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Spline bases in classical function spaces on compact 0 manifolds
Part I

by
Z. CIESIELSKI and T. FIGIEL (Sopot)

Abstract. Sobolev and Besov spaces on smooth compact manifolds are treated.

The main results are formulated in Theorems A and B. Theorem A gives existence

" of a biorthogonal system of functions with “all possible” nice properties as a Schauder
basis in Soholev spaces on smooth compact manifolds. Theorem B gives existence of
Schauder bases in Besov spaces which in the same time give linear isomorphisms

of those spaces with some sequence gpaces. In both theorems the duality questmns
are congidered.

This part of the paper contains smtable decomposition of the ma.mfold which
induces a décomposition of function spa.ces over the manifold into direct sum of spaces
of the same type on cubes with boundary conditions.

1. Introduction. In this paper we study Sobolev and Besov spaces
on a compact d-dimensional 0% manifold M (the relevant definifions are
recalled in Sections 2 and 4). Our objective is to construct Schaunder bases
in these gpaces with celtam special properties. These properties elucidate
the structure of the spaces and their embeddings. Some applications

- {e.g. improved -Sobolev type embedding theorems, estimates for
the eigenvalues of integral operators, and asymptotic estimates for the
Kolmogorov diameters in the class of Besov spaces) are given in Section 11.

There are two principal results in this paper. In both ‘th_eoreins ©is
a fixed finite measure on M (cf. Section 4) émd m is a fixed positiv'é integer.

TEEOREM A. There is a sequence (f,)o., of elements of O™ (M) with the
fallowmg properties:

) (f,) is @ Schauder basis in O (M) and also in the Sobolev spaces
W M forO < m,

(A2) (£,) is an unconditional Schauder basis in each of the spaces WE (M)
f070<k<'m, 1<p< o0, :

(A3) there is.a (unique) sequence (gn)ﬂ;,1 i C""(M) 4.6 the O™, closure
of the set of smooth fzmctwns on M which vanish in a ne@ghbwhood of tha
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(A1) (g,) is @ Sohaudef“ basis in each of the spaces 0"(M ) and W"( )
(defined analogously to 0’”( Y for 0 <

(A2') (g,) is an unconditional ;S'chauder basis in each of the spaces
W"(M) Jor 0<k<m, 1<p< oo.

Let us 1emark that the spaces listed in (A1) and (Al’) are known not
to admit any unconditional Schauder bagis.

It is important to mote that, in view of (A8), the statement (Al’)
(resp. (A2'), (A1), (A2)) is equivalent by duality to the assertion that (AlL)
(rexp. (A2), (ALl'), (A2')) remains true if 0>%k> —m (cf. Section 4)
(Throughout this paper we avoid working with the gpaces Wk (resp. B, o)
with k< 0 (resp. s < 0).) This can be achieved by proving ‘nhe correspond—
ing dual statements concerning the conjugate gpace (cf. Section 4). For
necesyary facts concerning duality and interpolation properties of these
spaces we refer to [17].

The sequences (f,), (g,) constructed in Theorem A are also bases

in the Besov spaces Bj (M) and Bj (M) (and they are unconditional
if 1< p<< o0) for —m< s<m, L<p, < oo,

This follows from the well-known interpolation formulae for the
Besov spaces on M (cf. (4.1) below). A stronger result in the Besov case
is contained in Theorem B below.

Given a numerical sequence a = (a,)2., and parameters — oo << e
< o0, 1K p,q< oo we let

o omF1_ A\l
tay = (X (2 3 )
d =0 g

with the usual modifications if p or ¢ equals co. By [
space of those sequences & such that la[] < 0.
. m,q

TEEOREM B. There is a sequence (@,)>., which is a Schauder basis in
the spaces WH(M) for 1< p << co. Moreover, for —m < s< m, 1<p,
1< oo, jj @ = (@)1 %8 @ numerical sequence (with @, = 0 for large n),

then
<l 2 a0

where ¢ = ¢/d—1[p+1/2 and 0 << oo depends only on m, s and the manifold.

Oonsequently, the biorthogonal functions (y,)2., (defined analogousty-
ag in (A3)) form a Schauder basis in the spaces VE’;(M Y for 1<p< o
Also the estimates

we denote the

{(B1) “Hlallg

BQ (m 0 ”a”b

(B2) O™ bl

<| 30

B S < Olbllg

& a®©
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are satisfied (with the same values of C and p) for —m<s<m,1<p,q
< oo and any (finitely non-zero) sequence b = (5,)2;.
In particular, (¢,) and (y,) form unconditional bases in the respect-

ive Besov spaces (here by Bj (M) or ﬁ;,w(M) we mean the closure of
the smooth functions in the respective norm). Moreover, the map

fe JJ Foadu),

establishes an isomorphism between the scale of Besov spaces Bj (M),
8| <m,1<p,q< oo, and the corresponding subset of the (much simpler)
scale of the spaces b5, ,

We have not settled the question whether the sequence (p,) is a
basis in the Sobolev spaces WE(M) for 1< p<< 2 or 2< p < co.

Our construction of bases in a function space # (M) (where & is
either W% or B3 ) on the manifold M is done in two stages. First we find
& decompos1t1on of F (M) into a finite direct sum whose summands
are linearly isomorphic to some standard spaces. When this is acecom-
plished, it suffices to construct appropriate Schauder bases in those
standard spaces.

It turns out that a good choice of the standard spaces are the spaces
which we-denote by #(Q),. (Here @ = <0, 1% is the d-dimensional cube
and Z is the union of some (d —1)-dimensional closed faces of @.) They con-
sist of those functions in # (@) which “vanish” on Z.

The main point is that the study of #(Q), can be reduced to the case
where d = 1 if one congiders suitable spaces of vector-valued funections.
This case is treated using spline function theory.

For technical reasons the paper has been divided into two parts.
In Part IT we construct bases in the standard spaces F(Q)z. In Part I we
give preliminary material and construct the decomposition of & (M).

In Section 3 we decompose the manifold M, using basic facts from
Morse theory, into finitely many non-overlapping cubes. (The use of Morse
theory was suggested to us by Professor K. Geba.) This decomposition
has some special properties which enable us to gonstruct (in Section 6)
a sequence of extension operators which is used in order to decompose
F(M).

The technical tools for Section 6 are developed in Section 5 where
we give explicit constructions of various extension operators and show
how to prove their continuity.

Finally, Section 4 contains a general description of the whole construc-
tion of the bases.

We ghould mention that in [16] we sketched the earlier less elaborate
version of the construction. At that time we could prove parts (Al), (A2)
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(or (Al"), (A2") of Theorem A. Also Theorem B was obtained only for
(p,) and. 0 < s << m (or else for (y,) and 0 < s < m).

Comstructions of simultaneous Schauder bases in spaces of smooth
functions on a manifold M were previously known in case where M is
a product of 1-dimensional compact manifolds (cf. [14], [33]). Tt secms
that our results are new even in the case where M is the 2-dimensional
sphere or digk.

A novelty in our approach is also the fact that at no place in the proofs
we use the methods of the complex functions theory.

2. Preliminaries on function spaces on subsets of R? In this section
wo give some definitions and deseribe certain basic properties of spaces
of Sobolev and Besov type defined on an open subset 2 of the
space R?, @ > 1. We are interested in properties of certain extension oper-
ators and in characterizations in terms of moduli of smoothness and inter-
polation spaces.

For the purposes of this paper the case where 2 is a bounded parallel-
epiped is the most important. We include, however, some results for more
general sets. This is necessary if one wants to extend the results to the
cage of subsets of manifolds.

Actually, for some technical reasons, we often prefer to use cloged
sets in this context. Let us agree that if Q = IntF, where F is a closed
set and we have defined a function space #(Q), then & (F) will be just
another notation for #(2). (This convention will be used only for “good?”
sets F', e.g. always one has F = I and F\ Q2 bas measure zero.) In par-
ticular, we do this when we quote below some results of H. Johnen and
K. Scherer (their conditions on £ are obviously satistied when Q = IntF,
where F = R? is compact and is & proper set in the sense of Defini-
tion 3.1 below).

Our definition of Sobolev and Besov spaces differs somewhat from
the classical one. This assures that the spaces we consider are separable
(which is necessary for the existence of Schauder bases). More preciscly,

the symbols W¥ and BS ., where
B=0,1,..., §>0, 1<p< oo,

have a modified meaning (this amounts to taking the closure of smooth
functions in the classical space).

Let Z, denote the set of all non-negative integers. For & = (ay, ..., a;)
eZ% we let, as usual, |a| = o+ ... +a; and

alel
M ... o2

(this may be the generalized or the classical partial derivaitive);

1
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We write a << m for @, m e 2 iff o; <myfori =1, ...,d. In L, (2),
1< p< oo, we have the norm

Iflp(2) = ( [ 1f1? da)"’®
2
and in L (Q) one has
[fle(R) = esssup If1.

Let C(R) denote the space of all uniformly continuous funetions on
£ which vanish at co. The Sobolev spaces Wa(R) and Wp(£2), where
meZ,,meZ},1<p< oo, are defined in terms of the generalized de-
rivatives

W5 (Q) = {feL,(Q): D*feL,(R) for acZ,, la|<m},
W) = {feL,(Q): DfeL,(R)if 0 <am}.

Replacing in these formulae L,(2) by (L), we obtdin the definition of
We(2) and Wi(L2). The norm in these spaces is defined, for m eZ,,
meZ% and 1< p < oo, by the formulae

A2 = D D1, (@),

lal<m
IFIE2) = D) ID°fl, (@),
am
respectively.
We shall sometimes write O™ and (™ instead of W™ and W,
The jth unit vector in R® is denoted by e; and the symbols Wi
1 I are used for Wi, || [fmed),
The spaces W' (L), Wy (2), wherem eZ,,1<p< 00,4 =1,...,4d,
are separable Banach gpaces.
The modulus of smoothness of order %k €%, in the direction u e R?
in Wy, (£2) is defined for 0 < 6 << D/k, D = diamQ, 1 < p < oo, as follows:

o2 (f; 0)a = sup 14LS], (@ (hhw)),
0<h=d
where we put
Ru) ={pe; s+iue for 0Kig1},

%
difa) = X (=17 (%) f(w-tiu).
J=0

The isotropic modulus of smoothness is defined as

Wy p(f5 0)o = sup f‘-’g:,?;(fi 8)a,
flull=1
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where [uj is the Buclidean norm in R? Moreover, we putb

offt, = o).
Now, let for 0<s<keZ,,1<p, < o,
Dik
g (f3 o \2 dE\Y2
MﬂQ~WM®+U(Jﬁ%iy?,
0

Dib (@) (. £\ 1g
y;, (f31)a\e dt
nmwﬂ!kﬁrﬁﬂ

(cf. Corollary 2.6 below); if ¢ = oo, then the integral

IF 1542

Dile
dt\\e
(] woes)
]
is interpreted as esssup [\(p(t)l.
0<t< DIk
Define, for 0 < s <k, 1 <p < 00,1 K¢ < 00,
2 o (Q) = {F e Wi(2): [[fI5)(2) < oo},

m,qu(g) {few, Q) 71,4 (2) < oo},
1?.00(‘9) {fe ) mlc,_'p f; Q = 0 }}
pooi(‘Q) {fEW §c10 f; )_01’6)}

Moreover, for s = (8, ..., 8), 0 << .9£< 70, let

Byo(2) = m g, ( 2

and let the norm be
da

IFIER(2) = D) IFIER,(2)
g=1
The spaces B;, ,, B; ., B; 4 are separable Banach spaces for 1 < p, ¢ <

s> 0.

Let I < R be a compact interval and let X be a Banach gpace. The
Sobolev spaces Wjp(I; X) of X-valued functions on I, where meZ,,
1<p < oo, are defined similarly as Wi (I) (ef. [30]). (Instead of Tu,(I)
one uses Ly, (I; X), the space of strongly measurable p-integrable functions,
and 0(1) is replaced by O(I; X), the space of strongly continuous X-valued
funetions on I.) The normi in Wi (I; X) is defined as in the sealar case and
is denoted by | ]Im(I X ). We define the modulus of smoothness of order
% for a function fe Wi (I, X) ag in the real-valued case (here d = 1) and
denote it by ay, f,X 8)r

icm
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Let @ =I, % ... xI; be a closed parallelepiped in R%. For s any 7,
1<j<d, we can 1dent1;ﬁy @ with the product I x€),, where I = I; and

Qy = []I Then the space W;';(@) can be identified with W™(I; X),
W]

where X = Rif d = j = 1and X = W5(Q,) otherwise. We write
W5 (@) = Wi {I; Wy (@)
Also one has
0)5{?,)10(]“; Q = p(fﬂ

Hence the formula, for 0<s< %, 1< 9, ¢ <<

Bf;w(Q) m,q(I Wvo QO))

makes sense with the obvious meaning of the right-hand side.

Now we are ready to state the Marchaud type inequalities in both the
isotropie and the anisotropic cases.

ProrosrrioN 2.1. Let @ = R® be a compact parallelepiped of the form
Q = IxQ,, where I = R. Moreover, let X = W(Q,) (in case d =1: @ = I
and X = R). Then there is a constant € = G (I, k, m) such that for 0 < &
<e¢ = [I|)(k+m), &, m>1,

{2.2) 0 (f3 X5 8)y 1= O (F3 X5 O)rnex

]J QO )

< 06" ("f[ (I; X)+ f wdt)
Ic-)—l

holds for feWy(I; X) with [fl,(I; X) = [[fl,(@),1<p< oo

The proof of Proposition 2.1 as presented for d = 1 in Johnen [27],
Proposition 3.1, can be easily adapted to our vector-valued situation.

PROPOSITION 2.3. Let F be a compact jpropev set in R andlet ¢ = diamF |
[(E+m), 1< p << oo. Then there is o constant C = C(F,k, m) such that
Jor 0< 6< ¢ and f € Wy (F) we have

(2.4) 1= Oy (5 O)iner

<0# (19, )+ f L

O (f3 Op
T di)

This result is proved in Johnen-Scherer [28], Theorems 1 and 2. The fol-
lowing Iardy’s inequality appears to be useful. For measurable ¢ > 0 and
for 0<<s<%,1< g oo, we have

@9) (f (cs _{qum )W)lm<k_i_s(lf(q0£b))fzozp)m

This follows from (9.9.9) in [24]. Applying this inequality we obtain
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COROLLARY 2.6. Let I' = R be a compact proper set in R? and let
Q@ = R? be a paralldlopiped. Let s > 0 and let &y, Iy > s be integers. Denote
By (F); and By (@), i =1,...,d, the Besov spaces corresponding

lo the integer k; for j = 1, 2. Then one has, for L<p, (< 0,4 =1,...,d,

By o(T)y = By o),
Bﬂ,q,i(Q)l = B;,q,qi(Q)ZI

i.¢. the respective sets ave equal, the corresponding norms being equivalent.

In the sequel we often make use of extension operafors. In case of
function spaces on proper sets one may apply Stein’s extension theorem
(Theorem 6.5 in [357]). In some situations extension operators with desired
additional properties can be custom-made using the method of Hestenes
[25]. We ghall call them H-operators. Heroe is the simplest case.

Foragivenm € Z, and 0 < ¢ < oo, let I = <0, ap and J == {—a, o).
Moreover, let @ = I x@, be a parallelepiped in R? and let X = Wj(Q,)
ifd>1and X = Rif & = 1. Now, for f e Wy (I; X), the Hestenes extommn
operator is defined by the formula

f(t) . for tel,
2.7 Tf( & .
@) Zajf(»-tz“j for ¢ e J\I,
J=0

~where the ¢’s are the solution of

m

D o(—12)% =1,

i=0
Computing the generalized derivatives (or the classical ones if p = oo}
of Tf we find that Tf e Wi(J; X) if fe WE(I; X), 0<k<<m, 1<p< o
(ef. [2]). In fact one has the following easy estimate.
Lrvma 2.8. There is @ constant C = O(a, m) such that the operaior
T defined in (2.7) satisfies

IZAIG (T 5 X) <

b =10,...,m.

o iaes
for feWHIL; X),0<b<sm, 1< S
Repeating step by step the ar gumont presented in the proot of Prop-
osition 5.1 of [27], but adapted to X-valued functions we obtain
ProroSITION 2.9. The extension operator defined as in (2.7) preserves
the vector-valued (X = Wy (Q,)) modulus of smoothness of order m. Move
precisely, there is o constant ¢ = O(a, m) such that
(2'10) a)w1,p(Tf; X; (S)J < me,p (f; X; 6)1
holds for mz=1,0< 0 |I|jm,L<p <

icm
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Similarly, adapting the proof of Proposition 5.2 of [27] to X-valued
functions, we get

ProPOSITION 2.11. Let @ = R? be a compact parallelepiped, @ = I xQq,
where I « R. Let J o I be a compact interval. Put X = Wy(Q,) if d> 1,
and X =Rifd=1.LetmeZ,.

Then there are cxtension operators

T: W‘},(I; Xy->Wy(J; X), ¢ Wo(I; X )W (R; X)

and o constemt O = C(m,I,J) such that for 0 << k<< m,
fe WE(I, X) one has

I<p< oo
IZAIP (5 X) < OUF I (5 X),
ITo I3 (B; X) < CUIFIS(T; X)
(I3 X),0<< o< |I]/m,then
O (L3 X5 8) 5 < Covgy (5 X5 )1y
O (Tof5 X5 0)p <.O(6™[Fllp (T3 X) 4 0 (F5 X5 0)1) -

LEMMA 2.14. Let @ and § > @ be compact parallelepipeds in R?, and
letl < p << oo, meZ, . Then there are extension operators

T: Wy (Q)—=Wy(8),

and, if fe WS
(2.12)
(2.13)

Ty: Wh(@)—~>W,, (R%

and constants ¢ = C(m, d,Q, 8), C; = 0(m, &, Q) such that

AL (8) < OAISL (@),
(2.15) o !
HTquI“’;(R‘ < GIIFIE%(Q
hold for feWE(@), % =0,...m;j =1,...,d,and
(2.16) w%)p(Tfi Oa’g)p (F; 6oy
O (Tof; O < O (57 I 1,(Q) + ol (F5 6)q)

hold for fe Wy(@),0< dm< di&mQ,j =1, d.

Proof. We shall congider the case of @, § only. The proof in the case
of @, R* is similar and it is omitted. Inequalities (2.15) tollow from the con-
gtruction of T and. 7'y. Let now

Q =IyX ... xIsy 8=4JX
0P = Ty % v XTpg X L% oo x Iy = QO X I,
i.e. )

o = 7% .

. Xdy,

o XT XL X eee XIge
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Moreover, let X; = W2 (QP) and let
Ty: Wy(@Y) = Wi(L; X,)>Wy(J,; X,) = Wh(QU+Y)

\
be an extension operator given as in Proposition 2.11. We are going to
check the following inequality:

@11 oo (Tuf; Oy < 00, (F5 Oy 2§ =1, ...y d

In cage ¢ = j it is a consequence of (2.12). Now let ¢ 54 § and let, for kb > 0,
g denote the characteristic function of the set @+ (mhe,). Then

QU (1e,) nQY = @ (rey)
and

(45 Tif) gy, = To((A35)00).
Therefore, by Proposition 2.11, we get
w'%,)p(Tfif§ 6)Q(i+1) = Kup ”Ti((Aﬂjf)gh)”p(Q(i+l))
0<h<cd
< O sup (47 11, (@4 (mhe;) nQ®)
0<h<d 7

= Ow%,’p(f H 5)Q(«')-
Now, defining T =T, ...0T, we obtain by repeated application of
(2.17) the first inequality in (2.16), and this completes the proof.

In the isotropic case there is an extension theorem for proper sets in
R?. Namely, in our notation, Johnen and Scherer proved in [28]:

PROPOSITION 2.18. Let F, and ¥, > F, be compact proper sets in R?,
and let 1 < p < oo, m e Z, . Then there are an extension operator B: Wy (F,)
— W3 (T,) and a constant 0 = C(m, d, By, F,) such that

{2.19) I3 (F,) < Ol I ()

holds for fe Wi(F), & =0,...,m, and

'(2'20) wm,p(Ef; 6)1?2 < me,;u(f; ’s)li'l
holds for fe Wi(F,),0< é< diam F,.

This result can be extended to the case Ty = R For d == 1 it follows
from Lemma 2.14, and for d > 1 we have

Lewvwa 2.21. Let I be o compact proper set in R and let m ¢ % +- Then
there is am emtension operator H,: Wi (F)~W5 (R such that (2.19) holds
with By = F and F, = R®.

icm
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Moreover, there are constants €, = C(p, m, d, F) and 0 = O(m, d, F)
such that for f € Wy () one has N
{2.22) O, (3 O)pa <
if 1<p< oo, and

Op [8™ [l (F') -+ @y, (f5 0) 5]

" onfi i dt]

(2.23) 2

O Baf; s < 0811, () +
[
LK 00;0<< d< 0 = diamFm.
Proof. Let us take an auxiliary parallelepiped @ > F. Let B be the
extengion operator from Proposition 2.18 corresponding to F, = F and
F, == Q. Moreover, let T, he the extension operator from Lemma 2.14,
and let B, = T . On the one hand we have the trivial inequalities

{2.24) 0@ < Opp, F=1,...,4d.

On the other hand we have the following two inequalities proved by Boman
(¢f. [B], Theorem 6.3 and. Corollary 2.4, respectively):

There are constants O, = C(m,d,p) and C” = C(m,d) such that
for fe WH(RY,0< §<

d
O (f; Ot < Oy D) il (f5 O)ma

j=1

(2.25)
holds for 1< p< oo, and

o© a
(2.26)  wp,p(f; O)nz < O 6™ Ifll, (R + [ =1 3 ol (f )ne) ]
" L]

i=1

holds for 1< p < oo,
Now, using (2.25), (2.16), (2.24), (2.19) and (2.20), we get

a
Op(Bof3 O)pa < Oy D) 0l (Bof; O)me
Je=l

d
< O, ™ 1211, () 4-%’ ol (Bf; 8)q)

< 40, [0™ [ Bf |, (@) + @, (Bf; O)q]
< Op [6m ”f ”p (F) ‘I" wm,:l) (f) 5)17‘]
which proves (2.22). In order to prove (2.23) we use (2.26) instead of

(2.25). -
Using now Hardy’s inequality (2.5) and Lemmas 2.14, 2.21, we obtain
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COROLLARY 2.27. Let Q < R be a parallelepiped and let ' be & compact
proper set in R*. Then for amy m €Z, there is ¢ < oo such that, if 1 < P, ¢
Koo, =1, ,d;k=0,...,m;0<3<m, one has for each f

IZof1%% (RY) < CIIAIP(Q),
1o f5%,3 (RY) < OIAL, (@),
B£8R < OYfIP (),
B IS (RY) < OFIL) ().

Here T'y and B, are given ag in Lemmas 2.14 and 2.21, respectively.,

Consequently, if # is one of the symbols Wk, Bf .0 then F(Q)
is naturally isomorphie to the quotient Banach space of equivalence clagses
in # (R®) where two funetions are in the same clags if they are equal a.e.
on . Similarly, if # is one of the yymbols WE, By, 4, then & (F) is naturally
isomorphic to the quotient space of equivalence classes in & (R% where
two functions are identified if they are equal a.e. on 7.

THEOREM 2.28. Let I1<p< oo, 1€g< oo, dz=1, 0<s<m, and
let § = R® be a paralldlepided. Then

By o) = Bl (R4
and the norms in these spaces are equimhmt.

Proof. In the case of R? the theorem follows by (2.24) and by Boman’s
inequality (2.26) in combination with Hardy’s inequality (2.8). Let us
congider the case of Q. Then according to (2.24) the inclugion B}, (@)
(=4 B&’é'*”(@) and the corresponding inequality for the norms follow
immediately. To get the opposite inequality for the norms we use the
part of the theorem just proved and Corollary 2.27:

IFIE%(@) = T, A1 (@)

a
SITSISHRY < 0 DT [T, f18, ;(RY)

Juml

gl
<O IFIEL Q) = O IFI9(Q).

j=1

Remark. Theorem 2.28 in the case of R was estiablished earlier in
a different way by V. A. Solonnikov [34]. In what follows we describo

the spaces By (F), B; (@), j =1, ... » &, a8 interpolation spaces, with

I being a compact proper set in R? and @ = I, % ... xI,being a parallcl-

icm
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IR

<.y d, one can use, respectively, the following norms

IFIEYE = If B+ > 1D,
. la]=m,
IFIS (@) = I I, (@) + D™ 1L, (@) -
The equivalence of the first norm with | & () follows e.g. from
Theorem 4.14 in [1].
The equivalence of the second norm with || It™ (@) follows from [32]
(ef. p. 164, inequalities (7), where tho constants are uniformly bounded
in p: 1< p < oo, and therefore they can be taken ag independent of p).

To describe the real interpolation spaces (cf. [3]) for the pairs (WS (F), —_

Wy () and (W(Q), Wi,(Q)) we use the modified Peetre functionals:
Kzlo(tyf) = Kzl?(thf; Wg(lﬂ)y WQ(F))
= int{If —glp () -+t 3 1Dgl,(F): g € WD)},

|a)=m
Ky (4, f) = Ky 5t F; Wh(Q), Wit (@)
= 0t {[If — gll,(@) + D™ gl},(Q): g e Wr;(@)}.
‘We need the Peetre functidnals as well: ’
Kty f) = K, (b, f; Wi (F), W (F))
= inf {|[f —gll,(F) +t g™ (F): g e W5 (F)},
K, ) = Eylt, f; Wy(Q), Wii(@))
= ind{|[f—gll, (@) +t 9157 (@): g € Winys(@)}-

PRroOPOSITION 2.29. Let @ = I, X ... xXI;, meZ, and let a compact
proper set F in R® be given. Then there are constants 0; = C(m, |L;]) amd
Cy = C(d, m, F) such that we have: for j =1,...,d and 0< 6 << |I;|/m

(2.30) 07t of), (F5 0)g < K 4(8™, ) < Crf),(£; 8)gs
and for 0 << 8 < dianmn B jm B
@31) 07 0y (5 O < Ep (8™, ) < Oy oo o (fs O

Both cases hold uniformly in p, 1 < p < oo. o
Proof. Lot @ = QuxJ; and X; = W;’o(Qu,).‘We know that

oo (f3 O = @un(f X3 O)zye

P

Using now (2.12) we can adjust j:bo the veetor—valuevd‘ case ’uhe proof of
(2.30) as given'in Johnen [27] for the real-valued case. Inquzuhtie& (2.31)
are proved in Johnen and Scherer [28]. ' * . : ‘
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PROPOSITION 2.32. Using the motation of Proposition 2.29 we have for
the Peetre funmctionals the following imequalities with the same ranges of
parameters:

(2.33) O-‘l[é”"ilfu (@) + oD, (f; 8)0]
<K, (6™, ) < O L6™1fl,(Q) + o, (f5 8o,
(2.34) C7 8™ 1l (B) + (£ )]

Ky (875 1) < Co [0™ [flly (F) + w0y, (f5 ),

Proof. The equivalence of the norms || ]I(’" (@) and || || ""(Q ¥, and
(2.30) imply inequalities (2.33). Similarly, the equivalence of | [ Gy
and [ i (Fy*, and (2.31) give (2.34).

For given parameters p,q,j and 6 (1<p,
introduce the norms

I71575,(@) = ( fw (M__fl) di )w’

1 t

I = ( f (Ep_i_tﬂ ) a )uq

0

(< 00,0 0<1) we

(2.35)

with the usual convention in the case g = co. The corresponding real
interpolation spaces are now defined for finite ¢ as follows:

(W5(@), W3s(Rog = {F € Wh(@): IFIE2,;(@) < o0},

(W (), Wi Z))o,, = {f € Wy(I): IFISE) < oo}
Moreover, for ¢ = oo we define
(W2(@), Wi s(@))o,, = {f € WS(Q Kyt f) = o(t®) as 10},
(Wo (@), Wi (F))oq = {f € Wy 1’)- K, (t,f) = o(¥’) as 1-0,}

(this eorresponds to the space (-, -)3,,1 in [3] and [17]).
THEOREM 2.36. Assume that L < p < o0, 1K ¢ < oo, m—1 €Z,, deZ! >

O<s<m, 0 =s/m,j=1,..,d. Mm'eove) lot B be a compmt proper set in.

R? and Zet Q be a pamllela;p'zped in R4, Thm the following sets are equals

B.’P q,:i(Q = (Wo (Q) W;’;',j(Q))o,q:
B” (W“ W’" F)),, e

Moreover, the norms given in (2.35) and [ %), 5(Q), | [€)(F) are equivalent,
respectively, uniformly in p and q.

icm®
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Proof. Use the definitions of norms in Besov spaces and apply Prop-
ogition 2.32.
Let F < R® be a compact proper set. Denote, for & €Z, and 1< p

< oo, by fV"( T) the closure in W (F) of those f such that suppf < Intlfl
If k is a negative integer and 1 < p < oo, put for g € Wy (F)

JgI (F) = sup | [ fgdad,
LA

where the sup iy extended over all fe ﬁf' (F) with [fIl;™(F) <1 (here
and in the sequel we put p’ = p/(p —1) for 1<p< o0, 1’ = o0, oo’ =1).

The completion of W5 (F) in the norm ff [I(?(F), Wherc L is a negative
integer and 1 < p < oo, will be denoted by W;(F).

Now we shall define the spaces #(Q);, where & denotes either W,
ar B, ;- (In [16] these spaces were denoted by & (0, Z).)

Fix dz1,let I = <0,1)andlet @ = I?be the standard d-dimensional
cube. Let Z < @ be a union of closed (d—1)-dimensional faces of @, i.e. Z
is of the form

(2.37) Z =QN\(INZ) X ... X (INZy),

where Z; < {0,1} for j =1, ..., d. Put

(2.38) Ig =<0,1), Igp=<{-1,15,
: Iy =4<0,2), Iy, =<-1,2>

and consider the parallelepiped
Qz =Iz X ... XIg,.

For any measurable set B, let L, () denote the space of (equivalence
classes of) measurable functions on F equipped with the topology of
convergence in measure on any compact subset of H.

If f e Ly(Q), we denote by f; the element of L,(Qz) such that f,lg =f
and f; = 0 on @,\Q.

Define for f e Wy (Q),

I @)z = 1521 (Q2)-
0,1<p< o0,
W)z = {f e Wy(Q): fz € Wy (Qz)}
Observe that Wj";(Q)Z is complete, being isometric to a closed subspace
of WE(Q) (via the map fi-fy). Since for f € WE(Q), one has
I8z = I (@),
WE(Q), is a closed subspace of WE(Q).

1< p < oo, and all integers &

Put for >
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Now let %< 0. Since || [(7(Q), is weaker than || [,(Q), we let WE@Q)z
be the completion. of Wy, (Q) Wlth respect to the morm | | [(")(Q) Clearly,
the map f > f, extends again to an isometry of Wy(Q), into W4(Qy).

A projection onto this subspace can be constructed using the fol-
lowing:

PROPOSITION 2 39. Let m> 1 Then there ewist @ continuous limear
operator P in Ly(Qy) and 0 << oo such that

(2.40) P projects Ly (Qz) down onto the subspace {f: f = 0 a.e. on Q2\Q},
(2.41)  for each f & WE(Qy), 0 <m,1<p < oo, one has
IIPfII”" (Q2) < OIS (@),

{2.42) the (formally) adjoint operator P* is continuous in LO(QZ and for
each f e Wa(Qz), 0< k< m, 1< p < oo, one has

IP*IP(Q2) < OIAIP (@),
(2.43) P*flg =flg Jfor fely(Qz),
(2.44) if feLy(Qg) and f = 0 a.e. on UNQ, where U is an open set con-
taining 0Qy, then P*f = 0 a.e. in a ne@ghborhood of 0Q.

Thig ploposmon will be proved in Section 6. Now we can deduce:

COROLLARY 2.45. Let P be the operalor of Proposition 2.39. Then also
Jor —m<E<0,if g e Wy(Qz), L <p< oo, one has

P95 (Qz) < Cllgl (©z)-

Consequently, for —m<E<m, 1<p < oo, P induces & continuous
linear projection from Wk(QZ) onto its subspa,ce naturally isomorphic to
WE(Q) (via the map f > f,).

Proof. The estimate follows from (2.42) and: (2.44). The second
statement follows from the first one, (2.41) and (2.40). -

Remark 2.46. It is not difficult to produce another operator, say
T, which, for each k20 and 1< p < oo, is & continuous projection from.
WE(@2) onto {f: f = 0 a.e. an Q,\Q}. It suffices to put

If = F—H( f|qz\q)|@7:

where B is a Stein extension operator corresponding to the get Inti@,\Q.
If Z is given by (2.37), we pub

(2.47) 7' = 3QNZ.
Observe that Z' is of the form (2.87) (with Z;, ..., Z; replaced by Z,, .. ).
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Clearly, if <0, 1<p < oo, then each element g e WY(Q) defines
a functional ¢* e (W;"(Q),)* by the formula

f foda.

LEMvA 2.48. For each k<0, 1 <p oo, the map grg* extends to
a linear topological isomorphism of Wi(@Q)y onto a subspace of (W7(Q)z)* .
Proof. It suffices to prove that there is & ¢ < oo such that for
g€ Wy(@) one has
(2.49) 915 (@)2 < g < CliglP (Q)z-
The lower estimate follows from the fact that the operation Rf = f |g maps

”igVJj,"(QZ) into W,*(Q)z and has norm < 1.
To prove the upper estimate it suffices to know that R is onto. Prop-
osition 12.39 yields a stronger fact, namely there exists a continuous

linear map E: W;’”(Q)Z,—ﬂ%f;,"(Qz) such that REf = ffor all . This implies
that (2.49) holds with C < (| B|.

Put Bf = P*(Tf), where T is a continunous linear extension from
W, (Q) into W,%(Q,). By (2.43) and (2.44), B has the same property as
7. Let X be the set of those f e W;*(Q) such that f = 0 a.e.’'on UNQ,
where U is a neighborhood of BQZ. Using (2.44) we obtain that & (X)

= ﬁf;r’?(Qz), Since X is dense in W,*(Q)z, we conclude that B(W,*(Q),)

L= ﬁ’;"(@z). This completes the proof of Lemma 2.48.
Nowlet s > 0 and L < p, ¢ << oo. We pub
B} 1@z = {f e W3(Q): fz € B} 4(@2)}
and let for f e By, ,(@)z C
5% (D)7 = 1f2l$%(9Q2)-
Note that Bj ,(Q)z = Bp,(@), but now (for some valucs of s) By, ,(@)z
may not be closed in By (@) (cf., e.g., [29]).

PROPORITION 2.50. Let Z be as in (2.37), 1<p, g 00, 0< <1
and let 1, v be integers, 1<r. Put 8 = (1—60)1+40r, F, =W, ,F, = W}
and Tet

f z = (ﬁ )Zl‘g‘l(Q)Z)ﬂ,q'

Then, if 8> 0, F(Q)z = B;,,(@)z (the respective norms being equiv-
alent), and if §<< 0, then F(Q), can be naturally identified with the closure
of WE(@) in (By' (@))*

Remark. In particular we see that the space # (@), in Proposition 2.50
depends only on s, p, ¢, d and Z (and not on. 7, ). In the sequel this space
will be denoted by B}, , (@) (s can be an Mbl’omly real number). Hence we.
can write

B Dz 3 (Wh(@z) W5 (@)z)oq-

2 — Studia Math, 76.1
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Proof. In the case where Z = @ this proposition was proved in [17].
(If § = 0, then it also follows from Theorem 2.36.) This yields, for the paral-
lelepiped @, if s >0,

F(@2) = (%092, 71(@2)oqg = Bg(Q2)-

The projection P of Corollary 2.45 acts in &#(Q,) and #,(Q,), hence also
in # (@), and one hasg

(P(#0(22)), P(#1(@2)o.s = P(#(22))

(cf. Theorem. 6.4.2 in [3]). Since P(ﬂi(Qz)) is naturally isomorphic to
F;(@)z for i = 0,1, we obtain that

F Q) = P(F(Qy)-
It is easy to see that if s >.0, then

P(B4(Q2)) = {f € B} ,(Qz): f = 0 ace. on Q,\@}
which gives F(Q); = By, 4(Q)z-
Now, if s < 0, then we have by the first part

(W5 @)z W@ zhmog = By (Q)z

and hence we can apply a general result on duality of interpolation gpaces
(¢f. Theorem 3.7.1 in' [3]) and Lemma 2.48. This completes the proof of
Proposition 2.50.

Remark 2.51. As we have already mentioned in the special cage
where I = 0 one can avoid using Proposition 2.39 in the proof of Proposi-~
tion 2.50 (thanks to Remark 2.46).

Let & = Wk or & = B: ,. The fact that one can define the gpaces.
F(M),#(Q) and F(Q)z, where M is a compact manifold, @ = I is diffeo-
morphic to the d-cube I% and Z is a union of (d —1)-dimengional faces of
Qf, c;gg)ends on the following well-known property of the spaces on subsets.
) .

Lmvwa 2.52. Let- Uy, U, be open subsets of R® and let ® be & 0 diffeo-

morphism of Uy onto U,. Let & = WE, Wk or B, where k0, s> 0,
1<p,q9< o If F; < U, are proper sets such that @ (1) = Py, then the
:é??lnvum frofod defines a linear lopological isomorphism of F(Fy) onto
g 41), .

Proof. The case of W} and WE can be checked directly and thecase
of By, ,follows by interpolation, using Theorem 2.36. )

Let U = R* be an open set such that Int@Q = U and let & = WE,
E=0,1<<p< oo, Uis said to determine F(Q)y if 7

(2.53) F(@)z = {glg: 9 eF(RY), glyng = 0}
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Clearly, IntQ, determines # (@) in this sense. This follows from the exten-
sion theorem for parallelepipeds (cf. e.g. Lemma 2.14).

Leya 2.54. Let & = Wk, where 50, 1<p < co. Let U< R
be an open set such that (ef. (2.47))

(2.55) Unz' =0,
(2.56) Qc=Z'uT,
(2.87) ifh eF(U)andh = 0 a.e.on UNQ, then b = gl for some g e F (RY).

Then U determines F(Q)z.

Proof. Let us check (2.53). Suppose first that f = gl, whereg e & (R%
and glyng = 0. By (2.56), the sets U" = UnInt@, and U =TntQ,\Q
form an open covering of IntQy,. Since fz |z = glyr €F (U’) and fzlyr = 0,
using standard arguments involving partition of unity we obtain that
Iz €F (IntQy), ie. feF(@)y.

Conversely, if f e# (@), put h(x) = f(z) for e Q@QNTU and h(x) =0
for @ € UNQ. To prove that h e % (U), note that, by (2.58), U’ and U\
form an open covering of U and hly = fzly e F (U), bling =0 eF (TN Q).
Using (2.87) we obtain 2 = g|, for some ¢ eZ(R%. Since glg =kl
= fand g|;ng = 0, the proof is complete.

Remark 2.58. Conditions (2.55), (2.56), (2.57) are satisfied by an
open seti U iff they are satisfied by Un&, where £ is some (resp. any)
open neighborhood of Q. Hence it follows from Lemma 2.52 that there is
a version of definition (2.53) and Lemma 2.54 in which R? is replaced by
a d-dimensional 0™ manifold and @ by a subset diffeomorphic to I%. The
proof is almost identical. (This is the version we shall use in Section 4.)

3. Decomposition of compact C* manifolds. The main result of this
section, Theorem 3.3, is essentially the same as Lemma 2.1 formulated
without proof in [16]. (Also the proof is the same.) Let us mention that
some arguments in Section 6 depend on specific properties of the constirue-
tions used in the proof of Theorem 3.3. The situation in [16] was simpler
because we were proving less.

Tn this section we use some terminology and elementary facts from
differential topology which can be found in [26].

By a d-manifold we mean a d-dimensional 0* manifold. The boundary
of a d-manifold M, which may be cither a (d—1)-manifold or the empty
set, is denoted by 6.M.

DEFINITION 3.1. Let M be a d-manifold and let Z = M. If 0M = O,
then Z is said to be proper if for each v € Z there exist a chart @: U—~R?,
a Lipschitzian function ¢: R**—~R and a 6 > 0 such that # € U and, if

V = E(®(), 6) = {y e R*: |y —P(@)ll < 6},
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where || || is the Euclidean norm, then
PENUINY ={yeV: gz, ..., Yam1)}-

If 0M + @, then Z is said to be proper if there exists a d-manifold
without boundary, say M, such that M is a closed submanifold of 3 and
Z is proper as a subset of M. ‘

In that case the interior of Z (considered as a subset of a d-manifold
M 2 M) is locally a set with minimally smooth boundary in the sense
of 0. M. Stein ([35], Chapter VI). Thus the analogue of the Stein extension
theorem (Th. 6.3 in [35]) will hold for Z, if Z is compact.

Recall a well-known fact that a Lipschitzian real-valued function
defined on a subset of R? admits an extension to R® with the same Lip-
schitz constant. This allows us to make the simplifying assumption about
the domain of ¢ in Definition 3.1 and also on other occagions.

Now let K be a compact subset of a d-manifold M, .

A map #: KM is said to be a diffeomorphism if there exist d-mani-
folds M, M, containing M, M; as submanifolds, respectively, an open
set Ugc M, and a (* diffeomorphism ¥: U — M such that 04 — a,
0M, =@, U2 K and V| = &.

A subset @ = M is said to be a d-cube if there is a diffeomorphism
D: <0,1>" > M such that &(<0,1>% = @.

DerINiTIoN 3.2. Given a d-manifold M and closed sebs A,Bc M,
the pair (4, B) is said to admit a decomposition (into d-cubes) if for some
N > 0 there exist d-cubes @, ..., @y = 4 such that

AsBUlJ g
i<N
and, if &; is a diffeomorphism of <0, 1>% onto @, L<j< N, then the set:
o (Bul @)
i<j

is the union of a family of (d—1)-dimensional faces of 0, 1% The decom-
position @, ..., Qy of (4, B) is zaid to be proper if the sets Bu | J @, are
proper for j=10,1,...,N. =y
TrmoREM 3.3. Let M be a compact d-mamifold. Then (M, &) admits
@ proper decomposition which is a decomposition of (M , OM).
This theorem will be obtained using the following technical lemmas.

(Lemma 3.4 follows direetly from the definitions, the others will be proved
later.)

Lewoes 3.4 Suppose that Ay, Ay, B M and @, ...,Qy (resp.
Qs -y Q) is a (proper) decomposition of (4, B) (resp. of (d,, A, UB)).
Then @iy -vvs Qxs Q15 -~y Qi s a (proper) decomposition of (4,V4,, B).
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Lmnma 3.5. Let ¢y, 9,0 R*—>R be Lipschiteion fundtions, let A = R?
and

A = {(z,2) e R*xR: 2 (@) or wed, 2 < py(2)}.

If A is proper (as a subset of R%), then A is proper as a subset of RS X R.
Levwia 3.6. Let D, = {w e R%: o <1}, 8% = aD,. There ewists
« decomposition of (Dg, 8%7') which is a proper decomposition of (Dg, D)
and of (Dg, R®\IntD,).
Lemva 8.7, Let 1<k < d—1,m = d—F,

H = {(#,y) e R*xR™: |y|} < [wf+1},
B = {(2,y) e H: ||’ >min{5/4, y|P+1}}.

Then (H, B) admits a proper decomposition.

Proof of Theorem 3.3. The assertion is obvions if d = dim.M <1.
Hence we may assume that @ > 1 and that the theorem has already
been proved for all compact (¢ —1)-manifolds (with or without boundary).

‘We shall use some results from Morse theory which can be found in
Chapter 6 of [26].

We fix a non-negative Morse function on M, say 7, such that oM

.=7"1(0) and the ecritical points #;,...,#, of = satisfy 0< 7(2) < 7(2)

< ...<<7(%). Let & be a small positive number. Put a, = 0, and

Uyyy =7T(3) —&, . Gy; = 7(2) -+ e,

4, = 7t (( — 00, 0“s>}7 M, = T-l((a's—ls asd), ) B, = T—-l(a ~1)

for j=1,...,v,8=1,...,20. ) ‘

We prove that if e is sufficiently small, then for s =2, 3, ..., 2»
the pair (4, 4,_,) admits a proper decomposition, whereas (Ay, 031)
admits a decomposition which is a proper decomposition of (4., @).
The assertion of the theorem will then follow from Lemma 3.4.

Assume first that s =2§—1 iy odd. (If s =1, then we may also
assume that A4, 5= @.) Let @ be the diffeomorphism from B, x {a,_,, a>
onto M, constructed in Theorem 6.2.2 of [26]. By the inductive assumption
there is a proper decomposition into (d—1)-cubes for the pair (B,, 9).
(Indeed, B, is a compact (d—1)-manifold without boundary.) Using &
and this decomposition we obtain a decomposition of (Ma,Bs). Lem-
ma 3.5 can then be used to prove that this decomposition is proper for
(4gy 4,.y) i 8> 1 and for (4,, @) if s =1. Here we need only 0< &
< 7(2) and 2e < (%) —7(%_,) for §=2,3,...,9

Now let s = 2j be even. By Morse’s Lemma (cf. [26], Lemma 6.1.1),
there exist ¢ > 0, an integer & and a chart &: U->R? such that 0 <k<gd,
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zj U, B(z) =0, D(U) = K(0,0) ={v eR®: [v] < 6} and for ve ®(U)

oné has
a
cfomio) = vie)— i+ S ol
=1 i=lo4-1

Suppose first that k e{0, d}. If 0<e<< &, then M' = MynTU is
open in M,; and diffeomorphic to the closed disk Dy, while its complement
Mﬁj\M is diffeomorphic to B’ X {f_y, @, Where B’ = By\T is either

a (d—1)-manifold without boundary or the empty set. Usmg the inductive
assumption and Lemmas 8.6, 3.5 and 3.4 we can complete the discussion
ag in the previous case where s was odd.

Now wo consider the the case where 1
0<e< 6%/36 and set m = d—Fk,

M ={zeM;:zelU or O(2) = (z,9), o’ = (5/4)}.

) The method of proof of Theorem 6.3.1 in [26] (cf. Flg'ure 6-b) yields
that M is diffeomorphic t0 B’ X {a,_,, 4>, where B = B,;n M’ is a (d—1)-
manifold with boundary. Again using the inductive assumption and
Temma 3.5 we construct a proper decomposition of (M', 4,_,).

Tt remains to show that (4,, M'UA4,_;) admits a proper decompo-
gition. This, however, follows readﬂy from Lemma 3.7, because s~ B()
defines a suitable diffeomorphism. This completes the proof of Theorem 3.3.

Now we pass to the proofs of the lemmas. We shall need the following
technical coneept.

DermrrioNn 3.8. Let Z = R?, @, acR% o % 0. We say that Z is
a-directed at o if there exist 5> 0 zbnd a Llpselutmem function ¢ on R%
such that for ¥ € K (x, ) one hag

{fted—n,n: y+taeZ} = {—q, 1N {p(H), ).

LEMMA 3.9. A subset Z of R* is proper (in the sense of 3.1) if and only
of for each & € R* there is an a & RO\ {0} such that Z is a-directed at .

Proof. To show the sufficiency assume first that Z is (0, ..., 0, a)-
directed at @ = (y, -.., #;), where ¢ > 0. Let #; » be as in Definition 3.8.
Putting U = V = K(x, ), ¢ = identity, we have

PZNT)NTV =

<k <d~—L We assume that

WeV: yg=aq+apYy, -y Yamr Pa)}

i.c. the conditions of Definition 3.1 are satisfied. The gencral case where
Z is a-directed at @ can be reduced to that where ¢ = (0, ..., 0, a) by
a suitable rotation of R?.

Now we prove the necessity. We may assume that d > 1. Suppose
& i a diffeomorphism of an open set U < R® into R? such that s e U
and for V = E(D(@), d), where &> 0, one has

icm

W = K(#, 2y) < U and for w € W one has
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DEZNUINY ={yeV: Y= 0¥y s Y1)},

where : R¥"'—R satisfies the Lipschitz condition with & constant z.
Asgume first that D@ (r) = identity. In this case we shall prove
that Z is eg-directed at », where ¢; = (0, ..., 0,1). Pick > 0 so that

(3.10) DB (w) —Idf < f = (2+2%).
Write @ = (¢,, ..., ¢g) and, i y = (yy, ..., yd) eR% lety = (Y, s Ya-1)+
Observe that,

Wiz =8 ={yeW: ¢a(y) = (P}
It suffices to prove that if , 2 e 8, then
(3.11) [Ya—2al < @u+1) [y —2'|[

Tor, this will show that WnZ = {y € W: y; > x(¥")}, where y is a function
whose Lipschitz constant is < 2%-1, and hence for y € K (», ) one has

ftel—n,m: y+iegeZ} = {~n, N {x(Y)

which means that Z is e;-directed at o.
To prove (3.11) observe that, by (3.10) and the mean value theorem,

(zd—¢d(z))l
< Blyz—zl+ Blly —#'|l

—Yas )

[Ya—#a) — |daly) *“¢d 2)| < Iyd’“qsd y)—
for y, z € W, and similarly
19 (y) — &)l —lly' —2'| < Blyg—2al + By —2'Il-

The estimate (3.11) follows from these inequalities because, if y,z e S,
then

164(¥) —ba() = |p(@()) —o(B(2))| < —2() 1.

Now, in the general case where 4 = D®(») # Id, we infer that the
set 4(Z) is eg-directed at A(w). (Use the chart ®o(4™|yy,).) Hence,
for some y > 0 and y close to #, we have :

{ted—y, y>: (W) +ioge 4(Z)} = (—y, >0 {p (4®)), o).
This, however, means that
{te(—y, y>: y+147(eg) € Z} = {—n, > (w0 4)(3), o)

and po A is Lipschitzian if so is y. This proves that Z is (47" ¢,)-directed
at @ and completes the proof of the necessity.-

% [[D(y)
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Proof of Lemma 3.5. Let L be a Lipschitz constant for ¢, and ¢,
By Lemma 3.9, it suffices to prove that if A is a-directed at @ € R? and
6> Lo}, then 4 is (a, —a)-directed at each point (v, #4.,) e RZXR.

To this end observe that there are functions @,, ¥, on R? xR such
that, for ye R*, ze R and i =1, 2,

{te R: s—la < pi(y+ta)} = {Fuly, ), o)

and @, has the Lipschitz constant < VIF+1) +1/(a—TL|al).
For, it u; = g(y;, %), where ¢ € {p,, @} and j =1, 2, then z —ua
== @(¥;+ uya). Hence

@ |ty —th] < [o1 — 2] + L ([lYs yzﬂ+lia!l {16 — ]

and the required estimate of the Lipschitz constant of @ follows from
Schwarz’s inequality.

Now, since A is a-directed at », there is a 6 > 0 such that for y close
to @ one has

{ed—0, 8 y+tacd} = fte (~0, 5 1> )},
where y satisfies the Lipschitz condition. Clearly, if [f| < 6 then
‘ (y,2)+t(a; —a) e 4
is equivalent to '

t > min{p,(y, 2), max{y(y), P2y, 2)}} -

The right-hand side being a Lipschitzian function of (y ) @), the proof of
Lemma 3.5 is complete.

LeMwA 3.12. Let A,, B, < c R% fori=1,2 and let
A = A, xB,UB, x4, c R xR"z.

Suppose that both A; and B, are op-divected at x; € R% for ¢ =1,9. Then
A i (ag, ap)-divected at (wy, @,).

Proof. We have y;+to; € 4; equivalent to > g, (y,) for y; close

 to @, and {i| < 6;. Similarly, y,+t¢; € B, is equivalent to 43 v,(y,) for

i =1, 2. It follows that
(Y, 2)+1t(ay, a3) € 4
is equivalent to
| 2 min (max{py(9), pa()}max fpa(y), pi()}) -

This proves the lemma.
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DEFINITION 3.13. Given an integer d>1 and ¢e (0, d7?), we let
for j=1,...,4d

= {® e D% #; = |[ol, > o},
Qpa={peD* —weQ},
Qagar = {—0, °>d'

The sequence @y, ..., @azyy is said to be a standard decomposition of the
dislke Dy into d-cubes. )

Tt is easy to check that @y, ..., Qygy, is & decomposition of (Dg, 8%71).
Tor ingtance, the formula

a
B(Yyy ooy Yg) = (G‘Hh ( —¢ (1+ Z y;)_m)) (15 Yoy oes Ya)
F=2
defines a diffeomorphism of the d-cube {0,1>x{—1,1)%! onto Q.
The remaining assertions of Lemma 3.6 will be checked with the use of
the following lemma. !
LEMMA 3.14. Suppose that [0, c0)®, acRE:, I {1,...,d} and

mine; > maxe;.
tel i¢l

The set Z = ) @, 18 a-directed at @ in each of the following cases :
iel

(3.15) g ¢8 and e o

(3.16) o, =¢ and n?irna,. >0,

(3.17) sl and ) o@;<0.
i<d

Proof. We have Z = {z e Ds: [l = maxz >¢}. I y e R? satisties

fly — @l < (1/2) 9]l , then for small t e B the condltlon y-+ia €Z is equiv-
alent to the following inequalities:

(3.18) , m&x(yﬁa;) maxwra{)
(3.19) max (y;+agt) > 0,
(3200 | Z(?/rl‘aﬂ) <1

isd

Moreover, inequality (3.20) may be dropped in cages (3.18) and (3.16)
and inequality (3.19) may be dropped in cages (3.18) and (3.17) prowded
that 4 is sutficiently close to « and [t is small enough.


GUEST


26 Z. Ciesielski and T. Pigiel

It is easy to check that our assumptions (in each of the cases (8.15),
(3.16) and (3.17)) allow one to replace the resulting system of inequalities
by a single condition of the form # > ¢(y), where @ satistics the Lipschitz
condition near ». This completes the proof of Lemma 3.14, beeause it is well
known that @ can be extended to a Lipschitzian function on R%.

Using Lemma 3.14 we can complete the proof of Lemma 3.6. In
fact, we can check a stronger fact that if 1< J<k<2d+1, then, at
cach point e RY the sets | @;, | @, are a-directed for some common

i< A<k

@ # 0. This will be essential when we congider product’ decompositions.
To prove this we may assume that & < 2d and # = 0. Then wo apply
the isometry T of R? given by

T(y) = (&1 Y1y +++5 82Ya)s
where ; = —1 if 4, < 0 and ¢ = 1 otherwise. This reduces the problem
to the case considered in Lemma 3.14. In a neighborhood of T'(x) the sets
(U @), T(U @) are of the form | @;, \J Q;, where J = K < {1, ..., d}
2 i<k . et ek
ancf(jme of the cases of Lemma 3.14 can be applied.

Obviously, ., ..., @y, remains a proper decomposition of (D, @)
after any permutation of the sequence that leaves Qoqyy tixed. It follovws
that this sequence is also a proper decompogition of (Dg, RINInt D).
To see this observe that if Z = T, where U = R? ig open, then Z i a-di-
rected at & € R?if and only it R™\IntZ is ( —a)-directed at . This completes
the proof of Lemma 3.6.

Before we pass to the proof of Lemma 3.7, observe the following
fact. Suppose A = R*™, and 4 x{—1,1> < R? is (a, v)-directed at (, 0),
where #, a € R*™*, v e R. Then A4 is a-directed at o if a % 0, and A4 is
B-directed at o for any p e R*1\{0} otherwise.

This follows directly from the definitions. The cage a = 0 is Casy.
If a # 0, (y, s) is sufficiently close to (z,0) and [¢| is small enough, then

(9; 8)+1(a, ) e A x < —1,1)

is equivalent to Y+ta € A. Since the former condition ig also equivalent

to 1= w(y, s), we infer that in a neighborhood of (x, 0) the function 7]
does not depend on s.

Using this fact we obtain easily that the sequence (@,NS%1), § == 1,
2y ..., 2d, i3 a proper decomposition of (8%, @) which has the property
similar to that we have proved for the Q8.

Now suppose that @,...,Q, is a decomposition of (4, By into
k-cubes and @, ..., @, is a decomposition of (4", B"y into m-cubes. Set
(B21) @ =gixQ' H i=(—-1)g+l, 1<I<q, 1<j<p.

It is easy to see that @, ..., Q,, is a decomposition of (4" xd"”, A" xB"v
UB' xA") into (k-+m)-cubes. We call (8.21) a product decomposition.

icm®
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Tt B =@ = B, then a sufficient condition for @, ..., @,, t0 be
a proper decomposition for (A’ x A", &) can be obtained from Lemma 3.12
and the identity in which s = (j—1)q+1:

Kq Q = (iéjm Q) ><<,.L<Jq Q;')U(g Q) x(pg Q7).

This sufficient condition has already been checked for our standard de-

compositions of disks and spheres.
Now we can prove Lemma 3.7. Set

G = ((@,y) e H: |l < min{5/4, P +1},
G = {(®,9) eG: WI<1/2},
Gy = {(w, 9) €G: [yl =>1/2}.
i bo P y v BUG,) admit proper decom-
It guffices to prove that (G, B) and (G, 1 a
ositions. Indeed, since H = GUB, then the proper decomposmol_:x‘of
%)G U@ . B) obtained via Lemma 3.4 will also be a proper decomposition
ofl(ﬂ 21’3). (This follows from the definitions we hlelnzve adoptedlé) R ont
'1‘7he ditfeomorphism ¥, (2, ¥) = (@(L+yIF)~ ,%ﬁ of R. ét o 1(1):w:
itselt satistios ¥, (G,) = Dy xD,, and ¥,(BNG,) = 8 - —>—<12);:;‘:|-1)(2m+1)
that the product decomposition @, ..., @p, where p = ((1 A decomi
made of thoge we have given for (D, 857 and (Dy, @) induces
gition. of (G4, BNGy). N )
1)0§11é(;1'10009 ( 1,, Q i; a proper decomposition of (D,,><D,.,,lz @), in G({)rdle;r
to prove th;n’: T{‘(ﬁ)l), very P7H(Q,) is & proper decomposition of (G4, B)
it iy sufficient to investigate the sets
v, (B)uJ @,
i<g

(3.22)

where § = 0,1, ..., p, at the points of the set
P, (B)NJ @ = 8 x Dy,
s (¢ being
= (%, 7 o= first that 7l > (1/2)e (¢
Lot 3 =@ 9) 5B i Supposel?;lssing to “polar coordinates”

r i finition 3.13). o
e m:);/;", n = Ylo, we obtain that near % the set

v (B)u | J @, is of the form
i< ) o
((r, 0, &, m) e RXBX I 8™ 1 v = g(e) or (o &) :
’
‘where
ple) = min{l, VB/(4+¢")}
is o Yipschitzian function and A= (—o0, 1) X A;, where
4, = (8 x 80 gj Q-
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It follows from our preliminary discussion that 4, is propér (a8 a subsct:
of §=1 x §™1) Henee, using twice Lerima 8.5, we infer that A’ is proper
in R x 8% x 8§~ and therefore the. set ¥ (B)v | @, is proper in a neigh-
borhood of z. ‘ <

The case where |7 < (1 [2)¢ is similar. Since # is in the interior of
& cube from the decomposition of D,,, we can use the “cylindrical coordi-
nates”, ie. r = fjof, & = #/r, ¥ =y. Then, in a neighborhood of 7, the
set W (B)U | ) @, is of the form.

<]

{r) £,9) e RX S X R™ r <1 or ey,

vc_rhere A4 is the union of some (% —~1)-cubes from our standard decomposi-

tion of 8*~'. The proof that ¥ (B)u (J @, is proper in a neighborhood of
i<y

Z is analogous to that in the previous case.

In order to construct a Proper decomposition of (6, , BUGY) we set
for (@, y) e REXR™ with ¢ = |y > 0

#a(@,9) = (2g(e, lall), y/e),
where :

glty7) = (t-HVITrE 1) 2V Tt 2 —1).
Then ¥, iy a diffeomorphism of R*x (B™\{0}) into RF xR x g™t
such that
Py (@) = Dy x<1/2, 1) xS,
¥, (0(6,VB)) = Dy x {1/2} x 8™ US* 5 (12, 15 3 Sm-1,
U(RF\D,) X {1} x g1,

Again tl}e product decomposition Qs -y Qpy g = (2K +1)2m, of
the decom_p.osmions for (D, 8%1), (§m-1, 0) and <{1/2, 1> induces a proper
decomposition of (@, BUG,). This follows eagily from Lemma 3.5.

This completes the proof of Lemma 3.7, and bence that of The-
orem 3.3. .

4. Decomposition of function spaces. Let M be a compact d-dimen-
sional O manifold. In [16] we gave a simple scheme for congtructing
Schauder bases for several classes of Tunetion spaces on M. Given a func.
tion space & (M), that scheme can bo applied if there exist extension
operators in & (M) corresponding to some sots defined in terms of the
decomposition @, ..., Qu given by Theorem 3.3. The operators we needoed
in [16] are obtained easily from the Stein extension theorem (Theorem 6.5
in [85]). All details which were skipped in [16] can be found in the present
paper, cf. e.g. Remark 4.10.

In this paper we improve the result of [16]. To do this, however,
we need extension operators with some additional Properties, cf. Prop-

icm®
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cosition 4.3. Those operators are constructed in Section 6. Now we want
-only to state some esgential properties of those operators so that we can
explain how they are used in order to solve our problem.

Let © be a smooth meagure on M equivalent to the Lebesgue measure
(by this we mean that, whenever ®: U-~R? is s chart for M , then on
the open set U one has du = hdw, where h is a positive (% function and
dz is the measure transported from the Lebesgue measure on &(U) by
means of @). By Ly(M) we denote the space of (equivalence classes of)
measurable funetions on M with the topology of convergence in meagure.

The Sobolev spaces WZ(M), where 1 < p<< o and & €Z,, are de-
fined in the usual way (cf. [4], [17]). (Xf feLy(M), then fe WE(M)
provided that “it is locally in W%”. The latter condition makes senge
by Lemma 2.52.) The symbol W« (M) stands, as in Section 2, for the space
usually denoted by OF(M). Thus, for cach % €Z, and 1< p< oo, the
space (M) of smooth functions is dense in WE(M). We set

0=(M) = {f < 0= (M): suppfrdll — G}
The closure of (° (M) in WE(M), where & e 2+ and 1< p < oo, will be
denoted by ﬁ@’;(M). ‘
Put as usual, for 1 < p < 00,9’ = p/(p —1), with 1’ = oo and oo’ = 1.

Define, for k< 0 and 1< p < oo, the space WE(M) to be the completion
of 0°(M) in the norm

W) = supf| [Foau]: g W5*(a0), lgh™ (3) < 1)
M .
and let V?ﬁ(M ) be the completion of é’“’(M ) in the norm

*IA ) = wup] [ fydu|: g e W5k, gl (30 < 1}.

2
{These spaces coincide with the spaces Wk (M) and WE(M) discussed
in [17].) Finally, let W%(Q), denote the elosu:e of the smooth funections,

e.g. of 0 (@), in the dual space of W* (@), Where 2’ — IGNZ (cf. Lerama.
2.48). Let us remark that the spaces we have just defined do not depend
on the choice of u (choosing another smooth measure one obtains an
equivalent norm).

The Besov spaces on M can be defined by real interpolation between
Sobolev spaces (cf. [17]). Namely, if s is a real number and [ < s, r > s
are integers, then, letting s = (1 —6)I+ 6, one has the formulae

B} (M) = (W, (), W (M),

(4.1) . s X
B} o (M) = (Wp (M), W} ())o,q
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The proof of analogous formula

(4.2) B3 o @)z = (W5 (@)z) Wy (@)z)o,gs
‘which appears after Proposition 2.50, will be completed when we prove
Proposition 2.39 in Section 6.

In the following, if 4 is a subset of a given set, y, may denote either
the characteristic function of A or the operation of multiplication by this
function.

ProrosirroN 4.3. Let M be a compact d-dimensional 0° manifold and
let Qyy ..., @y be the proper decomposition of M into d-cubes construcied
in Theorem 3.3. Let w be o smooth measure on M. Then, for any m =1,

one can construct continuous linear operators Py, ..., Py in the space L,(M)
which have the following properties for f e Ly(M):
(4.4) Dpf =1,
i<N
(4.8) P.Pif=0 if 1<i#%j<
(4.6) % B5f =Py f =0 if 1<i<] <N,

(4.7)  the Ps act in all the spaces WE(M) for 0 << m, 1< p < o0; in
fact, there is € < oo so that if g € WE(M) and 1 < ¢ < N, then

gl (M) < Oflgli (M),

(4.7%)  the adjoint operators (in the sense of Hilbert space Ly(u)) Py, ..., Py
sam‘sf Yy the analog of (4.7) and are continuous in Ly (M),

(4.8) 1f f =0 ae on a neighborhood of M, then also P.f and P} 2
1 =1, ..., N, vanish on a neighborhood of .M.

This proposition will be obtained in Section 6. Now we wish to formu-
late and deduce from Proposition 4.3 our bagic result on decomposition
of function spaces on MM, i.e. Theorem 4.9. We need some notation.

It Ql, . ,QN is- the sequence constructed in Theorem 3. 3 we pub
for ¢ =1, N

—anye, 72 = Z,0(9,n0M),
Z; =Qi”( quuaM)7 Zi = Qin U -

I denotes WEor Bf ,, k20,82 0,1<p, ¢ < oo, @ is a diffcomorphism
of 1% onto @,, T <i< N, zmd Ze{Z;,Z;, %, %4]'), we let
F(Qa)z =A{f e Ly(@)): fo® eF (1% Jo~1zy} -

This set is well defined (i.e. it does not depend on the choice of &), by
Lemmas 2.52 and 2.54. Different choices of @ lead to equivalent norms.
Clearly, W5(Q,), is closed in WE(Q,), and hence it is complete.
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THEOREM 4.9. Let M, pu,Q,...,Qx, m, Py, ...,Py be as in Prop-
osition 4.3. Then the formulae

T,f = V 1o Pify Vol = D 4o,P f,
I<N

define lmea/r msomo’rphwms of Lo(M) onto itself, the inverse maps being,
respectively,

8uf = Z Pitady U = 3 Bir-

Moreover, if F denotes W" <kESm, 1<p< oo, then Ty, V, induce
linear topological isomomhzsms
T: F (M)~ D BF (Q)z,
<N
T: (M)~ D OF (@)
<N
V:F(M

- D OF Q)

i<y
V: F()-> Y 67 Q)
i<V

Remark 4.10. The proof that T is an isomorphism depends only on
those properties of Py, ..., Py which are satisfied by the operators defined
in [16] with the help of Stein’s theorem, i.e. (4.4), (4.5), (4.6), (4.7).

Theorem 4.9 has been formulated so that its assertion ean be easily
extended to the case where # = Wi with —m<k<0, 1<p < oo,

This is a bit simpler if 1 < p < oo, because then the respective Sobolev
gpaces are reflexive and one has for all integers k

(WED)* = W),  (WEQ))* = Wi @)z,

where p' = p/(p—1) and Z’' = 0Q\Z. Let us show that the operator T’
of Theorem 4.9 is an isomorphism in the || [ norm for —m < k<0,
1< p < co. By this we mean the following.

Let 737 denote the inverse to the isomorphism

v W"C(M ) D @WHQ)z,
<N
from Theorem 4.9. (Observe that I;* is a restriction of the operator U, which
is the inverse of Vy.) Then the isomorphism
(T WE)—> 3 SWHQ
1SN

is easily seen to be an (,xt(*nsmn of T from the (dense) subspace W"( )
of WE(M).
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If p=1orp= oo, one can argue similarly. (We refer to [17] for
& gystematic exposition of some problems which arise in this case.) One
-obtains first that T has & weak* continuous extension to an isomorphism

between. the spaces dual to W;. , —m< k<0 (we denoted them by
+AWE in [17]). Then it follows that T is also an isomorphism between the
closures of smooth functions in the latter spaces (denoted by %W;ﬁ in
[17]) which we have denoted here by Wk.

Analogous assertions are true, then proofs being similar, for the oper-

ators T » V, V. Thus we have obtained the first part of the following co-
rollary.

COROLLARY 4.11. The assertion of Theorem 4.9 concerning the operators

T, .’I’ v, V remains trus if F denotes WE, where —m <k <m, L<p < oo,
or By o where —m<s<m, L<p,q< oo.

The second part will follow by real interpolation between the W,™
and Wy cases of Theorem 4.9, using (4.1) and (4.2) when we have proved
the latter formula. At this moment we can interpolate between Wg and
W, using Remark 2.51, which yields the resultfor 0 < s < m, 1 < p, ¢ < co.

Proof of Theorem 4.9. Observe that (4.4) and (4.8) yield for f € Ly (M),
4+ =1,..., N, that P;f =P, P,f, i.e. P; is a projection. From this and
(4.6) we obtain '

N
(412) Pif = Pi( Y #g)) Pif = PurgPef
=1
and, similarly, applying (4.4) and (4.8), -
N
(413) XQ,-f = XQ; (2 Pj) inf = XQ,;PiZQ,if'
=1

Using these facts and (4.4), (4.5), (4.6) we obtain easily that T8, = §,T,
= identity.
The proof in the case of V,, U, is similar (or it can be deduced from
‘the case of Ty, 8, using duality in L,(u) and the density of L, (u) in L, (M)).
Now, by (4.4) and (4.7), the projections P,, ..., Py define a decompo-
sition of #F (M) into the dir ect sum
Yo D @P(F ().

TSN
Since & (M is the closure in # (M) of those f e (M) which vanish in
a neighborhood of 0.M, (4.7) and (4.8) imply thatb P,(.?F M)) < .?F (M) for
4 =1,..., N, and hence one has the decomposition

F(M)eo Y @r(# ().

<N
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Analogously, using (4.7*) and (4.8) we obtain the decompositions
F(Mye Y @P}F (M), F(M)o Y OFF (M)
i<N <N
In Lemma 4.14 we describe exphclt isomorphisms between the ranges
of the P;’s and P}’ s and the suitable spaces # (Q,),. It is easy to see that this

leads exactly to our assertion that T, T , 7, V are isomorphisms between
the respective spaces.
LEMMA 4.14. Giveni,1 <1< N, let Rf = f[Q betherestriction map. Then,

if F = WE, where 0< 70< m,1<p<< oo, B defines Tinear topological
isomorphisms

EI: P,-(ﬁ'(M))ﬁ-.ﬂ'(QQZH
Ry: P(#F (M) ~F @)z,
Ry: P:(‘g—(‘M))—)y(QL)Z,‘7

Ry: P:‘( (M))-F(Q

all the spaces being equipped with the W¥ norm.

Proof. Since the E;’s are obviously continuous and all the above
gpaces are complete, it suffices, by the open mapping theorem, to check
that the R,s are algebraic isomorphisms between the respective spaces.
(A direct proof that P; induces the (continuous) inverse maps to R, and
R,, cf. (4.13) (vesp. P; induces the inverse maps to R, and R,) can be ob-
tained using Remark 2.58 and Corollary 5.39 (b)).

Suppose that feP;(#(M)) and Rf = 0. Since f = P,f, using (4.12)
we obtain f = Pxo,f = P;(0) = 0, i.c. By, and hence also R, is one-to-
one.

Let us check that

(418)  R(B(F (M) € F @)z  B(PAF (D)) < F Qg
Observe that if ¥ = U @y, then IntY determines #(@,); in the

senso of Lemma 2.54 and Remalk 2.58. The assumptions of that lemma are
gatisfied thamks to Theorem 3.3 and the Stein theorem.
Now, it feP;(# (M), then f = P;f, and hence flp o, = 0 because

by (4.6) one gets
Z‘ ijf 2 xQ, lf = 0.

j<i

Since IntY determines & (Q;)z,, this implies Rf eF (Q,-)ZJ.L

3 — Studia Math. 76.1
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To prove the second inclusion in (4.15), consider a compact d-dimen-
sional €% manifold M which contains M and satisfies 00 = @, If

£ eP,(# (M) € F (M), then flpg, = 0 and there is an f e (1) with
Flu =.~fzmdf|5,\M = 0. Again, since Tot(Y U (J\ M) determines W(Qi)z;,
we obtain that Rf = Bf e&F (Qi)z;~
‘We have shown (4.15). The converse inclusions are proved as follows.
Lot f e #(Qy)z,. Since Int ¥ determines & (¢;)z,, we can find a g e & (M)
so that RBg = f and gy o, = 0. Moreover, it f eﬂ‘(Qi)z;, then g can be

chosen  in. .;F(M), viz. take g = §|M, where §eF (M) satisties R = f
and §lx = 0, where "X = (HNM)U(Y\Q,). (Such a § exists because
Int(¥Y U (M\M)) determines & @z

Since f = Ry, it will suffice if we show that Rg = RP,;g. To do this
observe that, for j >4, (4.6) yields RP;g = Ryp, F;g = 0. On the other
hand, if j < i, then by (4.6) .

Py =P; D 50,9 =P;(0) = 0.
i<y
Hence, by (4.4), we get f = Rg = RP,g. This proves that in (4.15) equal-
ities hold. Applying the open mapping theorem ‘we conclude that R,
and R, are topological isomorphisms. ’

The proof in the case of R, and R, is analogous and can be omititied.
This completes the proof of Lemma 4.14 and of Theorem 4.9.

Remark. In this proof it is not necessary to know that ¥ is a proper
get. Namely, e.g. using the extension from Y constructed in Section 6 and
Corollary 5.39 (b), one can check (the analog of) condition (2.57) knowing
only that IntY has the so-called segment property. The same comment
applies in other places as well. :

Theoren 4.9 and Corollary 4.11 show that certain problems concern-

ing the spaces # (M) and % (M) (where F = Wl’g or B} , and M is a com-
pact d-dimensional 0 manifold) can be completely reduced to the study
of finitely many standard spaces of the type #(I%),. We are interested
in constructing Schauder bases in &# (M) with properties specified in The-
orems A. and B of the Introduction. This will be done for the spaces F(Q),
in Sections 7-10 (Part II). The discussion will be completed in Seetion 11.

5. H-operators. Let M be a d-dimensional o-compact O* manitold
{perhaps with boundary). Let 4 be a fixed smooth measure on. M equivalent
to the Lebesgue measure (this notion is defined as in Section 4). Let Ly (M)
denote the linear space of all (equivalence classes of) measurable functions
on M equipped with the topology of convergence in measure on cach com-
pact subset of M. Finally, let M be a d-dimensional 0* manifold without
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boundary so that M is a closed subset of 37 and the two €™ structures on
M coineide (if M = @, we simply take I = M).

We shall consider a special class, 2 (M), of linear operators- acting
in Ly(M) which we shall call H-operators (cf. [25]). The properties of this
class which we study in this section will enable ug to construct the sequence
Py, ..., Py described in Proposition 4.3 and to prove that it satisfies the
conditions we need.

Let us recall that a subset of R? is said to be Jordan measurable
(J-measurable) if its boundary has d-dimensional Lebesgue measure zero.
An analogous notion can be introduced on M.

Suppose we are given a function ¢ € 0% (I), a ¢° map &: W—If
and a measurable set ¥ < M such that & (V) < M. If f is a function on
M, we define H, 5, f by the formula

p@)f(P@), wze7,

(5.1) (Hy,0,pf) (@) = { 0 e M\TV. -

The operation H, 5 - will be called a simple H-operator if V is J-measurable
and there is an open set W = I such that W o ¥ and D [y is a diffeomor-
phism. (Clearly, the operation H, sy depends only on ¢|,, @y, and so
does the property of being a simple H-operator, but it is convenient for
us to have the notation that displays both ¢ and ®.)

Obviously, a simple H-operator induces a continuous linear map of
the space Ly (M) into itself. We define s# (M) to be the set of all operators
acting in L, (M) that are finite sums of such maps.

Observe that 5 () is an algebra of operators. This follows from the
simple formula

(8.2) sz.*Pg,Vz Oqu,dﬁ,Vl = Eqv,d’.ﬁ

where ¢ = ¢, (,0®P,), & = O0P, and V = V,n&;7 (V).

Before we introduce further definitions let us explain that in our
notation we identify (sealar) functions on a set with the multiplication
operators determined by the functions, e.g. y, may also denote the oper-
ator fi> xpf. .

Let ¥V < M be a measurable subset and let 4 e #(M). We say
that 4 is the identity on V, in symbols A = 1 on V, if for f e Ly(M) one has
Af = f y-ae.on V. .

LEMMA 5.3. A =1 on V iff xp A = yp.

Proof. This is obvious because, for fe L,(M), Af—f =0 a.e. on
on ¥ if and only if y,(Af—f) = 0in Ly(M).

Let 4: XY be alinear operator, where X < L,(M) and ¥ is a linear
space, and let ¥V = M be measurable. We say that 4 is supported on V, in
symbols supp 4 =7V, if Af = 0 for each f € X guch that f = 0 a.e. on V.
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LevvA 5.4. If yyfe X for feX, then suppd = V is equivalent to
A = Ayyp. :

Proof. Suppose 4 = Ay,. Then, if fe X and f =0 a.e. on V, we
have Af = A(zyf) = A(0) = 0. Conversely, if suppAd = V and fe X,
then f—ypf = 0 on V, and hence Af —Ayyf = A(f—ypf) = 0.

Remark 5.5. If A: XY is a linear operator, X < L (M) and
supp4d = V = M, then there is a natural way to extend the domain where
A is defined. Namely, if g is a measurable function defined on a set ¥’
such that V' = V' < M and there is f e X such that f—g = 0 a.e. on 7,
then we set )

Ag = 4f.

LmMuA. 5.6. If A e o (M), suppA <V and A =1 on V, then A is
a projection.
Proof. We have, by Lemmas 5.3 and 5.4,

AA = (Ayy) A = A(ypd) = Agy = 4.

LimvMA 5.7, Suppose A € # (M) and suppd < V, where Vo M is
J-measurable. If 4 = 3 Hy, 4,7 then A has also the H-representation
i

4 = Z Hfl’pw.V.z’
k)

where Vi = V,ng; (V).

Proof. Use Lemma 5.4 and formula (5.2).
X f, g € Ly(M) and fg e L, (M, u), then we et

(Fs9) = (f, 9 = [ (@) g(@) dp().
M

It is eonvenient to introduce the subspace L§(M) < Ly(M ) which consists
of all feL,(M, du) that vanish off a compact subset of M. Obviously,
L3 (M) is a linear subspace, and, if 4 e (M), then A(Lg(M)) < Li(M).
Also L5(M) does not depend on the choice of the smooth meusure e

Leyma 5.8. If A et (M), then there is a unique B e (M) such
that for f, g e L3(M) one has

(Af; ) = (f, Bg)y.

Proof. The uniqueness of B is obvious since H-operators map Lg (M)
into L (M) and this subspace is dense in Ly (M,u) as well ag in Ly (D).
To prove the existence it is.enough to consider tho cage where 4. is
a simple H-operator, say A = H,, . Observe that, letting V, = o(V),
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we have

1l

(A4f, 9 = [ p(@)F($(@))g (@) dp (@)
v

It

J1@)el6 @) gl @) v@)du(y),
71

where p is the Radon-Nikodym derivative d»/du on V1, v being the measure
transported from the open set W = ¥ by the diffeomorphism é|y. Our
assumptions give that y is the restriction of a function vy, e ¢* (M) to V,.
Thus we can write the right-hand.side in the form (f,Bg) uy Where
B =H, 4 v, if we let ¢, be a 0* map equal to (¢l)* in a neighbor-
hood of ¥, and ¢, e 0°(HM) satisfies

P(y) = ¢(¢_1(y)) v(¥)

in a neighborhood of 7,.

DErFiNITIoN 5.9. The operator B e o (M) described in Lemma 5.8
is said to be the H-operator adjoint to A and is denoted by A* or 4**.

Remark 5.10. All the notions previgusly introduced in this section
did not depend on our choice of u,ie. u could be replaced by another
smooth meagure », where dv = hdu, h € 0° (M), h(z) > 0 for z ¢ M.

This is not the case with the operation 4--A**. We have, however,
the simple relationship for A e #(M):

(8.11) A® = (1/h) A*].
(Indeed, it suffices to check that, for f, g e L(M),
[ A¥Dghdu = (4™f, g), = (f, Ag),

M

= [f(Ag)hap = (fh, Ag), = (A**(fh), g),
M

= [ A*™(fn)gdu.)
M

It follows from (5.11) that, although in general 4™ % A**, the prop-
erty “A* acts continuously in a space & (M) of smooth functions on
M?” may be independent of the choice of a smooth measure on M, e.g.,
this is the case if M is compact.

LEMMA 5.12. Let A e # (M) and let V be a measurable subset of M.
Then A =1 on V s equivalent to supp(L—A*) < M\V.

Proof. Since y,4 = y, is equivalent to A*yx, = x,-, which is the
same as (L—A4*) gy = 0, this lemma follows from Lemmas 5.3 and 5.4
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DewiNrrioN. Let 4 € # (M) and leb V < M be measurable. We say
that A is an H-extension from V if suppd < Vand A = 1 on V.

CoROLLARY 5.13. If 4 ¢ o (M), then A is an H-emtension from V if
and only if 1 —A* is an H-entension from M\V.

LeMyA 5.14. Let. A e o (M) and m > 0. Put

;= {feO’” ): Af =g a.6. for some g e C™(M)}.

Then C7% is closed in Om(.M ) (in the topology of umiform O™ convergence on
compact subsets of M) and the induced map A: 0% — O™ (M) is continuous.

DmrmNizioN. The operator 4 e # (M) is said to be of dlass am,mz 0,
it 07 is dense in €™ (M) (by Lemma B.14 this is equivalent to o = Om(M )
A iy said to be of dlass €™, m = 1, if 4™ is of clags 0™ (cf. the remark before
Lemma 5.12).

We shall prove Lemma 5:14 at the end of this section.

Now we shall introduce tensor products of, H-operators. We let '
be another (° manifold of dimension d'. M’ is equipped with a o-finite
smooth measure u’. We consider the manifold M x M’ with the smooth
measure u ®u'. It is not important in this context whether or not M and (or)
M haveaboundary. I‘1nﬂly,1ffel}0(M s g€ Ly(M'),then f ®g e L M X M)
Is given by (@) (2, ¥) =fl@)g(y), .

Levva 5.15. If A es# (M) and B e (M'), then there is a unique
continuous linear operator T in the space L, (M X M') such that

(5.16) T(f®g) = (4f) ® (B

Jor f e Ly(M), g e Ly(M'). Moreover, T e 2 (M ><JII')

Pro of The uniqueness of such an operator is obvious, because the
subspace of L,(M X M’) spanned by the functions of the form f®g is
dense in L,(M x M'). To prove the existence of T it is enough to congider
the case where A and B are simple Hopom‘uom, say A == H,, - and
B = H,, yy. Clearly, the operator ;

T = Hrp@w,wx VPRV y
where (P xX¥) (2, y) = (95( x), ¥ y))‘ has the required property.

DrriNmrron. The operator T given by Lemuma 5.15 is denoted by
A @B and is said to be the tensor product of the - operators 4 and B,

COROLLARY 5.17. Let M, M’ be manifolds, A, Ay et (M), B, B,
e (M), Ve Mand V' < M’ be measurable sets, len

(5.18) (4;®B,)o(4 ®B) = (4,04) ®(B,08),
(5.19) if suppd < V, supp B < V', then supp(4A ®B) < lV x V',
(5:20) fA=10onV,B=1onV, then A®B =1 on Vx v,
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(5.21) (A®B)* = A*@B",

(5.22) if A, B are of dlass 0"” for some m, then so is A ®B.

‘ 1’1 oof. Property (5. 18) follows easxly from Lemma 5.15. Similarly,

(5.21) follows from Lemmas 5.15 and 5.8. Properties (5.19) and (5.20)

Io]low from (5.18) and Lemmas 5.4 and 5.3, respectively. l‘mally, if
= 0, then (5.22) is obvious, because by (5.16) we have

n om m
01_/1 B = ® O

and, if 4 and B are of clags (™, then the subspace 0" @C% is dense in
O™ (M < M'). The case where m < 0 follows immediately from (5.22) for
the positive parameter —m, thanks to (5.21). ‘

LimMMA 5.23. Suppose M,, M, are manifolds, A, € 3¢ (M,) and V; = M,
18 measurable for ¢ =1,2. If suppd, =V, and 4, =1 on V,, then,
Jor feLy(M;xM,), f =0 a.e. on VXV, implies that

(4, Q4,)f =0 a.e. on M, xXV,.
Proof. This follows from the identity
(L ®xyp,) (4, ®@4,)f = (4, @15, 4) [ =

(we used (5.18) and Lemmas 5.3 and 5.4).

DerINITIoN. Let A e (M) and let U < M be a measurable set.
We say that A preserves vanishing on U if, for f e Ly(M), f = 0 a.e. on
U implies that Af = 0 a.e.on U.

LeMMA 5.24. Let U< M be a measurable set and A e # (M). Then
A preserves vanishing on U iff A* preserves vanishing on MN\T.

Proof. The lemma follows from the identity (4*%,g) = (4g, h)
tor g, h e L{(M). Indeed, A (vesp. A*) preserves vanishing on U (resp.
U*) iff (dg,h) = 0 (resp. (A*h, g) = 0) whenever ¢ = 0 a.e. on U and
b= 0 a.e.on M\TU.

Levma 5.25. ;S'uppose Ae# (M) and U= MxM' is a measurable
set such that, for u'-a.e. te M’', the operator A preserves vamishing on U,

= {sel: (s,t) e U}. Then the operator A @ eH (M xM’) poesewes
vanishing on U.
Proof. Observe that if feL,(M xM') and f(s)

(4, ®1) (xy, @1y, )f = 0

= f(s, ), then one

has
(A ®@1)f) (s, 8) = (Af))(s) a.c. on M xM'.

(This formula is obvious if 4. is a simple H-operator, cf. the proof of Lemmla
5.15.) ¥ ypf = 0 a.e. on M xM’, then yp,f; = 0 e L,(M) for a.e. t & M,
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and hence 1o, Afy = 0 & Ly(M) for a.c.t e M’, which yields that
2 (4 ®1)f =0 eLy(M xM').

LeMwA 5.26. Let B, B c # (M) and let V', V"' = M be measurable
sets. Suppose that E' (resp. B'') is an H-emtonsion from V' (resp. V" and,
in addition, B preserves vanishing on V'. Then the operator
(5.27) B=K+8"'-0"H
8 an H—em%ension from the set V = V'uV".

Proof. Write y = yp, 4" = xpy, 2" = xpn. Since B’ prescrves
vanishing on V', y'(1 —B') = 0 implies that 5B (1 —F') = 0, and hence

HA=B) =y (1—B)~y B (L—7) =0.
On the other hand, since y—y' = (1—y')z", we have

(x—2)1—8) = (L—y)(z"1—B")(1-F) = 0.

It follows that y(1 —F) = 0 and, by Lemma 5.3, ¥ =1 on V.

Now, if gf = 0, then B'f = 0 and B"f = 0, and henco Bf = 0. This
shows that supp X < V.

Levva 5.28. Suppose that M,, M, are manifolds and, for i =1, 2,

By By, e # (M) are H-ewtensions from subsels A, B; < M, such that
A; = B;. Then

(5.29) B =B, Qp,+Ep @1, (B B,)® (B 4y Bg,)
48 an H-ewtension from the set

A; X ByUBy XAy, € My X M,.

Moreover, B is of class O™ if so are By, Bp,, B,,, By, .

Proof. Weuse Lemma 5.27 with B’ = By QBp, and B’ = By ®E,,.
The fact that B’ (resp. B") is an H-extension from A, XB, (resp. from
B x4,) follows from (5.19) and (5.20). To check that B’ Preserves.
vanishing on the set 4, xB, we can use Lemma 5.23, because By =1
on 4, and suppH,, < B,. Therefore, the first statement follows from
Lemma 5.27. )

The final assertion almost follows from (5.22). Only the last term
in (5.29) presents a difficulty which will disappear when we have proved
Lemma. 5.14.

Remark 5.30. Note that if, in the setting of Lemma 5.28, 4, UB == By,
then .

‘ Ay XByUB x4, = A; XxByUB, X 4,,
“and hence (5.29) gives an H-extension from the sef Ay XBUB X A,.
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DurINITION. A finite family % of open subsets of M will be called
a J-partition if ‘

2 1o =1 p-ae.
Ue

Observe that the sets in % must be mutually disjoint and J-measurable.

n
LemMA 5.31. For every H-operator A = 3 Hy . v e# (M) there
is & J-partition % of M such that =l

(5.32) A=3 3 H, o
’ Ue ViU
i

Proof. Write ¥,, =Int¥V,, V,_, = M\V, for i =1,...,n. Set,
for a = (a(1), ..., a(n)) e {—1, 1}*,

U= Viaw-
i=<n

It is easy to see that the family # = {U,: ee{-1, 1)} has the required
property. )
It is convenient to use the following scheme in order to prove conti-
nuity of an H-operator A4 e # (M). We write A as in (5.32). Let [||_ I
be a seminorm on a linear subspace X, € Ly(M) and let || || be a funetion
on Lo(M). Suppose that there exist seminorms || g, U €%, such that:

(6.33) there is << oo such that for g e A(X,)
lglls < Omax|glisw,
Us¥

(5.84) there exist constants Cpy< co such that it fe X, and U < Vis
then

H oy 6, vflzw < Coy NI
Then, for f e X, one has
WASfl# < C IS,
where ¢/ = (max 3 0y /< oo does not depend on f.
Recall 17]m¥ 1'.11:3 topology of the space O™ (M) can be determined by
o gystem of seminorms
(5.35) Iff™ (K) = max sup [DAf(@);

0 km aelnt K
7 A L3 de-
where K ranges over relatively compact subsets of M . (Here D. fly) det
notes the appropriate k-linear map. It is not essential to spemfy wha;
we mean beeanso all reagonable descriptions lead to equivalent seminorms.)
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Proof of Lemma 5.14. Given 4 e # (M), wo may assume that 4 is
written as in (5.32). Put X, = (. Fix a compact sct K < M and st
for g e O™ (M), U e % (% being that of Lemma, 5.31)

Iyl = g™ (K),  lgle, = Wl (EnT)
(cf. (5.35)). Condition (5.33) will be satisfied because 7lle = max [[gl[ﬂu).
U

Recall the easy fact that if Hy oy e (M) is a simple H-operator and
Ve U is J-measurable and relatively compact in. M, then there iy ¢ << oo
such: that for f € 0™ (M) one hag ‘

(5.36) H 0,7 f 7 (V) < ol fI™ (0(7)).

Thus condition (5.34) of our scheme will also be satisticd if wo lot

NIAI = maxmax [ (@, U NLK)).
Ue¥ Vy=U

This shows the continuity of A: Xy—+C™( M), because (|| ||| is a continu-
ous geminorm on (™ (M), and hence on the subspace X,. In fact, ||| |||
= ||| ||{* (L), where L < U di(VinK) is a relatively compact set.

Finally, the fact that X, = 0% is closed in O™ (M) follows from the
next lemma, if we let X denote the closure of X, in O"™(M) and set ¥
= Ly(M), ¥y = C™(M) letting j: ¥,~Y be the natural embedding.

LeMya 5.37. Let A: XY be a continuous linear operator. Suppose
that XY, i a complete topological vector space, j: Yo=Y is a continuous
linear one-to-one map and ¥ is Hausdorff.

If there emists a dense subspace Xy < X such that A(X,) = (X, and
o4 lx,) 18 continuous, then A(X)c J(Xy) and j7lod is comtinuous.

Proof. Since ¥, is complete, the operattor j™'o (4 [x,) has a unique
continuous extension B: X—¥,. The operators 4B and 4 are cqual, be-
cause they are continuous and coincide on a dense subspace. It follows that
A(X) € j(¥,) and 04 = B is continuons.

LevovA 5.38. Let A e # (M) be of dlass 0™, mz=1. Suppose that
supp A <V, where Ve M is a compact J-measurable set. Then there s
0’ < oo such that for all f & O™ (M), 1< p< o0, 0 I < m, one has

4157 () < O [ 1 (V).

Proof. This follows from our scheme. We start from an H-represen-
tation of 4 obtained using Lemmas 5.7 and 5.31. Then wo set for g e O™ (M),
he0™(U), where Uew:

lglls = 91520, gl = lglt(v),

The easy verification of (5.33) and (5.34)
O = O™ (M) (cf. Lemma 5.14)
can be omitted.

[llegy = IR (T).

» Which uses the equality '
and an analog of (5.36) for ||| |||% norms,
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COROLLARY 5.39. Let M be o compact manifold and let A e o# (M) be
of class O™, mz L If 1< p< o0, 0 <k m, then

(a) A acls continuously in WE (M),

(b)y if A is an H-ewtension from a closed J-measurable set Vo M
and C™(V) is dense in WE(V) (= WE(Int V), then A induces a continuous
linear extension operator

B: WE(V)~>WE(M).

Proof. Both parts follow from Lemma 5.37. To prove (a) take X
= WE(M), Xy = C™(M), ¥ = L(M), ¥, = WE(M) and let j be the
natural embedding. Then recall Lemma 5.38 (with V = M).

For (b), let X = WE(V), ¥, ¥,, j be as above and X,,.== {fly:
Fe0"(M)}. The density of X, in X follows from our assumpfion and
‘Whitney’s extension theorem. We let Eg :j ﬁ\nghere for g e Ly(V) we

ot G(a) = g(x) if weV and o) =0ifxe .
o gfgx)o es%i‘n%uho of Eg forgg e X, follows from Lemma 5.38. Indeed,
it g == fly, where fe C™(M), then we have Hg = Aj = Af, so that

LG (30) = LAFIP () < O (V) = Clgi® (V).

Pinally, Hgly—g = 0 for g € X, because thisis true on a dense subspace,
namely X,.

Remark. ¢™(V) is dense in Wi(Int V) for 0 <k <m, 1 <p < oo,
whenever Int V' satisfies the segment property (cf. [1], Theorem 3.18).

In Section 6 we shall need the following fact.

OOROLLARY 5.40. Let Q < R be a compact parallelepiped amd let
A e a# (RY, supp.A < Q. Suppose that, for some m > 1, the set

{fe0™(Q): &f = g a.e. for some g e O™(@)}
of. Remark B.5) is dense in C™(Q).
( Then there is C < oo so that, for 0 < k< m, 1< p< oo and f e W(Q),
one has }
AR Q)< CIAIP (@)-

We omit the proof because it involves no new idea.

6. Construction of H-operators. A subset U< M is said to ath
arbitrarily smooth H-ewtensions provided that for ea:ih m;_lm there is
an B e o (M) that is an H-extension from U of class 0™ and 07™.

Lmmma 6.1. For each m =1 there is B e # (R) which is an H-exten-
sion of dlass O™ and C~™ from the set’ (—o0, 05,
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Proof. Consider the operator A e #(R) defined by

@), <0,
A =1
O =1 S e, aso,
=1

where oy, ..., ¢, By..., B, are real constants such that 0 > B> o> B,
It is clear that A is an H-extension from (— oo ,0). We shall show that
if ¢>2m+2 then, for any choice of Bis -ty Byy one can find ay, ..., q,
80 that 4 is of class 0™ and ¢~ ‘
Observe that if fe (™ (R), then 4f is of clags 0™ on (=00, 0> and
on (0, co). Sineo for > 0 and % = 0, 1, ..., m one hag
8
D*(4f) (@) = D arD4f(g0),
Je=1
we see that 4 is of class 0™ whenever

8

2 gpf =1 for

Je=1

Now, if B is given the Lebesgue measure, then the adjoint to 4 is

k=0,1,...,m.

(A*9)(y) = g(wj+2ajﬂf19(w/ﬁj)z 2< 0,

Fe=1
0, @> 0.
Consequently, 4* iy of class O™ provided that

8
Z Gfi* "t =1 for
. F=1
This gives a system of 2m-+2 linear equations for ay, ..., ,; which is
well known to admit solutions if s > 2m--2.

The next lemma is somewhat more special. We shall nse the notation
ovy for max{z, y}, and let for z € R*

E=0,1,...,m.

oo = max {ja, |, eeey @y}
Consider the sets Vi = BR" 0<% < m, given by
Viw = {@eR": Ovav ... V@ Z BV oo V).

. LowmA 6.2. Let m> 1 be Siwed. Then for each 0 < %< n there cwists
B =B, € #(R") such that

(6.3) T is of class O™ and ¢~™,

(6.4) T 4s an H-ewtension from Vieyns

(6.5) for each ¢ € R, B preserves vanishing on the set
8, = REX(—oo, e)n~k,
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Proof. In the case k = 0, » = 1 the operator A constructed in Lem-
ma 6.1 hag the required properties. (To prove (6.5), observe that if ¢ < 0,
then 4 ==1on 8, = (—o0, ¢), and if ¢ > 0, then supp4d < 8,.)

If & = 0, % > 1, then the n-fold tensor product B =By, ® ... R,
hag the required properties. This follows from Corollary 5.17.

‘We prove the general case by induction on k. Suppose that 1 < k<
and the operator Hy._,, , has already been constructed. Set

V' = {@eR" v ...va, <0},
V" ={meR": GV ooo VB, KBV oo Vi)

and lot B’ = lgk @y, ;. We need an H-extension ' from the set V"’
which pregerves vanishing on V' so that we can use Lemma 5.26. Consider
the igsomorphism ¢: R"->R XR"* given by

$(@) = (w1, (@, —2y, .0, 3, — 1))
Clearly, ‘
(V') = {00, 9) eRXB": 4pv ... v 1 < — ¥}y
(V") =RXV} 1,01-
The operator B = 1lgp@®By..;,-, 18 an H-extension from $(¥’’') which
preserves vanishing on ¢(V’). This follows from Lemma 5.25 and property
{6.8) of the operator Hy_;,_,- Thus, it B f = R(fop™")od for f € Ly(R"),
then, by Lemma b5.26,
B = El"x‘E”—E”E'

satisties (6.4). B satisties (6.3) because so do B’ and B”. To check property
(6.8) observe that, if ¢ <0, then 8, < V', hence B =;L on S'a Ifex>0
and. f e Ly(M) satisfies flg, =0 a.e., then E’f.= 0 smce_}f < 8, and
hence Hf = B''f. Thus we need to check that if g = fog™" vanishes on
the set . » .

$(8,) = {(Wo, ) e RXB"™1 g3,V +oo V Yy < 6=}y
then 80 does Rg. This again follows from Lemma 5.25 and property (6.5)
of Ek—l,n-«l . .

COROLLARY 6.6. Let I < {1, ..., n} and let
Z = {w e R*: max o, <max{0, maxa}] .
1<i<n iel

Then both Z and R™NZ admit arbitrarily smooth H-extensions.

is f g ollary 5.13.
Proof. This follows from Lemma 6.2 and. Coro. ; .
Consider now the following situation. M and M.l are ‘_d’-dlmensm.nal
manmifolds, U ¢ M and Uy c M, are open sets and ¢ is a diffeomorphism


GUEST


46 Z. Ciesielski and T. Figiel

of U onto U, . Given any complex function ¢ on M we let 9.(y) = J(z/ﬁ"‘(a/))
for y e U, and ¢,(y) = 0 for y e M,\U,. Thus, if suppl U, then for
any &, AeC"(M) iff 1, e O*(M,).

Now, if R;ea(M,) and 4eCP(U), then we have the mduced
H-operator R = R, e (M), where g = R,f satisfies suppg € U and.
91 = MRy (A4f)). '

It is clear that it R, is of class O™, where m > 0, then so is R,. The
same is true for m < —1. To see this observe that the operators (R,)*

= (R,); are related by the change of density that results from our identi-

fication of (U, uly) with (U, lr,) by means of ¢ (in & neighborhoud of
supp ) (ef. (5.11)).

Lmyuma 6.7. Let V < M be a closed set and let Uy, ..., U, M be
open sets such that OV = U U;. Then there ewist A, Ay, ..., A e C° (M)
il
with the following property. Suppose that, for i =1, 2,..,1, By (M)
8 an H-emtension from a closed set V, such that

(6.8) VinU; = VnU,.
Then the operator B defined by the formula
7
B =24 3 1B
=1
18 an H-extension from the set V.

Proof. Set Uy, = M\9V and y, = gy, Tor 0<<i<l. Let ¢y, ..v, @p
€ 0°(M) be a partition of unity subordinate to the covcrmg {Upy e, Uy

of M. We let 1 ———(p.i/(Z'rp}I/z for ¢ = 0 1,...,7 and A =2y, where
2 = %y . Obviously, A, ..., % e 0 (M), 222 =1 and
=0

Aty =2y t=1,..,1.
Note that zy, B; = gp,, EB;yy, = B; and, by (6.8),
Aot = X5y 4 =1,...,1
Using these identities we obtain easily that
Ay = My = ﬂixiZVi = li%via t=1,..,1,
4
1l = x,’Lﬁ.]-Z Loy Hidy = /C(j /ﬁ) =

i=l T

By = 32%“"2’% Ay e = 22 +Z}~1Eﬂw

=1
Hence the conclusion follows from Lemmag 5.3 and 5.4.
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Remark 6.9. There is an easy generalization of Lemma 6.7 that
can be proved in exactly the same way. Namely, let now Z; be an H-exten-
sion from a closed subset ¥, of another d-dimensional manifold M, and
suppose we are given a diffeomorphism ¢; from U, into M, such that.

V-(‘\¢,:(U) = ¢;(U;nV), i=1,..,1.

Then the operator B’ defined for f e I:o( ) by the formula (cf. the discussion
after Corollary 6.6)

Bf =f+ 2 H(FA) 097 o ¢y

is again an H-extension (in o (M)) from the set V.

Remark 6.10. If the E;’s in Lemma 6.7 are of class O™ for some inte~
ger m, then so iy K. The same is true in the situation described in Remark.
6.9. This follows from the discussion after Corollary 6.6.

Thus we can conclude that if ¥V = M is a compact set, then V admits.
arbitrarily smooth H-extensions in s (M) iff V admits such extensions.
locally, i.e. for each x € 3V and m > 1 there are an open set U and a dif-
feomorphism ¢: U—M; such that e U and ¢(UNV) =4(U)NV’,
where V' admits an H-extension of class 0™ and C~™ in 2 (M').

In the next two lemmas J is a subset of {1, 2, ..., d} x{—1,1} and.
the sets K;, are defined by

ij,. = {.’ﬂ ERd: mj = sllmllm}'

me 6.11. Given ¢> 0, let
V =< —e¢ )N U{Kj,,: (4, ) e J}.
Then V admits arbitrarily smooth H-eatensions in # (R?).

Proof. Set, for a = (ay, ..., az) € {—1, 1}%,

U, = {we R au;> —||l, for 1< j<d}.

Ve =U{E;e: Gre)ed, e =e}u{meR": gu<e,1<j< d}.
Observe that U,nV = U,nV,. For, if ¥ € U,NV, then either x|, <e¢
or, for some (j, ) e J, © € K ,, and hence

ey = |00 > 0,0, > — [l

which implies & = ;. Thus in each case # & V,. This proves that U,NV
c U,nV,. The inclusion U,NV, < V is proved similarly.

Tt follows easily from Corollary 6.6 that for each m>1 apd a € {—1,1}%
there is B, € # (R% which is an H-extension of class O™ and 0~™ from
V,. Since | U, = R*\{0} > 8V, the conclusion follows from Lemma 6.7..
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LEMMA 6.12. Suppose V' < 8% is of the form
S UK, (4, &) ed},
where J < {1, ...,d}x{—1,1}. Then V' admils arbitrarily smooth H-
ewtensions in (S‘Z‘ ).
Proof. Let W = {weS®': 2 @;> 0. Define ¢: W--R* to o
the composition of the central pI‘OJecthIl of W onto the hyperplane {» ¢ R%:

2 @; = 1} (i.e. the map MH(Z @)~ w) and the affine map

Y (Yo —Yay + vy Yaor —Ya)
Thus, for # e W,
a
$(w) = (Z wj)—l(ml — gy eney Bgoy —0g)
=1

and, clearly, 4 is a diffeomorphism of W onto R,
Now, if a = (ay, ..., az) € {~1,1}¢, we let

a
U = Uunfo e 827 3 am;> 1/2},
Il
where U, is the same as in the proof of Lemma 6.11. Set for » & U,

$a(@) = Ployyy ouvy agy).

Note that the U.’s form an open covering of 8%, Observe also that for
each a e {—1,1}¢ there is a set V, < R which is of the form described
in Corollary 6.6 and satisfies

Van¢a( Uclx) = ¢a( U;ﬂ V,) .
Thus the lemma follows from Remark 6.9.

CorOLLARY 6.18. (a) If @y, @, ..., @z ©8 the standard decomposition
of the sphere 8%, then the sels UQ“ 1< <24, admit arbitrarily smooth
H-extensions in # (847, <y

(0) If @15 @2y ++ - Qg 18 the standard decomposition of the ball D, = R?
and I < {1,...,2d-+1}, then the set O =|JQ, admits arbitrarily smooth
H-extensions in # (R%). )

Prooi. (a) follows directly from Lemma 6.12.

(b) Given J.< {1, ...,d} x{—1,1}, set ag in Lemma 6.11

V' =<K=, U {Ey,: (j, ) e}

icm®
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'R.vm]l that in Scetion 8 we agsumed that 0 < ¢ < d~Y2, St V7 = {# e R%:

2’1' = 1}. Clearly, =0, YNV = @. Observe that V'’ admits arbitrarily

i=
mmmh H-extensions in #(R%) thh preserve vanishing on 7. Indeed,

pick w @ e 0°(R) so that ¢(t) =1 if ¢ 1, and () = 0 if < ¢¥/d, and
let A E.W((O, o)) be an H-extension of clags €™ and ¢ from <1, oo).
We seti ‘

(HF) () = @ (llell)) (o fo) (leellsy @f lells)

where f, I8 obtained by oxpmshinu' fin terms of polar coordinates (v, &)
€ (0, c0) X84 and II, < A @y

Thuy using Lonmm. 6.1 and Lemma 5.26 we obtain that VV oy’
admits arbitrarily smooth H-cxtensions in 2 (RY. Now, it I < {1, ..., 2d},
then RINC is of the form V' u V' (up to @ set of measure 0), so it
suffices to reeall Lemma 5.12. Xf 24 -1 e I, then we can apply Lemma 6.7
(¢f. Remark 6.10), beeause we have just shown that it I’ = IN{2d -1},
then the sets

Vy == U Qu

del’

Ve = VU@ UV,

admit arbitrarily smooth H-extensions in o (R%Y). (Take

Uy = {waR%: Joly> eV}, U, = {weR%: [a,<1)).

ProvosmmonN 6.14. Let M be o d-dimensional compact ™ manifold.
Lt Qyy o ,(JN be a proper decomposition of M into d-cubes. Suppose that

gither d =1 or d>1 and Ql, <oy Qu i8 the decomposition constructed in
Bection 3. Then, for each n == 1,2, ..., N and r = 1, the set
W, = U Q;
€N

admits an H-cxtension of class C" and O~ in o ().

Proof. Observe that if d == 1, then the assertion follows cumly from
Lemma 6.1 and Lemma 6.7. Thuq we may assume that d> 1 and that
thoe proposition hay been proved for all manifolds of dimension & —1.
We shall alwo fix » 3= 1 und abbreviate “I-extension of clags ¢ and ="
to “I-extension”, The proof inelndes several cases all of which are vreduced
1o the following schene.

We find open wets U, U,y & 3, o diffeomorphism ¥ and an B, ex (M)

#0 Lhat

W, e UulUy;
By ds an I-extension from a closed set 8y € M5
UyW, = UynSy;

4 — Studla Math, 76.1
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¥ maps U onto V, where V is an open subset of another manifold,

M,, such that there exists an H-extension B e #(M,) from a cloged seb
S < M, such that
Y(UNW,) =TnS.

Having done this, we obtain the desired H-extension from W, Dy
applying Remark 6.9.

‘We shall follow the notation we used in the proof of Theorem 3.3.

Given n, 1 < n < N, let s be the maximal index guch that
Ay =77 (=00, a)) = W,.

‘We consider firgt the case where either 4, = W,, or the c¢ube @, docs.
not correspond o any critical point & (we say that @, corresponds to z; if
@; was obtained in the process of the subdividing the neighborhood of
#; specified in the proof of Theorem 3.3). We take Uy = 7“1(( —00, as)),ﬂ
By =13 e # (M) and, setting B = v7'(a,), we define ¥ in an open
neighborhood of W,\ U, by the formula

V(@) = (e(@),

‘where ¢ is the retraction onto B along the flow lines of the veetor field
—-gladr (¢f. [26], Theorem 6.22 and the proof of Theorem 6.31). (Tf s is.
even, in particular if s = 0, then ¥ is defined and is a ditfeomorphisin in
a neighborhood of 4., \Int A, = 7 (<a,, a,,;>).) By the quoted results
in [26], ¥ is a diffeomorphism of an open set U > W,\ U, onto an open
subset ¥V = BxR (where B =R if s> 0, and B = <0, oo) if 8 = 0).
Clearly,

7(v)) e BX R,

yj( Uan) = Vﬂs?

where 8§ = {(y, a) e BXR: a<tyyy, €W or a<a,> 0} and the seb
W < B admits, by our induction hypothesis, an H-extension in #°(B).
Therefore, the H-extension e s (B x R) from the set § can be constructed
by using Lemma 5.28. Thus we have fulfilled all the conditions of our
scheme.

Now we consider the case where @, corresponds to a cxitical point,
say #;, whose index is either 0 or d. We take the c¢havt @: U-»R* and the
get M’ from the proof of Theorem 3.3 and let

Uy = MNM', 8 =W, NM', W(u) = "D (u).

The H-extension F, e # (M) from §, exists by the previously considered
case. In order to produce an H-extension 7 e 2 (RY) from § = W (MW,
'we apply Corollary 6.23 ().

icm
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It remains to congider the case where @, corresponds to a critieal
point #; with index &, where 1 <& < d—1. This case leads to two possi-
bilitics. We have the chart @: U—R* x R™, m = d—k, in a neighborhood
U of ¢; and then either 62 $(Q,) = G, or ¢ 2B (Q,) = G, (c¢f. (3.22) and
the proof of Lemma 3.7).

In the first sub-case we set Uy, = M\ (@), 8, = A,UM’
(M’ being that from the proof of Theorem 3.3). The H-extension B, e #°( M)
from 8, exists again by the firgt case.

We let My = BEXR™, W(u) = PP () and

8 = V(UNW,)n{(@,9) e Uy: o] >
Below wo prove

-LeymMA 6.18. There emists an B e o (RF X R™) which is an H-exien-
ston of class 0" amd 0" from this set 8.

This will settle the first sub-case. In the second sub-case we let U,
= MN\O'(G,), 8 = 4,.,. The H-extension F,es# (M) from 8,
exigts again by the first case. The set U has now to be replaced by the set

VBJ4}.

Uy ={uelU: &u) = (z,9) # (0,1}
We let My == R* x 8™ xR and define ¥: U,—M, to be the composition.
of s“l’2d>{m with the diffeomorphism ¥, which was used in the proof
of Lemma 8.7 in order to produce our decomposition of @, into d-cubes.
This time the H-extension B e o (M) from a suitable sct § is constructed
in the technical Lemma 6.16 below. Thus the proof of Proposition 6.14
has been reduced to Lemmas 6.15 and 6.16.

Proof of Lemma 6.15. Suppose that B e x (RF
sion (of class 0" and ¢~7) from the set

X R™) ig an H-exten-

8 = {(z, y)e8: Jyl<1/2}.

It is casy to construct an H-extension B e # (R* x R™) from. the seb
87 == {(, y) € My |} = 1/5/1 which preserves vanishing on §’. Namely,
if 7, e %”(II") is an H-extension (of clags O" and 0~") from the set {x e R*:
el 3 V5 /fl} (ef. the proof of Corollary 6.13), then the tengor product
T,&1, lew (R”‘), hag the desived property by Lemwa 5.23.

Thus it follows from Yemma 8526 that B = B -1 B0 i
the desived H-extonsion from U8 = § and wo should only prove
thats B exists.

To this end we use the diffeomorphism Wy of R¥ xI™ onto itself
(which we already used in the proof of Lenima 3.7) defined by the formmla

Wile, y) = (L4 wl) "2, 29).
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This diffeomorphism transforms 87 onto a set of the form (cf. the proof
of Lemma 3.7) .
(RNInt D) x D, W U Qi) x( U @f)u U @y %@y,
Tsgu—~1 1om 41 =W
where 1< o< 251, 1<<w<2m+1. (Hexe @, ..., QQ,C_H‘ (resp. Q7 ...
eovy Qomyq) is the standard decomposition- of D, (resp. D,,) into cubes.)
The set ¥, (8’) can also be written as

((B*N\Int. D) v U Qi) XD,,@U(.U Qi) % (y Q).
. 2SR § = 1w

Therefore the desived H-extension, say Hy, from this set can be obtained
by using Remark 5.30. Indeed, Corollary 6.13 (b) and Lemma 5.12 supply
all H-extensions which are required in order to use Lemma 5.28.

Now we simply take .

‘ Bf = (By(fo ¥ o ¥,

This completes the proof of Lemma 6.15. ‘

LeMMA 6.16. Let &, m =1 and let Q;, ..., Qupy (resp. Q74 ..., QL{,,L) be
the standard decomposition of Dy, (resp. 8™1) into cubes. Tz 1 < v < 2k-|-1,
1w 2m and let

A = (RENInb D) x 80 | {Q) % Q)': i< 0 or i == 0, j < 0}
Then the set 8 = R* x S"* x R defined by
8 = A %<0, 1DURF 8™ % (—o00, 0>

admits arbitrarily smooth H-emiensions in A (RF x 8" % R).
Proof. We shall use Remark 5.30 twice. First we write 4 in the form,

A = (R"™\Int DU U @) xsm—lu(g Qi) x(&_j Q7

and obtain as before that 4 admits arbitrarily smooth H-extbensions
in o (RF x 8™, *

Using this fact (and Lemma 6.1) we again apply Remark 5.30 to con-
clude that § admits arbitrarily smooth H-extensions in o (J8¥ x §"* % ).
This completes the proof of Lemma 6.16, and hence also Troposition 6.14.

We arve ready for the proof of Proposition 4.3. Tix » 3 1 and let
Hy,y ooy Hy e (M) bo a sequence given by Proposition 6.14. Thus for
#o=1,.., N, H, is an H-cxtension of clasy ¢ and 7 from the sel Ww,.
Put By = 0 and

(6.17)

By = Hyo ..ol DI, 1,

for ¢ ==1,..., N. We shall show that the Ly satisfy conditions (h.4),
(4.8), (4.6), (4.7) and (4.7%.
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(This is sufficient if 00 = @ or it d — 1 or if one ‘wants to obtain
only the isomorphisms 7, V in Theorem 4.9, ef. Remark 4.10. Later we
shall construct & modified sequence H, ..., HY;. Using that sequence in
(6.17) instead of the H,s, we do not affeet the proof of (4.4)~(4.7%), while
(4.8) beeomes obvious.) .

Tt js elear that the Ps defined in (6.17) are H-operators, and so are
their adjoints P; (henee they ave continuons in Ly(I)). Moreover, they
are of elass O7, heneo (4.7) and (4.7%) follow from Corollary 5.39 (a).

Property (4.4) is obvious, beeanse By = Hy is the identity operator
and Iy = 0.

Now, suppIl; = W, implies that supp¥, < W, for §=1,...,N.
Bimilaxly, since H; == 1 on W ov j = ¢, wo have By =1 on 'W,;. By Lemmag
5.3 and 5.4 we seo that if 1 <54 < j < N, then '

(6.18) By, == iyt By = t3p,.

It follows that if 1 <4 § < N, then
E¢EJ = E’LXWiEj == EzXW,- = B,
and hence if j<¢ and B = II;_j0...0H 4y then
BB = BN = BE - 5,

Using theso relations, we obtain (4.5). Finally, it 1 < i < § < N, then uging
(6.18) we obtain

Yols = aw By =ty By~ sy, By A gy, By == 0,
Pi%c,)j = Eb’%l‘l’j*]ﬂé—ﬂx’f?j_*Ez‘:{'ﬂfj_,l “3“E¢‘m1%w;’]_1 =0,

i.e. we have vevified propertics (dA4)~(4.7%).

Now suppose that M o & and d >1. Recall that the first layer of
the cubes @, in the decomposition of M constructed in Theorem 3.3 is
simply the set Ay =v"1(0, a). ‘

Similarly ag in Lemma 6.7, we ean pick Aoy A € O°(R) so thati Ay (s) ==
Tor ¢ 2 (2/8) g, Ay (s) == 0 Lov $ << (1/8)ay and Ay(8)2 -2y (8)2 == 1 for & & R.
Sl gy = 207, ¢y »= o .

Given I & o (M), dufine H° e o (M) by the formula

° = g Mgyt g, Hy, o

Observe thut (H%)* = (I*)?. In particnlar, for all integers #, it H iy of
class 07, then so is H°. Also it 21 is an H-extension from V < M. , then so
is H° (use Lemmas 5.3 and 5.4). This shows that the operators HE, ..., WY
have all the propertios of Hy, ..., Hy which were needed in order to verity
(4 =(4.7%).
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Let & denote the set of all B e # (M) wuch that if V' = 7 (K0, 8),
where 0 << s< (1/3)a,, then B preserves vanishing on ¥ and on M\7V.
Observe that, by Lemma 5.24, B € o iff B* e &, Moveover, o is an algebra
of operators.

Thus if we prove that, for ¢ == 1, ..., N,

(6.19) Hed,

then it will follow that P, eof and Pfess for 4 =1,..., N, This, of
course, will imply (4.8) because, if f e L (M) wmmhes on a neighborhood
of 0.M, then for some ¢ & (0, (1/3)ay) fvanishes on (<0, &),

Now, to prove (6.19) observe that, for any H e o (M), g,Hy, & .
Thus it suftices to show that g,H,g, € «. Fix an 4, put H == = %4y .L[ixz, .
It follows from our construction of H, that the study of H can be reduaecl
to that of a tensor product B @1, where B e # (0M) and 1 & ({0, a>).
Hence Lemma 5.23 yields that H es/. Since gy, = g, we havo
9.H;9, = H e o/. This proves (6.19) and completes tho proof of Yroposi-
tion 4.3.

Now we shall construct the operator P of Proposition 2.39. We start
from some constructions on the real line. Fix o funetion ¢ e ¢°(R) such
that @(o) =1 it |2—1/2| < 3/4, p(x) = 0 if |z—1/2] > 1. Pub ¢ == 2m--2
and fix numbers —~2<f<...<f,< —1. Finally, let ¢, ..., a be
the solution of the following bystom of equations (¢f. Liemma 6.1):

8
Z o =1, k= —m-—1,..., m.

J=1

Recall that I, where Z < {0, 1}, is defined by (2.38). Lot ¢ = A1,9 € Lo( R)
for Z < {0, 1}, and Iet P, € # (R) be defined by the formula
8 ‘ 8
(6:20) (Pf)(@) = F(@)— > ay(o”f)(B;a) — 3 a(¢f){L-+B; (0 1))
je=l Fr=1

for @ € <0, 1> and (Py,f)(x) = 0 for & e R\C0, 1)>.
Note that the following clements of # (R) are equals

(6.21) Puar = dtny  y1Py = Py

Our choice of the ofs ensures that if f: B-»R and Jlr, € O™(I,),
then "

(6.22) (P, €C™(Iy),  ((P)*f)lz, & C™(I,)

(this is proved as in Lemma 6.1).
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Observe also that there is 4, € # (R) such that
(6.23) (Pg)* =% Ay.

Now we are ready to prove Proposition 2.39. Let d > 1. Recall that
Z ig given by (2.87). Define Py € # (R%) by the formula

Py =Py ®... ®Fy,

where Py, € 3 (Ry)) (the 4-th copy of R) is the H-operator defined by
(6.20). Bince suppPy < Iy X ... x Iy, == @, then Py induces & continu-
ous operator P in the space Ly ( Q ) (¢f. Remark 5.5).

Let ug cheek that P has the required properties. Property (2.41) of
P follows from Corollary 5.40 and (6.22). Similarly, since the formal
adjoint P* is induced by the operator

(6.24) (Po)* = (P1)*® ... ®(Py)",
we obtain (2.42). (2.40) is a consequence of the identities
(6.25) Prg = xp, %P =P,

which. follow from (6.21) by (5.18). Clearly, (2.43) follows from the dual
form of (6.25).

It remains to check (3.44). Observe first that for any fe.L,(Qz)
one has P*f == 0 a.c. on V, where ¥ = Q,N\{1/2, 3/2>% is an open subset
of @,. This follows from (6.23), (6.24) and (5.18)

Now suppose that fe L,(@,) vanishes on a set Un@Q, where U is
an open neighborhood of 6@,. Let § be a (d—1)-dimensional face of 8Q,,
say S = {we@Qy: o, = o} for some ise{l,...,d},aec{-1,0,1,2}. We
assume, without loss of generality, that ¢ = d.

It SNQ = @, then, as we have proved, P*f vanishes on ¥ which is
a neighborhood of § in @,.

It 8nQ # @ and d = 1, then P*f vanishes on a neighborhood of 8
in @y = I, by property (2.43). It d > 1, then woe use Lemma 5.23,

Observe that there is & > 0 sueh that if ¥ € Q and |y, —a| < &, then
y e U. Let

My == R M, =R, Vy=IY ¥V, =In(a—e, aits),
Ay = (I’zl)*@) < 8 “'za_.l)*; Ay = (lgzd)*-
X f ey (R XRY, fle =, then using Lemma 5.23 we got

(A ® Ag)f == 0 n.e. on R*1x V.
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This obviously yields that P*f vanishes on the s-neighborhood of §in @,

This completes the proof of Proposition 2.39.

We close this section with a simple example which shows that I-op-
erators can provide linear continuous extengions in some cases where no
other known method works. Conceivably, this idea can be used in order
to simplify our constructions of extengion operators in Proposition 6.14 and
also to avoid using the fact that the sets IntW,, L < N, have the
segment property (so that a weaker and.easier version of Theorem 3.3 would
be sufficient). '

We shall construct a closed set V' < RS go that Int ¥ failg the segment
property and yet, if &F = 'W;i or F = By . where 0 5k < my 0< 8< 1,
1<p, ¢< o, then

(6.26) F(V) = {gly: g eF (RY).

Moreover, V admits arbitrarily smooth H-extensions in 2 (R®).
The set V is defined as V'OV, where

V' = {(,9): av (—y) > 0} x 0, o),
V" =<0, o) x{(y,#): yvez 0} = {0, oc) X 4.

It is easy to check that Int ¥ fails the segment property, the ovigin being
the only singular point.

Now fix an m z 1 and pick three H-extensions of clags 0™ and 0~
e #(R®) from the set V', W, e #(R) from the set <0, o) and
1, e o (R?) from A (use Lemmas 6.1, 6.2 and 5.13). Put B = I, ¥,
and let

B =5 -']'E” "R,

Using (5.22) and Lemma 5.14 we infer that F is of class 0™ and (™.

To show that ¥ is an H-extension from V, observe first that B is
an H-extension from V. We would like to use Lemma 5.26. To this end
observe that if B = {(y,2): y<<0,2>0}, then feL,(R?), Tl = 0
implies B flpyp = 0. (This follows from Lemma B5.23, Decause suppfy
€40, co) and F, =1 on B.) Since B preserves vanishing on VAV’
and

0, ) xB s Vs (RxBUV NV,

we see that B preserves vanishing on V', Hence, by Lewmma 5.26, B is
an H-extension from ¥, i.e. I has the required properties.
Choosing more carefully #', By, Hy, wo could get that J defines

2 bounded map from F(V) to F (R, where &F == W or F = By
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0 bsim, 0<Cs<<m, L<p, ¢ < co. We shall not do this beeanse the results
of Section § cannot be applied diveetly, since V is not compact. Xt is not

difficult, however, to produce such extengion operators from F(VNDy)

to & (R®). This fact also dependson (6.26), so let us indicate why (6.26)
is true. Tt suffices o check the following: given f e & (V) such that suppf
is bounded in B3, there is ¢ € # (RB®) such that f = ¢/,

To this end pick m 21 80 that m =% (or m >s) and let B’ (resp.

F'") eF (R?) bo H-extongions from V7 (vesp. V') corvesponding to this m.

Weritie &, (U) for the set of those feF (1) sueh that suppfis & bounded
subget of RS

Observe that, since IntV” has the segmenti property, it can be de-
duced fromn Corollary 5.89 that it b e #\(V'), then B'h e F 4 (R3). Similarly,
Ty e Fo(V") implies W''hy e F (R, lence, if fe#,(V), then letting
ho== Flygey Dy == flpn we oblain casily that g == Hf e # (R?) and gly = f.
This completes the proof of (6.26).
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On weighted norm inequalities for the maximal function

by

ANGLL E. GATTO* and CRISTIAN L. GUTIERREZ
(Now Brungwick, N. J.)

Abstract, Wo give a refinement of o lemma of C. Fefferman and E. Stein, and
wo show an applieation to weighted norm inequalitics.

The lemma of C. Fefferman and X. Stein given in [3], p. 111, states
that

) [ Mi@rg@)de <0 [ @) My(o)d,

F i ="

where 1< p<< oo, M is the Hardy-Littlewood maximal function, and
fand g are positive measurable functions.

In thig note we show that by restricting the radius in the definition
of the maximal funetion & similar inequality holds. This inequality can
Do used ag a substitute for (1) in weighted norm inequalitics when the
apgumplion Mg < co cannot be made.

LmmmA. Let f be a measurable function and define

Fw) = [ isa,

1
sup -
3 B,(»
< (| +1)/2 I r( )I Bz

where B, () is the ball of center » and radius r, and

. 1L
Joy = s 5 [ 1reiat,

|t el By
where B, ig a ball of radius r. If g > 0 almost everywhere, then
[Fapg@de< o [ 1f@)P§@)ds.
nw R‘n
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