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Oux complement says.that, in spite of the above example, we can prove
that the funclion y given by (14) is m-times continuously differentiable so
that it is the unique solution of (11).

Proof. Multiplying both sides of (11)' by A" we obtain
Y+ Oy Byt oo F ol = B+, ke BT

Then F(f) = W+ Byrh+ ... +Bh™ is surely n-times continuously dif-
ferentiable. Thus, by y € ¢’ and by (2), we have the resulb:

Y = — 6 (G WY+ oY+ o+ By) + o {F ()}
is once continuously differentiable and its derivative satisfies
(15) ¥ = —az (@ k' + Guoo B + oo k) o (I (1)} +
+ a polynomial in ¢,
because, e.g.,
(h3y)’ = h2y = 12 (hy" +-9(0)) = Ry’ +1%y(0)
by (9). Thus y’ given by (18) is continuously differentiable in ? and satisfies
Y= — (G B oo By L agky) e B ()}
-+ a polynomial in ¢
é,nd so forth.
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Abstract. According to the Mikusifiski theory of operational caleulus, the Canchy
problem for the mth order ordinary differential equation with complex coefficiants
and with inhomogeneous texrm f & 00, o) is transformed into the operational equation :

(g 8 o Gy 8" vt Fag)y = FE T RT O BT NIPY Lo S 1R

As a complement to the theory, Prof. K. Yosida showed the fact which states that
the solution y of tho above operational cquation is n-times continuously differentiable
50 that y is the true solution of the original equation. In this paper, a remark on the
abovo comploment is mado by giving & direct proof.

Tt s well known, in the Mikusifiski theory of operational calculus,
that the Cauchy problem:

a’ny(n) -+ a’w.—-ly(n—l) + et WY = f’ .
(1) y(0) = by, Y'(0) =Dby, "-1y(n_1)(0) = by_1y

wel, i=0,..,m, beC, j=0,...,n—1 and fed[0, o)
is transformed into the operational equation:

(a'n‘sm + ('Ln--«lsn—.'l A a’o)y == f"]' Gyt gt -+ an28nn2 s A€oy

@)

Oy, == “”1.1M1b0‘°]‘“ almkl‘gb]_"l" e "|‘%bn—m-—17 m o= 0,1,..., n—1,
where § == 1/h (= L/{L})(cf. [1], [2] and [3]). Therefore we have

‘ e
@ Y=3m T ow
with p(8) = @ys"+ ... 0 = B,(8 — ) (8 —a) ... (8 —ay)
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and

.(1(8) = c'n,-—-lsnvl + . -+ Gy = Oy l('S h‘yl S Y2 ) (S‘"m?"nwl)‘

In [4], K. Yosida proved, in the framework of Mikusiiski’s oper-
ational caleulus, that the solution of equation (1) or (2) has the n-times
continuous differentiability.

In the present paper we shall give another proof to it by making tho
following

Remark. Let f be continuous and g; continuously differentiable with
t=1,2,...,n Then the n-limes tterated convolution ¢y, ... ¢, f 18 on
exactly n-ttmes continuously differentiable function, where the produet is
taken in the semse of convolution, and we have

(4) a8 e 00 = (] [ G100 ) f

Tral
and more gonerally

n

(8) (g18a -+ gnf)(m) = (]kl (!l;(t)“l‘!/n(i)(o))( ﬁ ga(i))f

gusl Teaflyop 1

Jor m<n and any permutation o. Here in (1) and (5), ¢,(0) is idcmiﬁod wim

the constant operator {g;(0)}/h and it is to be noted that g;(0)f = {g,(0) ("}
Proof. The case n == 1. By an elementary caleulus,
£

(9uf) {( f gt —w)f (w)du)'} = { f 018 —w)f () du-t g (0)f(1)}

= (g1 +g.(0)F.

The general case. Recalling the commutativity of the convolution pro-
duet, we have

(@192 - 0N = (000205 . 0T
= ({61 02 (0) (gatly - g0
: (02((.(];. "‘" !/1 (0)) .(/3 " A !hzf))(nﬂl)

* 9 v e & s a s o 4 % w

.

I

N
= ([] lgi+g.00))) 7.
el
The proof of general formula (5) is ommited.
Hence we can show thab (1/p (8) ) foof (3) is m~times continnously
differentiable on account of 1/(s —a;) = {oxp( (a;)}, and 8o is the solution of
equation (1) or (2), because ¢(s) is only a differential operator,
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