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Thus (see for example [4]) the fact that », is & minimum of the function
a(F (@) +B|IF (v) — F(m,)]| implies that it is a local Pareto minimum of
problem (VP). ,
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Commutative differential algebras with
an algebraic element

by
L. BERG (Rostock)

Dedicated to Jan Mikusisiski
on the 70th birthday

Abstract. There are constructed commutative differential algebras containing
an element h, which satisfies a polynomial equation. For the commutativity it is neces-
sary that the polynomial possesses a double zero. In one case the algebras contain
also an integral of h.

P. Antosik, J. Mikusidski and R. Sikorski in [2] suggested the study
of associative differential algebras confaining an element k with the
properties ‘

@) h o= he

and b’ s 0. Since % should be interpreted as Heaviside’s jump function,
the derivative of % was denoted by

@) s =M.

Axrticle [3] gives a survey of such algebras. Afterwards article [4] was writ-
ten, where (1) was replaced by

(3) h = 3h*—2h3

corresponding to the property h(0) = 1/2. However, the results obtained
so far are not satistactory; particulary, all differential algebras with (1)
or (3) are noncommutative. '

In what follows we construct commutative differential algebras
(ef. [B]) where h satisfies other algebraic relations than (1) and (3). At the
end of this article we list the references [8]-[16], which were omitted in [3]
in printing (the numbering of references refers to this in paper [3]). In
[12] one finds similar differential algebras without an algebraic relation
for h.
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1. Analysis. To begin with we agsume the existence of a comnmtative
and associative differential algebra containing an element h with the
property

(4)

for a certain. congtant ¢ # 0 .and, as befom, é # 0 with (2).
Differentiating (4) we obtain

hé =¢d

(8) b == 06" —3 68

and by induction

ho' = cd' — o2,

(6) B W = g8 —

Z(nH) Sl~1g=1)

=1

Multiplying (4) by ¢’ and (5) by ¢ ete., and comparing ’uhe results, we find :

(7 83 = 828’ = 020" = 802 = 620" = 88'0" = 6% = 0.

If % is an algebraic element, then there exists & polynomial P (k) with

(8)

According to (4) this implies P(h)8 = P(e)d = 0. Similarly, differen;
tiation of (8) implies P’ (k)6 = 0 and therefore P’(c) d = 0. Hence, in view
of 8 5 0 we obtam the equations

(9) P(e) = P'(c) = 0.

P(h) =

Equation (4) means that (k2 —2¢h)’ = 0, which suggests the choice
¢ = 1/2 as in [1]. However, in view of 1" § = ¢"d for all natural numbers
% we also have

(R™—ne*'h) = 0.

2. Synthesis. We now show the existence of a commutative and
associative differential algebra € with the basis clements

(10) 1, hy 2y e, B, 60 (0 0m)

for a fixed integer p = 2 and all integers m, n =
lations in ¢ will be (6) with ¢ = 0, (8) and

(1)

for all integers &, m, n >
p with (9).

0-as well as (2). The re-

s gm) st —

0, where P (k) is an arbitrary polynomial of demee
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‘Multiplying (8) by 6 and using (11) we obtain
(12) B ot = ¢ tm 5tm
for all integers m, n > 0. Relations (6) and (12) imply by induction

0’m-1 2‘, (77' +1) 6(1-—1)6(17.-—1.)
2
i=1

i=

(13) A = cma<">

for all natural numbers m. Hence equations (9) show that relations (6)
and (8) are compatible.

Now it is easy to check the associative law for the basis elements (10)
in all possible eases. Since by differentiation of (6), (8) and (11) we always
obtain valid relations, ¢ is really a differential algebra.

Let us mention that (6) and (12) imply

(14)

for all n.

(h—e)26™ =0

3. Extension. In the case P(0) = 0, i.e., P(k) = Q(R)h with Q,(o)
= @’'(¢) = 0, we can adjoin to ¢ an element ¢ with the properties

(15)
(16)

t =h,
Q(R)t = 0.

The adjoining of ¢ requires the extension of the basis (10) by the new basis.
elements

7
for all natural numbers k. From (16) we obtain by differentiation

Qh)h+Q’ (h)dt = 0

o, 1R, oL, tRRPTE, gEE0) | gl gm)

or
(R)+Q'(6) 6t = 0,

but in view of (8) and @'(c) == 0 this is not & new equation.

Thus we are left with the problem of introducing between the basis
elements now relations which make sense. Relations like 16 = 0 or 26 = 0
lead to 6% == 0 and therefore they are unsuitable. A possible relation would
be 1462 = 0 with the consequences

2080'+06% = 0,
$(86" 62+ 2068’ = 0,

...............................
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From (13) or (14) we find @ (h) 6™ = 0 for all n. Hence, according to
(8) and (16), we obtain
Qhyw =0

for all elements %, though in view of the basis elements (10) we
have @(h) 5 0.

4. Generalization. Finally we want to sketch the posgible conditions
under which there seems to exist a commutative differential algebra
without (4) and (11). We start from the relation

(18) (h—e)h = 0
with ¢>=1, ¢ % 0, which implies
(19) (h—e)'h? = ¢(h—e)? "h.
Differentiating (18) we obtain
| (h—0)28+g(h—o)"hd = 0;

multiplying this equé\’,tion by h and considering (19) we obtain (h—¢)*hd
=0, (h—0c)% = 0 and analogously

{20) (h—e)?8 = 0.
From this we find inductively for » < ¢
(21) (h—o)tn5m=t — o
and therefore for n = q

(22) 8201 =0,
On the other hand, (20) implies inductively

(23) (h—0)26™ = 0
for all n.

For g = 2 relations (20) and (23) are equal to (4) and (14), respectively,
and relation (22) is a special case of (11). This means that in the case
P(h) = (b —c)*h relation (4) is not independent but a consequence of (8).

5. The case ¢;= 3. For ¢ = 3 cquation (21) reads for » = 1,2 and 3,
respectively,

(24) (h—c)8 =0, (h—c)6* =0, & = 0.

icm®

Oommutative differential algebras 119

Differentiating the firgt equé.tion of (24), we obtain the equations
(h—c)*"+2(h—e) 82 = 0,
(h—c)*0""+6(h—¢)68'+28% = 0,
(B —0)*8"" - (h —¢)(8 60"+ 652) +12628" = 0,
(b —e)26® - (I —¢) (10 66" +- 20 0'8")+ 20628 3066 = 0,

ebe. and differentiating the second equation of (24) we obtain

(25) 3(h—c) 826"+ 8¢ = 0,
(26) 3(h—0)(026" -2 68) +7 8% = 0,
(27) 3(h—0) (828" 46085 +-2 ') +-10 696 +-27 6262 = 0.

Calculating (h—c)?6™ 5™ in different ways, we obtain for n = 2,
m = 0 equation (25). For n = 3, m = 0 and n = 2, m— 1 we obtain,
respectively, :

(h—c)(4620""4-388"%)+6 83" = 0,
(h—¢)(308"2— 28"y + 830 = 0

and from these equations

(28) (h—e) 626" + 6% = 0, 3(h—e)86'2+28%" = 0

corresponding to (26). For n =4, m = 0 and » = 3, m = 1 we obtain,
respectively, ' ' :

(h—0) (626" +2 86'5") 2 630" +3 526" = 0,
(h—c)(4 588" +3 8 — 625"") -+ 6 6262 = 0.

But (27) is lincarly dependent on these equations, and so it is not possible
f0 determine, ag in (28), the elements

(h—0)628"", (h—0c)85'8", (h—0)d".

Of course wo can try to choose one of these elements in a suitable way;
however, no reason can be seen for a natural choice.
Further consequences of the foregoing equations are

640" = 630’2 = 04" =0
ingtead of (7) and besides (23) with ¢ = 3
(b —e) 826 = (h—e) 888 = (h—c)828'8" = 0
as well as
(h—0)28"® = (h—c)* 828" = 0.

2 — Studia Math, 77.2
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The first equation of (24) means that

(0% —ch2+¢2h) = 0.
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Modular spaces over a field with valuation
generated by a (w,9)-convex modular
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RYSZARD URBANSKI (Poznan)

Dedicated to Professor Jan Mikusifiski
on the occasion of his 70th birthday

Abstract. Let X be a vector space over a field K with valuation. The form of
an (w, 9)-convex modular on X is given, generalizing the existing definitions of modu-
lars on vector spaces. A simple formula for an F-norm on the modular space X, gen-
erated by modular on X is proved.

i. Introduction. In the literature on modular spaces, nonconvex,
convex and s-convex modulars are considered (e.g., Musielak-Orliez [3],
Orliez [5]). In each of these cases the functional |-J, generating the linear
topology in modular space X, has been defined separately and it was
F-porm, norm and s-norm, respectively, in a real vector space.

In this paper we introduce (w, #)-convex modular for some functions
w,9: E—>R*, when K is a valued field. The (v, #)-convex modulars
include all cases of modulars considered so far, by selecting appropriate
functions w, ¢, and at the same time give generalizations of modular spaces
to spaces over an arbitrary field with valuation. It is possible now to con-
sider modulars not known before, namely such that they are not any of
the three types mentioned above.

Moreover, even in the classical case the definition of |-, is new be-
cause it allows to present all three separate definitions in one form.

2. Preliminary remarks.

2.1. Let X be a vector space over a field K with nontrivial valuation
|-|: KR (where R denotes the real numbers). The set of real number,
la|, a« e I, will be called the set of values of K and will be denoted by | K |.-
The values | K*|, where J£* denotes the set of nonzero elements of K, form
a multiplicative subgroup of the positive reals (R*, ). However, as is
well known, R*, has only two types of subgroups, they are either cyclic
groups or groups dense in B* ([4]). If | K" is an infinite cyelic group, the
valuation is called discrete; equivalently, K is said to be discretly valued.
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