

lx|>p

then we also have AS(Q) = X*(Q), 0< s < 1.

Toar i iy gy :
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Proof. Note that (1) is equivalent to the condition f .4 (m). The the-
orem is clearly a consequence of Corollaries 1-4. The only point to check is-
that H belongs locally at the origin to .4. In order to prove this put i = Hgp,.
where 9 is a test function with compact support. Assume that é is a test
function with support on 27 < |£| <2 and with the property > ¢(2-*&)
=1 for £ 0. Put k

(&) = 2')h(¥).
Assume that (&) = 0 for |£ > 1. Then

2;2,(5) = H(&) for all .
=0
Since
1D (8)] < 02041,
we have
1Dz, << 0=t

Now we have that
yllz, < Gllﬁzfl}:;”mafilf)“ﬂzng;z,

laf=

where L > d/2 and 0 = d/2L. Hence
”thLl <027
and thus
Wiz, < X ilz, < 0 Y274,
=0 =0

i.e. hel,. Thus if ¢+ > 0 we have & € 4. The proof is complete.

Next we shall consider weighted spaces. Let w be a positive continuous.
function such that there is a second positive continuous funetion w* > 1
such that

@) ’ w (@ +y) < Ow*(z)w(y),
and
(3) w*(e/l) < Cmax (1, A~w*(x) (e > 0).

An example of this situation is
w(x) = (L--]e])’y o real
in which case w*(x) = (L |[#|)% @ = |o|. Another example is

P
w(w) = ”(1 +1Kay, @))%,

J


GUEST


214 J. Lofstrom

where o; are unit vectors and o; are real. Then

(o [—] “1‘|<u_7, adpt
Jj=1

and
a ==

‘“j| .

[\

=

™
Let B = ./ (w*) denote the space of all f such that w*f e .4 with norm
71z = llw*fl.

Then (3) implies (B1). Since 1 <
Moreover, (3) implies

“w*, we have B < .# and thus B < L.

wH ()<

O 1+ =)

since w*(elz|) < Omax(a, |z|“Yw*(e) < C(L-+|o))* if e = z/[x|. Conse-
quently & < B and thus (B2) holds. In order to plove the local division
property we note that there is an integer N such that w*(z) < € (1 [#[2)¥.
Thus the argument of the preceding section shows that .4 (w*) has the
local division property. Note also that (B4) and (Bb) hold. As space X we
choose for instance L, (w) defined by the norm [wel,. Move generally, wo
can take as X any interpolation space between I, (w) and L (w). Clearly
(X1) holds since |w (f*@)| < (w*|f])*(w|p]) by (2). Condition (X2) is satistied,
too. We now get the following consequence of Coroliaries 1-4.

THrOREM 6. Let w be a positive continuous weight funciton such that (2)
and (3) holds and let X be any interpolation space between Ly (w) and L (w).
Then B° = X° and B*(Q) = X°(Q). Moreover, assume that w*f is a bounded
measure and that § satisfies the Tauberian condition. Suppose that f(£)
= H(£)0(&) in a neighbourhood of the origin. Here w*v is o bounded measure
and H is homogeneous of order t > a, infinitely differentiable and positive
outside the origim.

Then A} = X° if 0<s<t. If in addition
= 0(u™™),

‘U,v)’OQ

(4) J Jw* () df ()]

|2z n
Jor some wm such that m > s, then A5(Q) == X*(Q).
Proof. Writing & — $H, where ¢ is a test function with compact
support, we need just to prove that

®) o lPh| < Cu™* i p2 1. :
But w* (@) < ¢ (L4 [#/2)*. Let J* be the operator. (14 D)2
”J c(u)”].

Then

< Omax (1, ‘u"'“)‘v
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and thus
”w*c(l')h” C Z \I(Tag ,‘))*h*¢("k)”[,1
okzp
< Omax(l, ) 3 Vorgaslz,-
2zn
By the proof of Theorem 5 we get (5).
As an application of Theorem 6 we introduce the space %, of all

meagurable functions ¢ such that there is a number « > 0 for which

(f (®)

L+ Jep)
Let & be the space of all families (1) 11 Such that v, is an entire function
of exponential type 1 and such that there are positive constants ¢ and ¢
so that

D 1p
dm) < oo.

(@) <O+, w@eR% A>1.

Then Theorem. 6 implies
COROLLARY 5. Assume that o € £, and let 2 be open and bounded. Then

(6) ( (14750

if and only if ﬂzew 8 @& family (pi)is in & such that

(7) ( f e

Proof. If @ €%, then ¢ € L,(w) if w(@) = (1+ |z|)~* for some « > 0.
Then Theorem 6 1111phes that (6) is equivalent to the existence of a family
(1)1 Of entire functions of exponential type 4 such that (7) holds and

1/p
(f( Ya(2) )pdm) <.
S 1+ |73|)

But then clearly (w,);s; € &.
Exampre 1. Congider a funection ¢ such that

”da‘)llp = 0) forall U ERQ

o) dw )1’1’ O~ for all U C Q.

e} for
(LA J2)

and assume that ¢ is infinitely differentiable f01 |fr] >1 /‘) - Put 'W(fn)
= (L4 @)~ Then ¢ €L, (w). Moreover, ¢ € X1,

<1,

v@) = for

2] > 2 (a real),

|43 ()] < CJb| (L+]al)*  for all a.

3 — Studia Math, 76.3
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Thus Theorem 6 implies that there exists a family p; of entire functions
of exponential type A such that

lpy(@) < 0@ +le)*  for all @ and 22 1,

and
lpalw) —p(@)] < OA7 (L4 )"

Theorem 6 also implies that A~ cannot be replaced by 2~° for any ¢ > 1.
Bxampre 2. Consider a function ¢ such that

p(@) = |o| for |o| <1,

lp(@)l < 0L+ Ja])*

Then Theorem 6 (or Corollary §) implies that although ¢ may not belong
to any space X° (for s > 0) because of the lack of regularity 01117si‘(1e the
Dall |#] < 1, we still have that there is a family v, of entire functions of
exponential type A such that

lpa(w)] < C(L+ 1))

for all @ (a real).

for all » and A= 1

and
lpald) —p (@) < 0470 for  jz|<l-e,
for every e such that 0 <e<<l.
ExamprE 3. Put d = 1 and

1 1

PRI

fl@) =

Clearly feB = Ly(w*) if w*(x) = (1+ ]ix])" and 0 < a< 1. Moreover,
feB(m) it a =1—m, 0<<m< 1. Since f(§) = exp (—|&]), we can write

F&—1 = |£p(8),
where
5(8) = [exp(—rl&l)dr.
0
Thus

1
v = ff(m)(lT-
@

Therefore v € B since

1 1
losllz, < [ lo*fugmlls,de < € [+ delfllz, < oo.
[0 0

Applications of a general comparison theorem 217

Thus the assumptions of Theorem 6 are satisfied with-*= 1 and 0 < & < 1.
Thus suppose that for some real ¢ with |a| < 1 we have

L)

(®) [ [ le@) @+ o)) "aa)" < oo.
Then h

( f e @) = (@P(L + o)) "da) ** = 0(47),  A—>co
if and only if

( [ 14w@Pra+e)ra)” = 0@, . 1o,
provided that 0 < s <1, (de(x) = @(x+h)—p(x).
There is also a localized version of the last equivalence, stating that
if (8) holds for some a such that —1< a< 1l thenfor0<s<m =1—a

b—e

[ [ Hopo@ —g@iia)” = 02°), 1>
a+e

for all ¢ such that 0 < e<<b—a if and only if
b—e
( [ 1dgp@Paz)” = 0@, 10

a-r&

for all such &. Note that we can drop the weight function when integrating
on finite intervals. Also note that the last result does not follow from
Theorem 5 gince an application of the theorem would require the global
estimate

( i) < e,

instead of (8), which is weaker if —1<<u<<0.

Exavrre 4. Consider the Gauss kernel
f(#) = cexp(—|22/2), xR

Then feB = Ly(w*) if w*(x) = (1-+[z))% &> 0, and f e B(m) for every
m > 0. Moreover, f(£)—1 = |£|2v(£), where veB if 0<<a< 2. This
iy easily seen by writing

1
v =} [fayzdr.
0
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Thus Theorem 6 implies that
)2 @gg|'” = 0(2%), A->oo
( f fayep (@) — g (@) P(L+ o)) Pda) ™ = 0(27"),
it and only if

( fIAJ wp (@

provided that 0 < s< 2 and —2<a< 2 and that

21 +lal)Pda) " = 0 (1),

h—o0,

) ( f lp (2)1P(1 + |])%da)* < oo.

As an illustration of the localized version of Theorem 6, let us now take
= {5 = (21 s Baors )¢ g < 1}
Then suppose that 0 < s < 2, —2< a< 2 and that (9) holds. Put

wo(@) = (L4 (@i + ... +az_)")%

and.
U, = {: jmgl<1l—sg}, O0<e<<l.
Then Theorem 6 implies that
( [ fwre@ —p@)Pwo@)yan)” = 007), 2>co
UE

for every ¢ if and only if
( f |42 0 () [P )”am)”’” = O(1F), h—0

(for every e).
It is also possible to applv Theorem 6 to other weight-functions than
(L4 |2])% Let us take .

wlw) = (1@ ) ... (14 |mg])%,

Then (2) holds with w*(r) =
6 implies that if |y ...

(T+[a) @ = o]+ ...
+ |agl < 2 then

+ |agl . Thus Theorem

—fP(W)!”w(a:)“(lw)w’ = 0(17%), A-co

( f[f(z)*(P (w)

R

icm
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if and only if
( f 14540 (@) P (@) dw |7 = 0(h%), 10,
and
( f o (@)7w (@)da)"" < oo

7. Some other chomes for the space B. Let w be a posmwe continuous
weight funetion such that

w(@-+y) < Cw* (@)w(y)

for some positive continuous funetion w*. Then we consider the space
T,(w) of all translation invariant operators on L,(w). In [5] we have
proved that the operators T, (w) has the form ¢ — kg, where & is a distri-
bution. If w is symmetric, i.e. w( —») = w(x) then I,(w) = I, 50 in parti-
cular T, (w) is a space of tempered distributions. OIeally T, (w) is a eon-
volutlon algebra, normed by the operator norm.

If we take w = 1 then T, (w) = T, is the familiar space of bounded .
translation invariant opela.tors on L,. The space T = M, is the space of
Fourier multipliers on IL,. It is Well known thobt )

ez, = 17PN, = Ifllar,

so that (BI1) holds for B = T,. Clearly (B2) and (B5) are satisfied. Tf 4
is a test function such that 0 < y <1 then

ltfllz, = 124 Nar, < W2z, Fliaz, »

which implies that (B4) is true.

Next consider the closure B of & in T, Since Iy = T, = L, we have
L,cBc C'(O) Thus the characters on B are the point- evaluatlons of the
Fourier transform. Consequently Lemmas 2, 3 imply that the space B has
the local division property (B3). We shall write 7~ » Tor the space B. Thus

7, 18 the space of all tempered distributions f such that, for all test
funetions ¢ with compact spectrum ¢+f is a limit in T, of test functions
and (igsflly, < ¢ it llplly, <

Note hm [ s (onhnuom if fes,. Clearly 7, satisfies (B1)-(B5).
Taking X = L, wo (fm therefore nse our general theorems. Since we have
already proved that I = X°if X = I, the interesting applications con-
cern the spaces .47 and 43(R2). Using Corollaries 1 and 3 we get following
result.

TurorEM 7. Suppose thal f es,, and {hat j satisfies the Tauberian con-
dition. Moreover, assume that f (£ H( (&), where v € 7, and H s homo-
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-geneous of order t > 0, infinitely differentiable and positive outside the origin.
Then A% = (L,) for 0 < s << 1. If in addition for some m, such thatm = s,

@) IE“F) Mg, = (1),

then we also have that A3(RQ) = (L,)°(2).

This result is very similar to Theorem 5 but the conditions on f are
wealer if 1< p << oco. For instance, if p = 2 then the conditions of the
theorem reads:

F is bounded, continuous and satisfies the Tawberian condition,

?.is bounded, continuous.

(Use the fact that T, = L, and the remarks of sections.)

It is amusing to look at condition (1) in the light of our theory.
Note that ()" = {,%f. Now take B = .# and X = M,! Then we got
the following result from Corollary 1.

PRroPOSITION 2. Condition (1) above is satisfied if and only if there
48 an integer M > m such that

,I,L-—>OO

1475 g, = O™, A0

Jor g =1,...,4d.
In the rest of this section we shall consider the weight function w(w)
= (14 |2])°, o real. This is merely for convenicnce. The results we shall
give are valid for more general weight functions, namely those weight
functions which are symmetric (w(~ax) = w(#)) and polynomially regular
in the sense defined in [5]. A general example of a weight funetion of this
type is :

&
wia) =[]+ 1407,

‘where 4; are bounded linear mapptngs on R? and o; are real numbers.
Put w,(#) = (1+ |#|)° and assume that ¢ iz an integer such that |o] < a.
Let B be the algebra of all f such that f,(@) == 2°%f(2) e 7, for |a| < a,
with norm

Il = > M, -

la|<a

Then (B1)—(B5) hold ((B3) follows as usual from Lemma 2). ITn [5] wo
‘have proved that T,(w,) = Iy (w_,). Thus it is sufficient to consider
‘the case o > 0. First let o be an integer. Then

wo@) = D) a,@—y)y’,

o

icm

7 satisfies the Tmcbem‘,a% condition. Moreover, let f (&)

Lo
&)
—
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where a, are polynomials such that |a,(z)| < 4,0,(%). Thus

wd(f*qv - > fxla), L) = v,

<o

and therefore

oo (Fr)lz, < > 1D lar, lallz,

<

<O 3 1D il Jeoapliz, -

<o

If ¢ is not an integer we use the Stein—Weiss interpolation theorem. In fact,
assume that o = o,+0,0<< 0<1, where o, is & non-negative integer.
Then

<O D) 10 s ool

=g

o0y (29,

Wopia (F9)lz, <O D) 1D llar, 000 410l -
Irl<ap+1

Therefore

¢ D WD llag, .l -

r<o(+1

e (Fr)liz, <

This proves that

o, (Fx)llz,, < Clflslwopl, -

Thus (X1) (and clearly (X2)) holds true if X = L, (w,).

THEOREM 8. Suppose that w,(x) = (1+|z1)° and let @ be an integer such
that a 2= |o|. Put f,(®) = xf(x) and assume that f, € T, for |a| < @ and that
= H (&) V() in a neigh-
bourhood of the origin. Here D% e M, for la| < a and H is homogeneous of
order t > a, infindtely differentiable and positive outside the origin.

Then A§ = (L, (w,))* for 0 < s < 1. If, in addition, there is an integer
M so that M > s, and

1475 DS lar,, = 02,

Jor all |a| < a, then we also have A3 Q) = (L, (w,))° (2).
ExAMPLE 5. Let o, denote the Bessel function of order ». Put

=0, § =1, ..., d,

g{) = ¢J gpqp(®)
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and choose ¢ go that

fg(w)dm =1,
R
Then
9(8) = AL,

It is well known that 1“g belongs to the closure of & in the space M, of
Fourier multipliers on I,, provided that > |a[-++(d—1)[p~" —27"].

Moreover,
|M1ﬂ£LDa.‘}”Mp == O™, h->0

it M > m > 0, provided that g > |a|+m-+ (d—1)p~—271. (For a proof
see Lofstrom [4].)

Let @ be 0,1 or 2, and assume that > a+m-+(d—1)|p~t—27.
Put f = g—d,. Then f eJ,, and if « 5= 0, f, = g, belongs to the closure of
& in T, hence
‘ ' foed, it la>a.

Moreover,

F(&) = 1£12B(8),

where D e M, for |u| < a (see [4]). Thus we get the following conclusion
from Theorem 8. Take

f>at+mt(@—1)pt-270

and choose s 50 that 0 <<s<<{m, 0 << s< 2. Assume that

( fl?ﬂ(m)!”(l—{- Jml)"”d:n)lm< oo for some |o| << a.
7d

Then
( [ oo =P+ 1)) = 00=0), oo
if and only]iif
( £ 4750 @) P+ o)y da)” = o), B0
R

for some M > s, (0<<s<<m, 0< < 2).
‘We leave to the reader to write down localized versions of this result.
(Cf. Lofstrom [4].)
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