

Associative and Lie subalgebras of finite codimension

bν

G. J. MURPHY and H. RADJAVI (Halifax, N.S.)

Abstract. It is shown that the algebra of compact operators on a Hilbert space of infinite dimension has no proper subalgebra of finite codimension, and no proper closed Lie subalgebra of finite codimension. Related results are established for more general O^* -algebras, and for the Schatten p-ideals (p > 2).

Introduction. It was shown by P. de la Harpe [3] that the Lie algebra $\mathscr X$ of compact operators on an infinite dimensional Hilbert space has no proper Lie ideal of finite codimension, and he conjectured that in fact $\mathscr X$ has no proper Lie subalgebra of finite codimension. We show below that the conjecture is true if the subalgebra is assumed to be closed. We also show that $\mathscr X$ has no proper associative subalgebra of finite codimension. The methods for this case are general and apply in a wider context, so that we prove some results about subalgebras of finite codimension in general $\mathscr O^*$ -algebras.

The term ideal (without qualification) will always mean a two-sided ideal.

The authors wish to thank E. Nordgren for helpful comments, and T. T. West for drawing their attention to [4].

1. Finite codimensional ideals in C^* -algebras.

Lemma 1.1. Every ideal I of finite codimension in a C^* -algebra B is closed.

Proof. Suppose first that I is a maximal ideal. If B/I is a radical algebra, then since it is finite-dimensional, there exists an integer $n \ge 1$ such that $(b_1+I)\dots(b_n+I)=0$ in B/I for all $b_1,\dots,b_n\in B$. Hence $b_1\dots b_n\in I$, and since B is a C^* -algebra, B is linearly spanned by such products. Hence B=I, and I is certainly closed.

If B/I is not a radical algebra, it contains a primitive ideal, and by the maximality of I in B, this primitive ideal can only be the zero ideal. Thus I is a primitive ideal, and hence closed.

We prove the general result by induction on n, the codimension of I in B. Clearly every ideal of codimension 0 is closed. Suppose we know the lemma is true for n = 0, 1, 2, ..., k-1, and let us prove it for n = k.

If I is an ideal of codimension n=k, then either I is maximal, in which case it is closed by our argument above, or there is an ideal J of B such that $I \subsetneq J \subsetneq B$. Hence J has codimension < k, and so J is closed by the induction hypothesis. Thus J is a C^* -algebra, and I has codimension in J which is strictly less than k. Hence I is closed, again by the induction hypothesis. This completes the proof.

The following theorem is a special case of a result in [4], and its proof is quite elementary.

THEOREM 1.2 (Laffey [4]). If B is a Banach algebra, and A is a subalgebra of finite codimension, then A contains an ideal I of B such that I has finite codimension in B.

THEOREM 1.3. A subalgebra of finite codimension in a C^* -algebra is necessarily closed.

Proof. If A is a subalgebra of finite codimension of the C^* -algebra B, then there is an ideal I of B contained in A such that $\dim(B/I) < \infty$. By Lemma 1, I is closed. Also since $\dim(A/I) < \infty$, A/I is complete. Hence A is a Banach algebra, and so A is closed in B.

THEOREM 1.4. Let B be a C^* -algebra, C a finite-dimensional Banach algebra, and $\varphi \colon B \to C$ an algebra homomorphism. Then φ is continuous.

Proof. The ideal

$$I = \ker \varphi = \{x \in B \colon \varphi(x) = 0\}$$

is finite-codimensional in B, and hence closed by Lemma 1.1. Thus φ is the composition of the continuous maps

$$B \rightarrow B/\ker \varphi$$
 $x \mapsto x + \ker \varphi$

and

$$B/\ker\varphi\to C$$
 $x+\ker\varphi\mapsto\varphi(x)$.

The second map is continuous because it is a linear map between finite-dimensional spaces.

Remark. Theorem 1.3 is not true for more general Banach algebras: Let B be the Banach algebra which is the completion of the algebra of all finite sums

$$\lambda r + \sum_{i=1}^{n} \lambda_i e_i$$

where $\lambda, \lambda_1, \ldots, \lambda_n$ are complex numbers, the e_i are mutually orthogonal idempotents, $r^2 = 0$, and $re_i = e_i r = 0$. The norm is given by

$$\left\|\lambda_r + \sum_{i=1}^n \lambda_i e_i\right\| = \max\left(\left(\sum_{i=1}^n \left|\lambda_i\right|^1\right)^{1/2}, \, \left|\lambda - \sum_{i=1}^n \lambda_i\right|\right).$$

Recall that a simple C^* -algebra is one having no proper closed ideals.

THEOREM 1.5. If B is an infinite-dimensional simple C^* -algebra, then B has no proper subalgebra of finite codimension.

Proof. Let A be a subalgebra of finite codimension. By Theorem 1.2 and Lemma 1.1 there is a closed ideal I of finite codimension such that $I \subseteq A$. Since B is simple and $\dim B = \infty$, I = B. Thus A = B.

THEOREM 1.6. Let H be a Hilbert space of infinite dimension, and let $\mathcal{K}(H)$, $\mathcal{B}(H)$ denote the C^* -algebras of compact and bounded operators, respectively. Then $\mathcal{K}(H)$, $\mathcal{B}(H)$ and $\mathcal{B}(H)/\mathcal{K}(H)$ have no proper subalgebras of finite codimension.

Proof. $\mathcal{K}(H)$ is simple.

As for $\mathscr{B}(H)$, its closed ideals are well known, and of them only $\mathscr{B}(H)$ itself is finite codimensional. (When H is separable, $\mathscr{K}(H)$ is the only proper closed ideal of $\mathscr{B}(H)$.)

The result for the Calkin algebra $\mathscr{B}(H)/\mathscr{K}(H)$ now follows easily.

Remark. In Theorem 1.5 one can replace the condition that B is a C^* -algebra by the weaker condition that B is a Banach algebra spanned by $B^2 = \{xy \colon x, y \in B\}$. Any Banach algebra with a bounded approximate identity is such an algebra, by the Cohen Factorization Theorem ([5], p. 26). Thus B could be taken to be $L^1(G)$ for G any locally compact group. The proofs are only a little more technical than those given here.

2. Lie subalgebras of finite codimension. In this section H denotes a Hilbert space of infinite dimension, and for p>0, \mathscr{C}_p denotes the Schatten p-ideal on H. This is a Banach algebra in its own right with the usual p-norm, and in particular \mathscr{C}_2 is a Hilbert space. $\mathscr K$ denotes the Banach algebra of compact operators on H. Thus $\mathscr K$ and the Schatten p-ideals are all Lie algebras.

THEOREM 2.1. If $\mathcal L$ is a Lie subalgebra of $\mathcal C_2$ of finite codimension, then $\mathcal L$ is dense in $\mathcal C_2$.

Proof. We assume \mathscr{L} is closed and show that $\mathscr{L}=\mathscr{C}_2$. Now we can write $\mathscr{C}^2=\mathscr{L}\oplus\mathscr{L}^\perp$, an orthogonal direct sum, with the inner product $(S,T)=\operatorname{tr}(ST^*)$ for $S,T\in\mathscr{C}_2$. Also, replacing \mathscr{L} by $\mathscr{L}\cap\mathscr{L}^*$ if necessary, we can assume $\mathscr{L}=\mathscr{L}^*$ and $\mathscr{L}^\perp=(\mathscr{L}^\perp)^*$. Suppose the operators T_1,\ldots,T_n are a basis for the finite dimensional space \mathscr{L}^\perp .

First we show that $T_1, ..., T_n$ are finite rank operators: Fix a unit vector $e_0 \in H$ and let M be the span of $e_0, T_1 e_0, ..., T_n e_0$. Suppose $f \in M^{\perp}$.

Then the rank one operator $f \otimes e_0$ is in \mathscr{L} for if $T \in \mathscr{L}^{\perp}$, we have

$$\operatorname{tr}((f \otimes e_0) T^*) = \operatorname{tr}(f \otimes T e_0) = (f, T e_0) = 0$$

since $Te_0 \in M$.

Since $\mathscr L$ is self-adjoint, we can also conclude that $(f\otimes e_0)^*=e_0\otimes f\in\mathscr L$. Now since $\mathscr L$ is a Lie algebra, we have for $f,g\in M^\perp$,

$$(f \otimes e_0)(e_0 \otimes g) - (e_0 \otimes g)(f \otimes e_0) = f \otimes g - (f, g)e_0 \otimes e_0 \in \mathscr{L}.$$

By taking arbitrary orthogonal pairs f, g in M^{\perp} we obtain $f \otimes g \in \mathcal{L}$.

Let P be the orthogonal projection of H onto M^{\perp} . Then for $T \in \mathcal{L}^{\perp}$ and f, g as above, $0 = \operatorname{tr}((f \otimes g)T) = \operatorname{tr}((Pf \otimes Pg)T) = \operatorname{tr}(Pf \otimes T^*Pg) = (PTPf, g)$. It follows that PTP is a scalar on M^{\perp} , and since it is a Hilbert–Schmidt operator, PTP = 0.

Thus we have shown every operator in \mathscr{L}^{\perp} has finite rank (and its rank is no greater than $2\dim M$).

Now we let N be the span of the ranges of $T_1, \ldots, T_n, T_1^*, \ldots, T_n^*$, and Q be the orthogonal projection of H onto this finite dimensional space N. Then T = QTQ $(T \in \mathcal{L}^{\perp})$. It follows that for $T \in \mathcal{C}_2$, T(1-Q) and (1-Q)TQ are in \mathcal{L} , so to show $T \in \mathcal{L}$ we need only show $QTQ \in \mathcal{L}$.

Let V be the partial isometry with initial space N and range in N^{\perp} . Then $V = VQ = (1-Q)\,V = (1-Q)\,VQ \in \mathcal{L}$. Also $QTV^* = QTV^*(1-Q) \in \mathcal{L}$, and $VTV^* = (1-Q)\,VTV^*(1-Q) \in \mathcal{L}$. Finally, $QTQ = QTV^*V = [QTV^*, V] + VQTV^* = [QTV^*, V] + VTV^* \in \mathcal{L}$.

THEOREM 2.2. Every Lie subalgebra of ${\mathcal K}$ of finite codimension is dense in ${\mathcal K}.$

Proof. This follows from considering the Lie subalgebra $L \cap \mathscr{C}_2$ of \mathscr{C}_2 , and from the fact that \mathscr{C}_2 is dense in \mathscr{K} .

Remarks. (i) Theorem 2.1 is not true for \mathscr{C}_1 since the closed Lie subalgebra $\mathscr{L} = \{T \in \mathscr{C}_1 \colon \operatorname{tr}(T) = 0\}$ is of codimension 1. The same conclusion holds for any \mathscr{C}_p with 0 .

- (ii) For p>0 there exist dense Lie subalgebras (even associative subalgebras) of \mathscr{C}_p of every given finite codimension. To see this observe that for T, S in \mathscr{C}_p we have $TS \in \mathscr{C}_{p/2}$ [2], Lemma XI.9.9, p. 1093. It follows that if $\mathscr L$ is any linear submanifold of \mathscr{C}_p containing $\mathscr{C}_{p/2}$, then $\mathscr L$ is automatically a subalgebra of \mathscr{C}_p . Now $\mathscr{C}_{p/2}$ has infinite codimension in \mathscr{C}_p ; thus $\mathscr L$ could be chosen to have any finite codimension. The density of $\mathscr L$ follows from that of $\mathscr{C}_{p/2}$.
- (iii) The analogue of Theorem 2.2 holds (with a similar proof) for \mathscr{C}_p with $p\geqslant 2$ in place of $\mathscr{K}.$

References

- W. Bade and P. Curtis, Homomorphism of commutative Banach algebras, Amer. J. Math. 82 (1960), 589-608.
- [2] N. Dunford, J. T. Schwartz, Linear Operators, Part II, Interscience, New York 1963.
- [3] P. de la Harpe, The algebra of compact operators does not have any finite-codimensional ideal, Studia Math. 66 (1979), 33-36.
- [4] T. Laffey, On the structure of algebraic algebras, Pacific J. Math. 62 (1976), 461-471.
- [5] W. Zelazko, Banach Algebras, Elsevier, Amsterdam 1973.

Received May 28, 1981

(1689)

Studia Mathematica, T. LXXVI. (1983)

ERRATA

Page 127 line 13 from below:

for $\oplus \bigotimes_{\emptyset \neq e \subseteq D} \operatorname{read} \oplus \bigoplus_{\emptyset \neq e \subseteq D}$