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Associative and Lie subalgebras of finite codimension

by
G. JMURPHY and H. RADJA VI (Halifax, N.8.)

Abstract. It i8 shown that the algebra of compact operators on a Hilbert space
of infinite dimension hag no proper subalgebra of finite codimension, and no proper
closed Lde subalgebra of finite codimension. Related results are established for more
goneral O*-algobras, and for the Schatten p-ideals (p > 2).

Introduction. It was shown by P. de la Harpe [3] that the Lie algebra
A" of compact operators on an infinite dimensional Hilbert space has no
proper Lie ideal of finite codimension, and he conjectured that in fact 4
hag no proper Lie subalgebra of finite codimension. We show below that
the conjecture is true if the gubalgebra is assumed to be closed. We also
show that o hag no proper associative subalgebra of finite codimension.
The methods for this case are general and apply in a wider context, so that
we prove some results about subalgebras of finite codimension in general
(*-algebras.

The term ideal (without qualification) will always mean a two-sided
ideal.

The authors wish to thank . Nordgren for helpful comments, and
T. T. West for drawing their attention to [4].

1. Finite codimensional ideals in (*-algebras.

LmmMA 1.1. Every ideal I of finite codimension in a C*-algebra B is
dlosed.

Proof. Suppose first that I is a maximal ideal. If B/I is a radical

" algebra, then since it is finite dimensional, there exists an integer n > 1
guch that (by--I)...(b,-+I) =0 in B/I for all &, ...,b, eB. Hence
by oo by, €I, and since B is m (*-algebra, B is linearly spanned by such
products. Hence B == I, and I is certainly closed.

If BT i3 not a radical algebra, it contains » primitive ideal, and by
the maximality of I in B, this primitive ideal can only be the zero ideal.
Thus I is a primitive 1de&1, and hence elosed.

‘We prove the general result by induction on n, the codimension of 1
in B. Clearly every ideal of codimension 0 is closed. Suppose we know the
lemma is true for n = 0,1,2,...,%k—1, and let us prove it for n = F.
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) If I is an ideal of codimension n = k, then either I is maximal, im
which ease it is closed by our argument above, or there is an ideal J of B
such that I cd S B. Hence J hag codimension < %, and so J is closed by
the iI}due_tion hypothesis. Thus J is & 0*-algebra, and I has codimension in
J which ig strictly less than . Hence I ig closed, again by the induction
hypothesis. This completes the proof. ‘

The following theorem is a special case of a regulf in [4], and its proof
is quite elementary.

THDORFM 1.2 (Laffey [4]). If B is a Banach algebra, and A is a subal-
gebra of finite codimension, then A contains an ideal I of B such that I has
Jfinite codimension in B.

TumorEM 1.8. A subalgebra of finite codimension in a O*-algebra is
necessarily closed.

Proof. It 4 is a subalgebra of finite codimension of the (™-algebra B,
then there is an ideal I of B contained in A such that dim (B /I) < co.
By_ Lemma 1, I is closed. Also since dim (4 /I) < oo, A /I is complete. Hence
4 is a Banach algebra, and so 4 is cloged in B,

TrmorEM 1.4. Let B be a O*-algebra, O a finite-dimensional Banach
algebra, and ¢: B—C an algebra homomorphism. Then @ 8 - continuous.

Proof. The ideal

I =kerp = {xeB: p(z)=0}

is finite-codimensional in B, and hence cloged by Lemma 1,1. Thus ¢ ig
the composition of the continuous maps

B—Blkery axr>ptkerp

and

Bkerg->C z-+kerpsp(z).

The second map is continuous because it is a linear map between finite-
dimensional spaces.

Remark. Theorem 1.3 is not true for more general Banach algebras:

Let B be the Banach algebra which is the completion of the algebra of alk
finite sums i

n
Ar+ 2 Ay
i=1

\.where 4y 2y «v.y Ay are complex numbers, the ¢; are mutually orthogonal
idempotents, 2 = 0, and re; = ¢ = 0. The norm is given by

/1,+g;' Iyey|| = max ((2 ), \Z—-é{’zi )
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It is shown in Bade and Curtis [1] that B is a commutative algebra
with one-dimensional radical, rad B, linearly spanned by #, and that
there is a subalgebra A of B, which is not closed, such that A @radB = B.
In fact, since »B = 0, it is easily seen A is an ideal.

Reeall that a simple C*-algebra is one having no proper closed ideals.

THEOREM 1.5. If B is an infinite-dimensional simple 0*-algebra, then
B has no proper subalgebra of finite codimension.

Proof. Let .4 be a subalgebra of finite codimension. By Theorem 1.2
and Lemma 1.1 there is a closed ideal I of finite codimension such that
I < A. Since B is simple and dimB = oo, I = B. Thus 4 = B.

TumoreEM 1.6. Let H be a Hilbert space of infinite dimension, and let
oA (H), B(H) denote the O™-algebras of compact amd bounded operators,
respectively. Then A (H), & (H) and % (H)|2 (H) have no proper subalgebras
of finite codimension.

Proof. & (H) is simple.

As for #(H), its cloged ideals are well known, and of them only % (H)
itgelf is finite codimemsional. (When H is separable, o (H) is the only
proper closed ideal of #(H).)

The result for the Calkin algebra #Z(H)/# (H) now follows easily.

Remark. In Theorem 1.5 one can replace the condition that B is
2 (™-algebra by the weaker condition that B is a Banach algebra spanned
by B? = {wy: »,y € B}. Any Banach algebra with a bounded approximate
identity is such an algebra, by the Cohen Factorization Theorem ([5], p. 26).
Thus B could be taken to be I!(&) for G any locally compact group. The
proofs are only a little more technical than those given here.

2. Lie subalgebras of finite codimension. In this section H denotes
a Hilbert space of infinite dimension, and for p > 0, ¥, denotes the Schatten
p-ideal on H. This is a Banach algebra in its own right with the usual
p-norm, and in particular €, is a Hilbert space. %" denotes the Banach
algebra of compact operators on H. Thus # and the Schatten p-ideals
are all Lie algebras. ) _

TeporEM 2.1. If & is a Lie subalgebra of %, of finite codimension,
then &£ is dense in €.

Proof, We assume & iz cloged and ghow that & = ¢,. Now we can
write % = Z@®%+, an orthogonal direct sum, with the inner product
(8, T) = tr(ST™) for 8, T € %,. Also, replacing % by £ %" if necessary,
we can assume & = .#* and #+ = (£+)*. Suppose the operators Ty, ..., T,
are o basis for the finite dimensional space Z+. , _

Firgt we show that T, ..., T, are finite rank operators: Fix a unit
vector ¢, € H and let I be the span of e, T16q, ..., Tyéo- Suppose fe ML,
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Then the rank one operator f@e, is in .% for if T e £+, we have
tr((f®e)T") = tr(f@ Tey) = (f, Teg) = 0
since Te, e M.

Since # is self-adjoint, we can also conclude that (f®ey)" = e,@f e 2.
Now since & is a Lie algebra, we have for fHgelMt

(f@20) (6s®9) — (¢a® 9) (f@ 60) = fR9—(f, 9)ee@ 00 € 2.

By taking arbitrary orthogonal pairs f, ¢ in M+ we obtain f®ge 2.

Let P be the orthogonal projection of H onto M*. Then for T e £
and f,g as above, 0 = tr((f®¢)T) = tr((PfRPg)T) = tr(PfRT*Py)
= (PI'Pf, g). It follows that PTP is a scalar on M +, and gince it is a Hil-
bert—Schmidt operator, PTP = 0. )

Thus we have shown every operator in %' hag finite rank (and its
rank is no greater than 2dima).

Now we let NV be the span of the ranges of T,...,T,, Ty .oy I,
and ¢ be the orthogonal projection of H onto this finite dimensional space
N. Then T =QTQ (T e#L). It follows that for Te%,T(1—Q) and
(1—-@)TQ are in .2, 80 to show T .Z we need only show QTQ e %.

Let V' be the partial isometry with initial space N and rangein N-L,
Then V. =TQ = (1-Q)V = (1—Q)VQ € 2. Also QTV* = QTV*(1-@)
€, and VIV'=(1—-Q)VIV*(L—Q)e 2. Finally, QTQ = QTV*V
= [QTV*, VI1+VQIV* = [QTT*, V]+VIV* e 2. .

THEOREM 2.2. Hvery Lie subalgebra of o of finite codimension is dense
n A

Proof. This follows from comsidering the Lie subalgebra L%,
of %,, and from the fact that %, is dense in .

Remarks. (i) Theorem 2.1 is not true for %, since the closed ILie
subalgebra % = {T e %,: tr(7) = 0} is of codimension 1. The same con-
clusion holds for any %, with 0 < p < 1.

(ii) For p > 0 there exist dense Lie subalgebras (even associative
subalgebras) of %, of every given finite codimension. To see this observe
that for T, § in %, we have T'§ € ¢ piz [2], Lemma XT.9.9, p. 1093. Tt follows
that if % iy any linear submanifold of %, containing %, then 2 ig auto-
matically a subalgebra of %,. Now %,, has infinite codimension in G
thus % could be chosen to have any finite codimension. The dengity of 2
follows from that of %,,,. )

(iii) The analogue of Theorem 2.2 holds (with a similar proof) for By
with p > 2 in place of 4. ‘ :
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BERRATA
Page 127 line 13 from below:

for ® ® read @ D
B#ecD d#esD
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