STUDIA MATHEMATICA, T. LXXVI. (1983)

Note on the strong maximal operator
by
MARCELO ENRIQUE GOMEZ (Bucnos Aires)

Abstract. The following conjecture has been stated: Lot fe L(logTZ)n~1, then
f* is integrable over every sot of finite measure if and only if f e L(logtL)* (f* de-
notes the strong maximal function).

We give herc a partial answer, See Corollary 6 below.

Tntroduction and statement of results. Let f(y;, ¥;) be an integrable
function with support in the unit cube of R? defined by the inequalities
0 <y <1 (i =1,2). We congider the pariial mazimal operators M, defined
by

1

1 ,
I f (Y ya)= 80D o 1(0,y2)a6,
a

a<yy<b ¥V

b
[ # man

a

1
M =
T (Y1 92) ilwlpd P

at each point (ys, ¥5) in R2. We also consider the sirong mazimal operator
f—f* defined by

F W 9a) = sup \—h If £(0, m)a0dn,

(wyvo)el

where the supremum is taken over the set of all intervals I (cells with
sides parallel to the axes) containing the point (yy, ¥,). We denote by
L(log™ L) the class of all functions f such thatb the integral

[ 170, m{Log*1£ (0, m)I)* abdy

is finite.

The purpose of this work is to show some properties concerning the
strong maximal operator and the partial maximal operators.

We start with some definitions of geometrie nature related to the strong
maximal operator.
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Then we prove an inequality involving the strong maximal operator
and the partial maximal operators. (See Theorem 1 below.)

Further on we show that the strong maximal operator can be charac-
terized as an average. (See Theorem 3 below.)

We then prove that the local integrability in R? of the strong maxi-
mal operator cannot be characterized by means of L(logtL)2
_ The following conjecture has been stated: Let f € L(log™L)"'; then
f* is integrable over every set of finite measure if and only if f e L(log*Ly".
(See [1]; [2]).

We give here a partial answer. See Corollary 6 below.,

Finally, we state a rarity theorem concerning Baire’s category, related
to the strong maximal operator.

Acknowledgments. ' The author is deeply indebted to Professor
N. Fava for his generous help.

) Section I. All functions considered will be non-negative and supported
in the unit cube of R? which we ghall denote by §.

N DEFINITION 1. Let f & I* (R?). A point {yy, ,) & R* is of partial K-eccen-
tricity for this function if there exist intervalg (I, XQp )=y Which satisfy

Py = lim——oe [ f(0,m)a0d,
N n ’I’bl lQﬂ.l InKQn
-where ¥, €15y, €Q, (n>1) and 1/K < /1@, < K for all a3,
Dermurron 2. Let f € L' (R?). A point (Y1, ¥5) € B* is of semi-absolute

cceontricity for this function if there exist intervals (Ln X@p)yz1 Which
satisfy ’

. ! ,
W ) = lim AT f 06, 7)d0dy,

n
AT
where y; € I,;9,€Q, (n > 1) and
[IM]/JQ%, 00 or lQn‘/l]"] —>‘f—'00’ (4?,-——)»00),
Dermvrrron 3. Let f € I} (B?). A point (1, ¥2) € B is of absolule eccon-

trictty for this function if for every se L int
: > sequence of intervals (I, X@,),-
which satisfies Xl

, . 1
Py =tim <~ [ 10, m)asan,
" l[n‘l lQn! 1,50
n-¥n
where y, € 1,5 4, €9, (n > 1), we have cither

Ll /1@ul—>+00  or  |Q,/II,| »+00 (n->co).

N
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DrrmviioN 4. Let f e L' (R*). A point (y,, y,) € R? is of K-eecentricity
for this function if for every sequence of intervals (I, X@,),>,, which sat-
isfies

n

1
F* @ y) = lim ——=o | (0, 7)d0dy
v .1 1€ ,fQ ’ ’

where y; € I,; ¥, €0, (n>=1), we have
l/K S {Inl/lQn! < ]C (W’Z ’nu)-
Remarks. (i) A point of absolute eccentricity is of semi-absolute eccen-
{ricity, but the converse is obviously mot true.
(ii) A point of K-eccemtricity is of partial K-eccentricity.
(i) A point of semi-absolute eccentricity may be of partial K-eccen-
tricity, and conversely. For example: If we define

Congtant if  (yg, ¥5) €8,
0 (o928,
then every point of 8 iy of semi-absolute eccentricity and of partial K-eccen-
tricity for every K >=1.

ProrosI®IoN 1. If a point (yy, ¥s) is not of partial K-eccentricity for
any K =1, then it is of absolute ecceniricity, and conversely.

Proof. Let us assume that (y,, ¥.) is not of absolute eccentricity;
then there exist intervals (I, X@,),; Which satisfy

F@nvs) =

. 1
F ) =l f (6, n)dodn,

" Ip%Qp
/
where y, € L,; ¥, €@, (n>1), and such that

I . n
a:lim—~| n|<+co; ﬁ:hm———in<+oo;

n @l a1yl
then 1/y << |L11Q. <y if nzmn, where y>max(a,f)>0 (yelN).
Hence (yy,ys) is of partial y-eccentricity. The converse is obvious.
PROPOSIIION 2. If a point (Y1, ¥a) s not of K-ecoentricity for any K > 1,
then it is of sewi-absolute cceemiricily, and conversely.
Proof. Let us assume that (y4, ¥.) is not of IC-eccentricity for any
I > 1. Then, given K e N, there exist intervals (If % @%),,, which satisty

€n

. 1
e £ 9 =1 e fo S0, mavin,

w7
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where ¥, € IF; 4, € QF (n > 1) and

IE1QF > K  forall w1 or |QF/IIE>XK forallnz1.

Nextwe choose a subsequence of (IF x QF), .., which we call again (1% x Q%)
k=1

I3 n\l

k=1
for the sake of clarity. Then (1) holds for the subsequence as n—>co for

any fixed K >1, and

k| IQ . i
—2 s 400 oOr - doo i n=l.
|Q1’;] Jiro0 I-[nl k—+o0 -
Cleaxly
* , h.mhm ~~~~~~ " 16, n)dbdn.
A Z,g, o .hjkf(  m)dban

Ty @y

We can therefore conclude that

‘ . 1
F W o) = W e 16, n)abdn,
WAV AR [#)ecd
ng 11)‘ 7\,/,/07»_7
nJ ny
and
Vit kg
Ikl &t or jg;%l___
1371 Tooo ILET] ovoo

for a subsequence (I} xQ5);.,
This is based upon the fact that if (ay,) .= 18 2 double sequence

such that limlimey,, = a, then we can select a subsequence (
E n

verifying lima,c gy = G-

ach, u(;).}';l,

TamoreM 1. Let f e Llog* L. Then M f(y:, ya) < f* (41, ¥s) (i =1, 2) for
almost any point (yy, y,) € R

Proof. We define

T= {1, 92| Mif (Y2, 92) < 400 (i =1,2), f* (s, Ys) < - 00,

P ys) = lim — f 10, 920 = lim - f 7 sy myi,

yyel #9el)
8I-»0 w—,o

[ Mif gy m)dn < +o0; [ Mif(6,9:)a0 < o0 (i =1,2)
B

B

for cvery interval B, [f(0,y:)d0 < -+ oco; [ f(yy, n)dy < + co},

icm
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(a) T'is measurable: We take the upper partial derivatives of (f f) defined.
at each (yy,y,) by

oo — 1
Dz(ff, (1 yz)) = sup{ lim —
i III

z?Ik—w

llkff(g’ 1:)d6| v, I},

( j Iy W @/2)) = sup{ lim

5 ff(yl, nan| i< L,
g I

and the lower partial derivaiives of ( 11

D [ £ v w0)) = mf{hm — ff(e,y)czo AN
sTpes0
D [ va)) = ine {1 ff v )| 92 < I,

61k—>0

with (I);»; a0y sequence of intervals in R. 5:([ f) and Dy (f f) are
measurable (¢ = 1,2); then

@ L= {y )| D ([f 0092)
= D,([f, 4y v2)) = F (s, )}

are measurable. Let

/ Mef iy m)n <+ J 380, y30< +o0 6 = 1,2}
—h -1
Since f € Llog*L, M,f is locally integrable (¢ = 1,2), so that given n>1,

almost all (¥, ¥,) belong to H,. Then almost all (yl, y,) belong to Q1 H,.
n,

Since f € Llog*L, we also have f*(y;, ¥.) < + co a.e. Hence T is measurable.
(b) Almost all points (y,,y.) € T+ We have only to demonstrate (by
(1)) that

Hn = { (Y1, ¥2)

8L, = 8] (¢=1,2),

for it (y., ys) ¢, then f(yy, y2) = 0 by hypothesis, and

1
.Iﬂff((), Yo) A0 =0 = f(y1, ¥a)s
I

1
TQ—Iff(yla nydy =0 = f(y1, ¥
@
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it 6(I)< &5 6(Q) < ¢; for ¢ > 0 sufficiently small. §nL; is measurable;
then : .

1 1
L 08 = [(L;08),,ldy; = [[(T;08),,1dys  (i=1,2).
[ [

Tor almost all (y,, ¥,) ‘
@) Jfgnman< +oo and  [1(0,9:)a0< +oco.
Then if we take (v, y,) for which (2) holds, we get

lim f 76,900 = £(0, y3) @

0el [
8I—0

These are the differentiation points of f( ,y,): B—R, so that [(L;NS), |

= 1 for nearly all y,, with 0 <y, < 1. Hence |L; N8| = |§] == 1. Snmlculy, -

|L.n8) = |8] = 1.
Nowlet
2 = {y,y:) €Tl (T8 | = T NS),,l =1 if 0<yy,y, <1}

(c) Almost all points (y4, ¥») € 2: Clearly almost all points (v, v,) ¢ S
belong to Q. We shall gee that [2nS| = 1. Since

Q =T {yy, 4l (T8 | = (T8, =1 if 0y, 9. <1},
‘then
Q08 = (I'n8) n{(yy, ya)l (T N8| = [(TN8),] =1}
= (T08)n({yal (T N8),,| =1} x{ysl (T N8),,| =1}),.

and
1
JUT A8, ldy; = [TAS] =1.
4

Since (TN8),|<1 for all y,, then [(Tn8),|==1 a.e. Consequently,
[l I( (I'n8),,] =1} =1

Similaxty, |{1/21 (T N8)y,| —1}| =1, hence |2N8| =1, as wanted. Lot
(Y1, ¥a) € 2. Then M,f(y., y,) < —I«oo Given &> 0 there oxists (a, b)
with a <y, < b such that

b
1
® Mof s, 43) < 5= [ Fwy m)n-te,
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(a, b) depending on (y4, %,) and &, We have

Flys ) = hm — ff (6, 7)d0
6T-+0
ulel

for almost all 4 since (yy,y,) e Q. Now given

Bl ) =7 f/ (0,00, yielzu>1,

where 601,-+0, obviously ¢, (¥, 77) < M f(yy, u). Sinee (iy, ¥2) € 2, M f(yq, *)
is locally integrable, then by dominated convergence we have
i

1
T f Ty mydn = ’**‘fhm In Y1y ) A

= 111? ﬁ; f g0 W1y 1) dn

1 1
— % ( f (0, dF)) Ty <f* Wy 2
1m T IInI 1o, n dn <F* W1y 92)-
Hence, by (3),
Mof (s, y2) < S (W1, ¥2)+¢ (> 0 arbitrary)
for every (¥, ¥.) € 2. Similarly, i
Mof (4 Yo) < F* YY)
for every (i, ¥,) € 2.
CororrARy 1. Let f e L*(R?); then
Mif @y 92) <P Wy 92) @6 (0 =1,2).

Proof. We take f”—>f such that f, e Llog*L for all n > 1. Let ¢,

= inff,. Therefore @, 7 f and ¢, € Llog™L (n > 1). Hence,
T

M f (s o)l T W, (yy 92) < Hmgk (3, 7)< (0, ) v
n n

DrriNrrioN 5. We define the product operators M,47, and MM,
by

1 r g )
MM f (g, ye) = sup — (snp »»»»» j Jee r/)d-;/)cw
' f v J/,c]; ‘T J W) W! ’ !

MM of (s 41s) = SUpP —— f (,up I f 10, dn) 0.

yael) \QI wiel

4 - Studia Math, 76.%
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Remarks. (i) /< MILf and f' < M3 together with (1), world give
(i) If f e Llog* L, then M,M,f and M, M, f are well delined and finite s L
o 3 N 1
almost everywhere. See [2]. ) ' 0 = lim TT f(——— ff(a, n)dn)dﬂ —lim —— ff(@, 1Y) a0
TaEOREM 2. Let f e LlogtL. Let (¥4, ¥,) be « point of senm-absol.ute [T, I 1,1 o Z,] .
eccentricity for this function with (yy, y,) € Q; and such that (Y, Y,) is a dif-
fea'emiatimy@ J;Joiv‘n, then v ’ > (e—f*(yy, ¥2)) HF* e y2) — £/2) = ¢/2
@y vs) < Mif, ¥a) if |I,]—-0 because (ys,¥,) is a differentiation point which belongs to Q.
JIY L = .

If |I,]—>|I] = ¢> 0, we have

11| [W"] jf ,n)dn—f(o;./z]d(?

or

T Wy y3) < Mof (U3, 92) -

Proof. There exists (I, X@,),s, such that

i -~ f[ﬁml—QLI [#e man—po,99]a0 ~ o,
P ga) =l o f 700, 7)d0dn. ; @

I %0y In both cases we have an absurd. Then

Without loss of generality let us assume 1
Py ) <lim—— [[£06, y)1d0+ 2 < Mf(gs, 92) +e.
In

|In| | "l
—> - oo.
19l CO.ROLLARY 2. Let f e Llog™ L. If almost all points (Y., ys) €S are
As 0< IL,l; |9, < constant, there exist subsequences |I,|; [@,| (n=1) of semi-absolute eccentricity for this fumetion, then
with |I,|—e¢ and [@,|—0. Given & > 0 since f*(yy, 4.) < o0 if (¥, ¥2) & £2 .
then ! v v T @1 y2) = max(Myf (v, ¥2); Maf (4, 3)) aee. in 8.
1 _ TumorEM 3. Let f e Llog™L. Let (yy,ys) € 2 be a differentiation point
1) W 92) < m—l f fOymaddn+ e/2 Jor this function. Then one of the following statements is valid:
" IR0,
. 1
if #>=mn, On the other hand, (1) Yy ys) = Tar ff(Ga 7 dfdn; (Y1, Ys) €Q,
. . s
[ 16 =16, 2
—_— Y - Yo s
@l ) T (1) Py = ff 9405 yel,
“for almost all § since {@,|—>0 and (3, 4,) € 2. Then 1
() T 99 = g [fnman;  vieH,
70 92) < lim f LF(0, 90102 g
" (iv) W ys) = (s, ¥a)s

since the inequality where @, I and H are intervals.

Let us consider ¥, ,: F'—+R defined in the following manner:

1
tim 7o [ 100,92 6140+ < (33, 1),

nl I

F = {(a,b,6,d)] a<y:<b; 6Ky d},
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by 4
1 ___j (177- jf(ﬁ, 7;)(117)(10 it atbyed,
b—a / -
1 b
—*“'ff(ay Ya) A0 it as£b ¢ =d,
g’(y,,vy(“’ b, e, d) = b—a J
L8 ¢ wbesa
o ff(’.’/.u ) dn i W o= by ¢oiod,
d—c .
VICRED) 1[’ @ = bye o d.

v (1,1,,)_,) is continuous:
Case 1. @ = by ¢ # d. Lot us consider (a,, by, ¢,, d,)—(, b, ¢, d); then

b,—a,>0; d,—e,> 0 if n=n, and
’ b oa
1 1 ; e
s —— ——mj ( f 0, n)dy) d0.
b,—a, d,—c, f ( ff(@ m du)d b—a d o (0, ) /)
[t Cn 8

S Cuse TX. 4 # by ¢ = d. We take (a,b,, ¢, d,)>(a,b, ¢, d), b, —a,
> 0; 0 d, —o, if 72 n,. Suppose 0 < d, —¢, il # = ny; then

1 by dy,
i - (0, n)dn) d0
@) lim b, —a, af ( d,—¢, f F0m) ’])
by dy,
. 1 . . 1 g YRY
= 1171111 e .hin "j ( 7”—:?(»”— Lf fo, ;])(ln) do.
Since
1 T
— [ (0, m)iy < Mo (0, 72)
dnw('n c;}

(which ig locally integrable hecause (¥, ) ¢ £2), (1) can be written as

4 b
1o . 1 " 1
7 jaj 11711“ YATRN (0)'11:11 (717:0“" I S, 1/)v(h/) do - T ! 100, y.)d0
7 N «
because
ty

[ 100, myay -

n

1
lim, ——m O won
n d1 —C, ./( 7./_) IS
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(This being true because (y,y,) e 2.) If there exists a subsequence

(("/ﬂ dn;.)A ., Such that ¢ Cpp, = Jw k=1, obviously,
Vage
e [ 08, s )26 ~—f (6, y,)d6.
b"/: -— “‘n/;, ﬂ);[ Je—roa f 2

Case TXI. a == b; ¢ = d; analogous to Case IL.
Case IV. a = b3 ¢ = d. Sinee (y,, ¥.) is a differentiation point,

I dy

L 1
lim oo T J ( . ) P
,,31 b, —a, d,~c, ; J(O0, n)dn A6 = f(yy, ¥s)
by Cn
B (g byy € d)=>(ay by €, @)y by —a, > 0, d,—c, > 0 (n3=n,). Moreover,

if there exists a subsequence (@9 By Jiza SUCh that @, = b =0

(k> 1), then

, d,

np, ngd g T nk

dy "

T | S a1, )
€ nkw(‘uk ".;‘Ic
sinee (1, ¥.) € 2. Hence Y’(yl‘”») is continuous.
Now suppose without loss of generality that (y,,y.) e 8; then
sup ¥, L (@, by 6, d) = sap
(@ be,der (@sb,e.d)e(S % 8)~ F
where 838 = {(a, b, ¢, d)] 0 < a,b,¢,d<1}. This is clear since f is sup-
ported in 8, which means that the average

l'[j(upflg) (a, b, ¢, d),

b

= -——/ ff ,’)7)(17/)(26

b—a d

is the greatest if we select (a, b) % (¢, d) € 8, that is, (a, b, ¢,d) e 8% 8.
Similarty, for any intervals (a, b), (¢, d), the averages

b

1
(4) e f 110, 9205
(B) d—it [f (s m)dy

) € [0,1], that is if we take in case (A)0 < ¢
1. Hence there exists

are the greatest if (e, b), (¢,
=y, = {1 and in case ('B) 0L =y, =b<<
(@, b, & d) e ' such that

sup ¥, (@ 0,6, d) = W, (@, b, E, d).

(a.bic,d)el
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DEFINITION 6. Let f € I'(R?). We define the wide partial upper deriva-
tives of (ff) in (y5, ¥, by:

—_— R 1 ;
Dh(ff, Wy ’1/2)) =sup{ im ff(l?,n)df)d'ﬂ},
(y](,ug)el,, 2] Iy
()0

_— N 1 o
Diu(ff, (W1 ?/a)) = ﬁup{ lim 57 ff(O, n)twdn},
(v, vp)ely, |'"] Iy,
. {1;“--»()
where
[I] = height of the interval I,
|77] = measure of the base of I,,.

CorOLLARY 3. Let feLlogt L; then

Dy ( [1, 1)) = Maf(as 32) avc.

DL ( [ £,y 42)) = Maf oy 92) e

Proof. For any sequence of intervals (I,),.., such that |I}|—0 with

Wy ¥y el, (n>1), (¥, ¥.) € 2 being a differentiation point, we have -

@)  im I ff (6, n)d6dn

>0 Mol 7,

= lim —— f f(8,n)dodn
I]*l ] 0 'n/ I
] IZ,,M 1 . ‘
= Tm o ( s 1, mao)a
I ’ﬂl festh dn/ - n] o ”n, M
ke g
1

= ({~( ‘ SO m)dn by Theorem 33 case JI
e

# I, == dy,— ¢, —~d—c> 0, and (1) is equal b0 £y, ¥,) it |1
(41, ¥2) 18 a differentiation point). Ience

Dy ([ £ 1) < Maf sy 972) e,

'*/‘ () (8ince

Nole on the strong mazimal operator

o
w
~1

Now let

/4
. 1
Maf (29 < 7= [0, Min +e,
4

where ¢ <y, <d, (M,f(yy, ¢,)< +o0 since (y,,y,) € 2) (¢, d) depending
N (%5, 9,) and e.

Now choose I, = H,xQ, (n>1) such that
1@, = |I8]->d—¢ and |H,| = [I1|—0.
Again by Theorem 3; Case II,

im —— fj 0, n)d0dn = —*«ff (Y1y m)dn,

7 n[
1, 1-0

hence D%, (f f, (43, 9a)) &> Maf(ys, 92) (6> 0 arbitrary) i (g5, 7,) € Q.
This implies

_“D"?"( ff; (Y1 yz)) = Mof(y1, y2) aee.

Prorosirion 3. There exists a function f € LlogtL and some interval
I = 89, being 8° the interior of 8, such that y,f ¢ L(log*tL)* and M,f(yy, ¥s)
= M M,f(y, 92) for all (y1,9.) € 8.

Proof. Let us select g: R—R such that

g=0in ¥[0,1]; ¢ =£0in [0,1]; g¢ellog*L

and gy g ¢ L(log*L)® being 0 < a<< f<< 1.

Let f: R*-+R be defined by
gy i 8, # 9,
0 it 8, =9;
then f is supported in the unit cube §. Let (yy, 7/2) e8°

FWu ya) = {

My Mof (41, ye) =  sup

LS o L2 i)
a<yy<b b— 1<y;,<d

b
1 ~
= s == [ (0,430 = Myf(ys, 92),

u<2/1<b han

because i ¢<n<d, then f(0,7) =f(0,y.) = ¢(0), and the average
a

mjif ff (0, n)dn is the greatest if (e, d) = [0,1]. Obviously, fe.Llogt L
Aund xffeﬁll (log*Ly* for some interval I, I < 8°.
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COROLIARY 4. There eaists [ & Llog™ L sueh that zof ¢ L(log™ Ly (I < &0
an interval) satisfying

f M,f = J/*

Proof. The result follows from Theorem 1 and Proposition 3. The last
corollary shows us that the integrability over every measurable set is an
essential condition for the characterization of the producet operator M, M,
by meang of L(log"L)2 See [1].

TUROREM 4. Let f € L' (R*) such that f e

< JALIf < e

&

- ows then (g, )" ds integrable

over every bounded set for any 1nicmmb I = 8o
Proof. Let

1
A=y y) €81 [ min< + o0,
J .

1

S0, y2) @0 <+ 0o and f*(y, ) <

[

l-m};

then |A| == |S] == 1.
Now we define
B = {(ym o) € A| ]*4111[ = IA;/E[ i i‘}
and

O = {Wuy:) € Bl B, | = |B,,| =1},

nl =
go that |B| = |C] = |8] = 1.
Given. §, > 0, we choose (p1y ¢1) € O such that
(215 @) — (0, O = (P, gl <2 &y

By definition, |B, | = |B, | =1.

Sinee |B, |==1, we can select (py, q,),
satisfying

(225 qa) = (1, 0)] < (Pos q0) & 8.

Since ]Bmi = |A1,2{ =1, we take ¢, (-sfHJ,lmA iy

dy and
such  that

Py ¢2) = (0, DI < S0 (pay ga) — (1, 1< 8.

Then (py, 1) € C5 (Poy q1) a0d (Dy, §u) € B3 (py, gs) © .A.'(1(;1|.s<‘<1\1(\11(]‘y, there
exists an interv: Ll I = 8° with vertex (p;, q,) (i = 1,2;J = 1,2) lubltr.ml)
near from the vertex of the unit cube § such that (p,, q;) ¢ A (¢
J =1,2). ‘

1,2

‘
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Next 101; s consider

: U QU s
Lvt ¢ = 71/, let I be the interval we have constructed, f the function
of the hypothesis.

the sets (Q)iey that are shown in Fig. 2,

e — (P2,42)
l{' ——— ;
N |
]
| I
i
!
]
(pr,a1) —(p2.q1)
TFig. 1
Y
(o3 O Qs
Q4 Ny QS
Rgl
Us Oy Qs
TFig. 2

Given &> 0, if g*(ty, yo) < +o0 (¢*< +oo a.e) and (Y ¥2) € Qo
there exists an interval H for which (y4,¥.) € H and

g* (W1, i) < IUI IG(U, y)d0dn e
1 g 1 "
[ g(0, n)dOdn &< - g(@,")])d@d?}-%"a
|II| I[J] ![i mbt 1;[11‘ ’
6, )0y -+e < f* (o @)+
‘Hns {f DA +e < f (Do 1)+ e
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for if H is an interval such that |[H NI|> 0 and (yy,y,) € H, with (Y15 ¥a)
€@, then

(s 1) e HNS.

(See Fig. 1; Fig. 2.) Hence g*(yy, ¥5) < f* (s, ¢1) a-€. in Q. Now let D be
.2 bounded set.

[ 0 <F (o gD @y < + o0
DAQg

sinee (p, ¢1) € 4. The procedure is analogous with D@y Déy; DG,
Let (yy, 42) € @5 and g*(yy, ¥,) < +oc. Given &> 0, there oxists /I for
which (y,, ¥,) € H and

1
i [ —
G (Y1, Y2) < ] Hf.‘l(o’ 7)d0dn ¢

1
< m.u;[gﬂo, 1) a0dn+e < f*(py, ya) e

Since (s, 45) € HNS, ¢* (Y, ¥a) < F*(Pay y2)- Hence
1

J o vaanay, = [

Des b (DO
1
</
0
1

= [ 1D Qo) I (2o 2)iss

0

(s ) dys) dyy

T (pes ) ‘12'11) dy,
(DG,

1
< J'[ff*(f’m Yaddy, < - oo
0

--sincer (P2y €1), (Psy Gs) € A and since D is bounded, {(DN@Q;),,.| <5 M.
The procedure is analogous for 2.1D;Q,ND; Q,nD. Henee [
< oo &
7 COROLLARY 5. There ewists fe Llog™ L, such that FéLogtL), and
such that f* is locally integrable.
Proof. Follows immediately from the previous theorem.,
TeBOREM 5. Let f € Llog™L, and lot

el P " o - o
o@) = a(log*a)ss hon J* be imtegrable over {f*:> 1} if
& )75 b

- 1 . ]
] et < oo (i =1,),
(U= F~K}nS
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where

N
1 .\ 1
g (0, m) = Z o Af 16, m)n,

fe=s1

N 3

X 1
2 — 2 el 10
gn (0, 1) XIIC(O) ] f[ (6, m)ao,

N
I, being disjoint intervals in K such that U I =[0,1]; [I] = /N, and
' ’ e

1
K: B-+B a measurable function such that [o(K)dr < +oco and I 0.
0

for almost all ¢, since A is a seb of finite measure. Then 4, = JQ} Q7

where the sets @ ave half-open cubic intervals, disjoint and such that for
each J one has

a(Qy, 04n,)

8(Qy)

(Whitney’s covering theorem). See [3], p. 10. Then there Exists an expan-
sion Q% of @, with conter at the center of @, such that 1@ = 0,1Q,1. Tt is
clear that, choosing conveniently the constant ¢, that depends only on
the dimension, we have

1< <3

Q5 + 0.

So if @« < y, < b, we have

. b
T(gz_'(g(biaff(o,n)do)d77<a.

[
Hence .
O
(..,.1 - 1 CY {,__1___ f
T Tl oy «
h 1 1 b
.
w5, « B Ay @
Y
go that
*' X=I
(1) el (Y ¥2) > a}| = (Qla)uiyﬁb h—a ’

“ (f"‘>‘ut)1',l
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]

¢ being a constant that depends only on the dimension. By (1) and the
hypothesis we have

00> f A j I > ajda = j (f (> a)”l[(lu) dy,
(re>13 1 &l
i ’:
{([ ( i } (( 1o, n)dfr/)(w)) (I(L) diyy
A g ST /1, — (l e o
{ PRy,

b

1 s 1
=0 [ “‘f( UO wmay, 1) da) dy) o) dy,
T (j}}}lz b—a ) j F(Os ) 2o, (1) da) dp ) @0 dy,

I

=0 f( sup 1 (ff 0, n)Log f*(y,, (17/)(10)(11/1
a<yy<b b — a Y

Now we define for 0 <<y <<1; 0<<OCL

N
1 ,
g5 (0, m) = gy (6, ) sz, T J 10~ DV ) h0),
/c-—~=l
il = 1/N (k =1,... N,), I, being dISJoxnt intervals in R such that U1
, kel
== [0,1]. Cleatly

N
F s m) = Magy(yay m) = 3 11, (1) IMhy (1)
k=1

since

14 N

Mgy (g, m) = (
vl = s f 2 f (0, ya)iys) 0
Iy

b
== K ——

P [ L [ 0, a.) a0 -
,1<7,1<1,b»—a 1 1_[. 7?/u)h’/a)< Mhy(314)

for u € I;. Therefore
d f ( suy o
a<iy<b b— a

(ff 0, m)logti™ (y,, ;,)(1;7) (10) dy,
#
=0 JUp
f(a<ylz<):b -—a

b 1

( [ 100, 0108 s s, 1)) (w) dyy
()
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1 b N
- f( s ‘a f(Zloo*m, () ffa 5 an) do) dy,
h (L= IIL"'I -

l

b N
11 N’ 1
o[ sup Uy () (- az) )ao)
o (o 5t o (]/1 log M) 7 6wy Jao) av,
[ o= . I3

<h b~
v \e<yp<h

1

N
e [ L M( M flog “.]l/[’la,,“(g/l)'hk)) W)y,

a
N frerd
1N
= Z.N I 3 Iy (1) (10g "y (1)) 2y -
Q f“Ml
Sinco

1
;[ M(logt Mhy (1) Ry} .0 +  Mllog* My Tiy)

<M ( 2 Log+ My (y,) -' hk)

:md
oo

J log* My - Mhydyry = f (L+log*a)] My > al des

(FE2EE [ ) aa e 1

f (g >a)
?f(f IOQ da) hydyy = %—fhh J1 10g+711 (?/1))261./1
[}]

Consequently, if K: RB-+R is as in the hypothesis,

] N
,f,,,’ ‘ N i (wa)(log* Iy ()2
A‘ ll /I 1
.
i (f — )log* (f ~I0) 2 dysdys

BN Y e f RS

¢ f '

2N

(f =) {log™ (f — IO))2dy dy,
l‘“'g_l(/,,,‘v.f—qus )

(f — E){log* (f — IO)2dydy.

‘I/ N (J~E)n s
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by definition of g,.

Let g(z) = x(logtx): Since ¢ is convex,

c
2
{uN=—B}n8

C \ 07 .
ol Ky dys > |t 25 |,

{an>I=K3 o8

g0 that
ls] ~ o ~ ¢ » ([)
> j w(f/z)dyld?/zs\wl\—,; o (f~K)dy,dy,--C f V,—-d%

(o= ~K)n s {VNV]'—K'}A»S

f*d1 14y a-- Of'ZEF;"dJ1< + o0
(1¥>1) )

COROLLARY 6. Let f be a function satisfying Vi[f(0, )] < X(0) for all
8e0,1], or Vi[f(-,n)] <K(y) for all nero 1], where V‘[f(&,.)‘] and
Volf(-, 1)1 denote the fuamatzon an [0, 1] of £(0, -) and of f(-, n), respectively,
and K: R—R is such that f K (logtK)?
that f e L(log™L).

Then f e L{log*L)? if and only if f* is integrable over (f* > 1).

1< K(0) for all e [0,1] and [ f*

“+o0, K 2= 0. Suppose further

Proof. Let us suppose Vi[f(6,

1)
< +oc0; then -
N
-1 X,
6,7) — g (0 =| 6, ) — i (0
710, m) =6, 1 = [£06,— 3] f 10, y2)dy

~ 710, m) -

] ~
i [0, ydyy (i nely)
Iy

1 1 ew X
gﬁlf“’ 1) —=F(6, 92)| Ay < VALF(0, )] < & (0)

for all (0,7) €8 hence {gy = f—K}N N = § for all N 3 1. Consequently,
[ o(f12)dy.dy, < + co. Now it f e L (log* JJ)a the inequality

o 1) £ > )i < [ frog™ L aysay,

proves the converse. See [3], p.6.

Section IL. All functions considered will he non negative and supported
in the unit eube. The support of a function f will be denoted by supp f.
Poinis of absolute eccentricity.

Note on the sirong maximal operator 245-

Remarks. Lebt f e I (B*) and f 5= 0. If (yy, y,) is a point such thab.
8y, = 8y, = O, then (y,, ¥,) cannot be of semi-absolute eccentricity. Hence,.
neither can it be of absolute eccentricity.

THEOREM 6. Let
Lio(R2)=

H = {f e IL,(RY)]
almost all points of f in § are of absolute eccentricity?}.

= {f e I}(B*)] f>0; supp f < 8},

Then H is of the second category in IL,(R?). More explicitly, H® is of
the first category in IL,(R?) (H® = {f e L(R®)| f ¢ H)).
Proof. Let
BE = {f e I3, (B")] 1471 > 1/1},
where 42 denotes the set of all points (Y1) ¥5) of partial M-eccentricity for
f such that (y,,¥,) € 8. Then the following statements are verified:
(i) B is closed in L'(R?).
(ii) B is mowhere dense in Ii (R%).
1
() Tiet (f,)uss € BY and f,5f. Let

Ryy = {I intervals| 1/M < |I,| /|1 < M, T =TI, x I}
and let
1y ys) = sup ff (6, n)dd dy.
gll’l/o)EII |

Olearly, (y1,¥2) éA;l"" if and only if f(yy, ¥») = f*(¥1, ¥,). Since
=M > a}| < {u ¥2)| (fa—F" > a}|

a-M
<'—a——f 1f1),'_f]——>0)

s, 921 17

¢ Deing a congtant depending only on the dimension, AT M Hence

there exists a subsequence (), satisfying f2'—f™ a. e
Let ¢, == mf j,, 0< g, <f, and g, 7 f. Thelefore on 7 f*. To see this

et (41, ¥s) clﬂz mnd B eR, f>0 such that
T v2) > /35

then there exists an interval I for which — f f> 8, (yy,y,) €I, more-

1 1 oo, 1 . " . )
over,-m— [f @ —->—ITI~I ! f, so that l_fl If ¢, >f if n>=mn, meaning that
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Gnys ¥2) > fif 0= n,. Tor that reason lim g (g, 4u) 2 5 (10, 44), hence
123
Tim ¢ (715 ¥s) = f" (2, =) Tor all (yy,9,) e BL Let
n

A =1lim A;}f and B = {(y5, 9l (’/15 i) 4> f'M(?ll: Ha)}s
kD .

then [B| = 0. Since |d]| = lﬁniAﬂf} hm\A“}“ 1/L, then |4 B
= 4]z 1L
Let (11,9, e 4 —B; therefore (yy,y,) & U A}‘“’r and (i, 9.) ¢ B,
gl *

hence
@ s U2) S Wy Wa) = Fal (s 92)3
and

which implies that f”‘(y/l, Yo) = Yy, ) for all (y,,y.) €. 4 —B. Con-
sequently 4 —B < A} and 4| > |4 —B|z1/L.

(ii): B is nowhere dense in LL,(RY): Given £ 0, if V,( - {y
& LLJ(R)| lg~fllb< &}, let us see that V,.(f)nLlog™l & Iy‘”r‘\lllmr'h
We define for N =1, He N fixed:

118

r","’ it () el (h1),
N BES ]ﬂ [

0 i () ¢ B, (kz1),

where |8, /| Byt = Ha(H) (k= 1) 8,, B, intervals, a(H) = \’ Lk ~logH;

I U 8,1 =1 and U 7 < 8. (Saks’ construction; [3], pp 98, 99.) Given

&> 0 let j be a mnple fuuctxon such that 0 < _/ < f and | f = flly << &/23

L
then f+gy — f since gN — 0. Hence we have fgy e LloghL, f4-gy

Newoo Neoo
e LLo(B®) and [[(f+ ¢g4) —fl < ¢ it N 2 N,. Now let us see that f by & B
if NN, We have
(1) Ko 9l (03 Wy 92) = a}| =0, for any « = 0,
Nevoa
and for almost all (y,, ¥,) there exists an interval I v fov which (for I big
enough)

) L r
(2) T ,j gy>N and (Y, ¥) € Ly,
N

(Bee [3], p. 99.)
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Now given o> 0, § € By, with (yy, 9,) @, for a subsequence
(¥ 51) (1) yiclds ’ ’ q (Inlvs1 .

(@1 ¥2)| 0% @ 42) > a}| < 1/2N+1. L.

Morcover, if N > E+-a, where R = |f|,, we have using (2),

1 rz
Kﬂ' f ‘q.NI T()"I'fj < gfl\)!(yjy ?/2) 'i"R
7]

1 1 1,
+R< N < — — —
atb< V<7 Ing< ] 2[91\7‘?' T Iff

i (2 92) ¢ {1 ¥2)] 9% (W3, ¥) > a for some N >>1} = B. Hence, for al-
most all. (y1, y») € B® = 8§ —B, given Q e R, such that (y,, ,) € @, there
exists an interval Iy with (yq,¥y,) eIy satisfying

ffMN) arE<—— f(f+gN) for N> R-+ta.
Iwl

N

IQI

Iy ¢Ry if N>R+ asince — ng > Nand IyeR, forsome N> R+a

INI e
would give g¥f (44, ¥2) > N > R+ a > a, where (yy, ¥,) ¢ B, which is absurd.
'I.‘hen almost all (yy, ¥,) € B® are not in A(fﬂ, ¥ it N>R+a, and |B°|

> 1—1/2L since |B|< 1/2L. Consequently, |A(f+w)| <1/L if N>R+ a.
Hence

FroweBY it N> |flet1
(we choose a <1). We conclude that V,(f)nLlog*L & B¥ nLlogtL,
as wanted; hence
V.(f) € BY = BY.
Since H® = B¥, the thesis is verified.
Loy M1 .

OreN Proprum, We conjecture that there exists feL log™ I, with
suppf < 8 such that almost all points in § are of absolute eccentricity.
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On a theorem of Lebow and Mlak for
several commuting operators

by
J.JANAS (Krakéw)

Abstract. A result of Mlak concerning the spectral radius of an operator in a Hil-
bert space is extended to several commuting operators.

Let H be a complex Hilbert space. Denote by L(H) the Banach
algebra of all bounded linear operators in H. For an n-tuple of pairwise
commuting operators T,..., T, with the Taylor joint spectrum o(T%, ...

-y I) contained in the open wunit hall B = ¢* (B={zel" 2] <1})
we d(denote by

M(ET) =T — 251’{, Ec OB
i=] °

the topological boundary of B,
Note that M (&, T) is invertible for every &edB (by the speetral

" mapping theorem for o(T,, I

The operator-valued function I/ (¢, 7)~" plays the role of the Fredholm
resolvent for the above system 71, ..., T,. In fact, it is easy to prove that
for every function f holomorphic in B and continuous in B (the closure)
we have the equality

FTys ey L) = [ I(E DY (8) (8,

B

where (&) is the (n —1, n) differential form given explicitly by Henkiny
see [6] for the definition.

Let us recall some definitions and notations. Denote by U
=={# e C, |2| <1} the open unit dise. For »>1 and a0 let

Ar = {f, J: U-C is holomorphic and [ |7 (1 —Je2)* dwdy < +oo}.
(#2

For feA™ let fifI5, = [IfI°(1 —le))°dwdy. The space A ig called the
[

Bergman space and has been mvestigated in detail by Horowitz [2], [3]
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