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The first equation of (24) means that

(0% —ch2+¢2h) = 0.
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Modular spaces over a field with valuation
generated by a (w,9)-convex modular

by
RYSZARD URBANSKI (Poznan)

Dedicated to Professor Jan Mikusifiski
on the occasion of his 70th birthday

Abstract. Let X be a vector space over a field K with valuation. The form of
an (w, 9)-convex modular on X is given, generalizing the existing definitions of modu-
lars on vector spaces. A simple formula for an F-norm on the modular space X, gen-
erated by modular on X is proved.

i. Introduction. In the literature on modular spaces, nonconvex,
convex and s-convex modulars are considered (e.g., Musielak-Orliez [3],
Orliez [5]). In each of these cases the functional |-J, generating the linear
topology in modular space X, has been defined separately and it was
F-porm, norm and s-norm, respectively, in a real vector space.

In this paper we introduce (w, #)-convex modular for some functions
w,9: E—>R*, when K is a valued field. The (v, #)-convex modulars
include all cases of modulars considered so far, by selecting appropriate
functions w, ¢, and at the same time give generalizations of modular spaces
to spaces over an arbitrary field with valuation. It is possible now to con-
sider modulars not known before, namely such that they are not any of
the three types mentioned above.

Moreover, even in the classical case the definition of |-, is new be-
cause it allows to present all three separate definitions in one form.

2. Preliminary remarks.

2.1. Let X be a vector space over a field K with nontrivial valuation
|-|: KR (where R denotes the real numbers). The set of real number,
la|, a« e I, will be called the set of values of K and will be denoted by | K |.-
The values | K*|, where J£* denotes the set of nonzero elements of K, form
a multiplicative subgroup of the positive reals (R*, ). However, as is
well known, R*, has only two types of subgroups, they are either cyclic
groups or groups dense in B* ([4]). If | K" is an infinite cyelic group, the
valuation is called discrete; equivalently, K is said to be discretly valued.
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In this case, the generator of [K*|is r e | K| such that + > 1 and the distance
from r to 1 is minimal, i.e. # = inf{|a| > 1: a € K}. The valuation is either
diserete or “dense” in R*. If ingtead of the strong triangle inequality
la+ B8] < |al+ ||, we have |a-+f| < max(|a], |B]), the valuation is said
to be monarchimedean, otherwise it is called archimedean. The discrete
valustion must be nonarchimedean and if X is archimedean valued, | K|
must be dense in RT. In this paper N denotes the set of natural numbers
and Z denotes the set of integers. ’

2.2. Let X be an Abelian group. A guasi-norm on X is a real-valued
function |-| defined on X such that

(F1) j»¥=0 and Jz} =0 iff « = 0,

(F2) lml = l—mla

(®3) a+yl<clel+ly) for any #,y e X,
with an absolute constant ¢ > 1. Inequality (¥3) is called c-triangle in-
equality and the function |-} a c-norm (see [1]).

2.3. Let X be a vector space over a field K with nontrivial valuation
{-] and let |-] be a ¢-norm on X satisfying the following properties:

(F4) | 1,2]—0 provided 1,—0,

(F5) for (a,) = K a bounded sequence and {z,f—0 it follows that
a,%, |0 ag n->co, then |-] is called an F-guasi norm. For ¢ = 1 we say
that §-] is an F-norm.

2.4. Let f—a real-valued function defined on X —be such that
f(A) < f(z) for all A € K, |1]| < 1; a mapping f with this property is called
monotone.

2.5. If |-} is a monotone ¢-norm on a vector space X which. satisfies
condition (F4), then we say that I-]is an F-quasi norm. For ¢ = 1 we say
that §-] is an F-norm (see Rolewicz [6]).

2.6. Let f: X—>R". We say that the mapping f has property (B) if

(B) for every 1€ K there exists a d> 0 such that

J(Ao) < df (z)

2.7. Remark. If the field K i archimedean valued, then every
F-quasi norm satisties condition (B) (see Urbanski [7]). Trom this it follows
that in this case every ﬁ‘—qxw.si norm is an F-quasi norm (see Kothe [2]).
I[%ut in the case when K is nonarchimedean valued there exist examples of
F-norms not satisfying condition (F5). In some cases there exist oxamplos
of F-norms not satisfying (B) (see Urbavski [7]).

The topology in X generated by an F-quasi norm is linear.

2.8. In the case when [ -]is an F-quasi norm condition. (F5) is equiv-
alent to the following '

(¥'5) 22,0 it [=,]-0.

for every w e X.
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2.9. Remark. If the field K is sequentially compact in the topology gen-
erated by the valuation |-|, then for every F-quasi norm on X conditions
(F4) and (F5) are equivalent to the condition:

(G4) if Jo, —a]>0 and |1,—1|-0, then | 42, —22]—0.
2.10. If a c-norm | -f on X satisties condition (G4), then we say that

f-11s a c-paranorm. For ¢ = 1 we say that 1l is & paranorm on X (e.g.,
Wilansky [8]). Every F-quasi norm on X is a c-paranorm.

2.11. Remark. For every topology generated by the F-quasi norm
(c-norm) there exists an equivalent topology generated by the F-norm
(1-norm), (sce, e.g., Bergh and Lofstrém [1]). But even in the case of topo-
logical equivalence, the geometric properties of the space X need not be
equivalent, and hence the constant ¢ > 1 is essential.

3. (o,9)-Convex medular. Let X be a vector space over a field K
with nontrivial valuation |-|. Given the mappings w, ¢: K—R*+ satisfying
the following conditions:

(al) there are constants %, I >0 for which
w(af) > Eo(a)w(B), 4(ap) = 19(a)9(B) ( for all a, fe K,

(a2) lime(a) = 0, and there exists ¢ > 0 such that lim w(a)/P(a) > ¢,

a0 Ja]—+o00

(23) o(a), #(a)> 0 for a e K, w(0) = 0,

(a4) there exist an m > 0 such that for every b > 0 there exists
a, ¢ ew(K") = {o(a): e cE*} such that 0< a<b< ¢p'<< ma.

3.1. DerFINITION. The functional ¢ with values in R™ defined on X
will be called (w, &)-convex modular on X if it satisfies the following con-
ditions:

(M1) if g(ax) = 0 for every ae X", then z = 0 and ¢(0) = 0,

(M2) o(az+By) < H(a)e(n)+9(Be(y) for every vectors @, yeX
and every «, f e K with w(a)+w(f)<1,

(M3) o(x) = g(—a).
Let o be an (w, 9)-convex modular on X. The set

X, = {&: limg(aw) = 0, # ¢ X}

a—0

will be called a modular space. Note that X, is a vector subspace of the
space X, bub for the moment we forget about multiplication by scalars.
Thus we consider X, as an Abelian group.
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3.2. TuEorEM. Let X be a vector space over o field K with nontrivial
valuation || and let p be a (w, ¥)-convex modul’ar‘on X. Then the functional

[z, = inf{w(a) > 0: o(z/a) < w(a)/P(a)}
i8 a c-norm on the Abelian group X, with ¢ = moin~ (%, ).
Proof. Forw e X, the set {w(a) > 0: o(z/a) < w(a)/d(a)} is nonempty.
So =, €10, o).
(F1): If =], = 0, then there exists a sequence (,) = K" gueh that

w(B,)—0 and o(2/8,) < ©(B,)/9(8,)- Let now a € K*. For sufficiently large
n we have w(af,) <1 and

o(az) = o(ap,®/B,) < 9 (afy)o(®/By)
SV (@) (Ba) 0 (B) 07 (Ba) <
This implies o(ax) = 0 for every « € K*. Hence, by (ML), we have & == 0.
Converse implication is obvious.
(F2): It follows from (M3), immediately.

(F3): Let @, ¥ € X,. Denote n =min(k, [). Given any s> 0, by prop-
erty (a4), there exist elements «, 8, ¥, 6 € K such that

T @) w(By).

f2), < o(a <lw|e+2"1m"‘an and  o(w/a) < w(a)/d(a),
Iyl <o) <yl +27'm7ep and  o(y/B) < w(B)/9(B),
o(y)<n” |m|e+|y[e +m~ren) < w(8), where @ (8) < maw(y).

We now observe that
o(a/8)+w(8/8) < ko™ (8) (w(a) + w(B)
<F o () (o Hyl+m en) <
and by (M2) we obtain

ko™ (8w (0) < 1,

e((@+9)/8) = o(ad™'wa™ + 67"y
< Had™e(wla)+2 (857 e(y /) .
ST (@) w(a)D7H(8) 97 (a) + 1710 (B) oo (B) 97 (8) 01 (f)
ST () (w(@) + o (8)) < w7 w (8)07(8) << w (8)/9(5)

It follows that

fe+yl, < w(d)<mol

lwle s if’/'e) -

§ m n
Hence

f2+yl, < mmin~

I“"Ig '[’ Y le
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3.3. Remark. In the case when o(K*)is dense in R*, for every m > 1
the mfupplng w(-) satisfies condition (ad). Hence by the above Theorem i

follows that the triangle inequality for |-}, is satistied with the constant
¢ = min~'(k, I).

3.4. LuMMA. Let ¢ be an (w, 9)-conver modular on X. Then {42}, —0
provided 2,—0 for weX,

Proof. (F4): Let w € X, and 1,—0. Given any « & X*, we have o(1,2/a)
--0. Hence ¢(4,2/a) < o(a)/f(a) for sufficiently large index n. Bub 0 is
the limit point of o (XK*), and so |i,0],~0.

3.5. ExXAMPLES. (1) Let K = Q, where Q denotes the set of rational
numbers and let X = R. We consider a function f on R* defined by
2 for

24 for

—ay-+1-+2¢ for

w+1—2¢ for

ue (BNQ)n[o,1],
we@n[o,1],
ue(20—1,2i],1eN,
we(2,2+1], ieN.

fu) =

Define now for z e X
e(@) = f(l=l),
¢ is an (w, 9)-convex modular on X with w(a) =
In this case X, = @.
(2) Let X = K be a vector space over a field K with nontrivial

valuation |-|, and let n, be a fixed natural number. We introduce a func-
tion f on RT,

la] and 9(a) = 2 (a € K).

% for
[u] for

U K Ny,
f(”") =

U > Ny,

where [%] denotes the entire part of the number «. We define o () = f(Jo]);
then ¢ is an (w, ¥)-convex modular on X with w(a) = |a| and ()
== (L+n5") al. Moreover, Jiz], = |A| o}, for Ac K, but ¢ is not a
convex modular in the classical sense.

(3) Let ¢ be a real-valued function defined on Rt X R x .
fying the following conditions: g(x) = 0 is equivalent to & = 0, gl -+)
< g(w)+g(y) for w,y e RY xR > ..., and g(x) < g(y) for o<y.

Morcover, let X‘, X, ... be Veetor spaces with (w, #)-convex modulars
0,(2y), 02(g), ..., respectively. For o = (zy, X,, ...), we define

., satis-

o(w) = g(@l(wl)i 02(®s) 5 ))

then o(:) is an (w, #)-convex modular on X = X'xX*x
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3.6. Remark. We observe that in Example (2) if K = R, then
the modular ¢ was not known before, because it is neither a nonconvex,
nor convex, nor s-convex modular in the clasical sense (see, e.g. [3], [8]).
Similarly in (1) the modular ¢ is a new type of modular.

4. ﬁ-quasi norm generated by the (o,9)-convex modular. From this
section. we will consider the functions w, ¥ with the additional assumption

(aB) if (a,) = K* is a bounded sequence, then 9~ '(a;") and o™ (a;")
are bounded.

4.1. LeMMA, For every ko> k™" there emists 6 e K* such that
and

w(8) > [6]> 1.

Proof. Condition (a4) implies existence ofa 6 € K * such that w (8) > T,
Then
(%) w (8™ = &7 (kko)"  for every meN..

‘We now congider two cases:

(i) 16{<< 1. This implies that 6*—0. Then from () we have w(§")—+co .

as n—oco. This is a contradiction with w(6")—0.

(if) |8} = 1. Then (6™ < k' (e)w™ (") (where ¢ denote an iden-
tity element of I{) and we obtain w (5~")—+0 ag n—oco, Thig is a contradiction
with the boundednes of w™'(6™"). Hence it must be 5] > 1.

© 4.2. TmvmA. Let (a,) ¢ K be a bownclcd sequence and |, ],—0. Then
la wn|9—>0 as n—»oco.

Proof. From econdition (a5) follows the existence of a constant
ko> (L+%"07")k™ such that 47 (a;')< %, for every a, 5 0.

Now from Lemma 4.1 there exists 6 € K% such that

1) w(6) > ky
But

and |d]> 1.

o(a,[d™) <k o™ (ag" ) 0(87™)  for every o, e K* and meN.

From this follows that for some m e N, m > 1,

2) w(e,[6™) <1 for every meN.

By assumption, for every &> 0 there exists m,e N such that
(3) loudo<ekw(6™™)  for every ne N énd n > n,

This implies that for every n > n, there exist 5, € K* such that

(4) o(B) < ehw (67 0(@nBy) < 0 (Bp) [0(Ba)

and
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Then
@ (8"B,) < Elw(B)o (T < e
and from (2) and (M2) we have

for every n > n,,

0(, 2, 6™By) < B (0, [ 6™) 0 (@ [8,)-
Hence from (4) we obtain
(5) Q(anwnlamﬁn) < ﬁ(an/ém)w(ﬂn) /ﬂ(ﬁn) for all n = Mg~

Denote now y, = 6"f,. Then

@ (Bn)[H(Bn) = @(ynd™") [0 (p,67™)
S E U076 0 (ya) 07 (va) s

o 3 . *
and we obtain for a, X", n=n,

(0@ [yn) < B9, 67" 7T 07 (6™) 0 () 9T
E07 0 ) 07 (8™) @ (y,) 07 (va)
I

=1%ol (Rleq) ™ 0 () 67 ()

()

1/\//\//'\//\

. 75~mk "o (Vn)ﬁ_l (yn)
T3 (L B e (1,) 97 ()
E LA R 0 (1) 07 () < 0 (v 9

//\//\

YY)~

Hence

e(0,[876,) < 5mﬁn)/ﬁ(5mﬂn

and
w(d™B,) < e
Consequently, |a,u,},~0 as n—oo.

Trom Theorem 3.2 and Lemmas 3.4 and 4.2 follows

4.3. Tunornm. Let X be a vector space over a field K with nontrivial
valuation |-| and let o be an (o, 9)-convew modular on X. Then the functional

for every m = n,.

o], = inf{o(a) > 0: g(/a) < w(a)/d(a)}

is an F-quasi norm on X, with the constant ¢ = mmin~ (&, 1).
Now we observe that there exist functions w, ¢ satisfying conditions
{al)~(ad) but non of them sabisfies condition (ab).
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4.4. BxAMPLES. (1) Let K = R. We define
aeZn(-1,1),
ae(n,nt+1), ncZ\{<—1 0}.

Ja| for

ola) = la|”t  for

This function satisfies conditions (al)-(a4) but does not satisfy condition

(aB). Since, for example, for a bounded sequence a, = 2~"* (n & N) we

have (a,) = 27", w(a,) is a bounded sequence. Bub o™ (a;") = w™ (2"
= 2"% 500 a§ n—>co. For ¥ (a) we may take 9(a) = w(a) or

Po(a) = min{l, [a]™"}, aeRN{0}, 9,(0) == 1.

For a, =#"" (meN) we have 9;'(a;?) = 9;*(n) == n~>00 a8 n->oco,
Note that the function o is not continuous on R but 2, is continuous
on R.

(2) Let K = R, and o(a) = ¢,|af* (s> 0, ¢, > 0),

if weq,

H)=l1p i aerng.

The functions o, ¢ satisfy conditions (al)—(ab) and ¢ is not continuous
at any point of R.

5. Application to (s, {)-convex modulars. In this section we shall
consider special cages of (w,¥)-convex modulars, however, sufficiently
general in order to include all classical cases of modulars

5.1. Let s, ¢ be real numbers such that 0 <t<s, 8> 0. We take
w(a) = |al®, d(e) = |a|'for a € K. Tn this case for sxmphflcn,y the (w, 9)-
convex modular on X will be called an (s, ?)-convew modular.

Hence the functional ¢ with values in R* defined on X will be called
an (s, t)-convex modular on X if it satisfies the following conditions:

(M1) if g(ew) = 0 for every ac X, then # = 0 and ¢(0) = 0,

(M2) o(an+py) < lal'o(@)+ (B oly) for overy vectors a,yeX
and every a, f e K with |af® —{~|[)’|“’<1

5.2. THEOREM. Let X be o vector space over a field K with nontrivial
valuation || and let ¢ be an (s, t)-conves modular on X. Then the functional
lole; = inf{la®> 0: g(w/a) < |al®~4

8 an F-quasi norm on X, with the constant ¢ = %, where

v =inf{la]|>1: ac K},

Proof. From the forms of w and 9 it follows that b =1=1 and
w(E*) = {|al*: a e K} = |K*|°.

a
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I. In the case when the valuation is discrete, | K*| = {": n e Z}
and the generator r = inf{ja| > 1: a € K}. Hence w(K") = {": neZ}
and m == 7°

IL. If the valuation is nondiscrete, then the set |K*| is dense in R™.
This implies that o (K*) is dense in R*, too.

Applying Theorem 4.3 and Remark 3.3 we now obtain our theorem.

5.3. emark. Constant ¢ = #° in the triangle inequality has a speci-
fic character because in the case when the field K is nondiscretly valued
we have ¢ == 1. In the case when K is discretly valued we have ¢ = ¢*> 1
and » is the gemerator of a eyclic group |K*|.

Tor the case of the field of p-adic numbers there exist examples of
(1, 0)-convex modulars showing that the constant ¢ = p > 1 cannot be
dropped. (see Urbarigki [7]). In this example the triangle inequality with
¢ =1 1s falge. From thig it follows that the assumption that K is nonarchi-
medean valued does not imply that the F-quasi norm |-l;,; is nonarchime-
dean,

5.4. LEMMA. Let o be a (s, t)-convex modular on X and let 2,y € K be
such that |A|>1, |y|<<1 and |22y|< 1. Then we have

P25 2] RS £ P9

Jor every e X,
Proof. Let » € X ; then
|22y a),, = inf{|af®:
= inf{]dy°: e
= |2y | 2],

(lw/aﬂ,“l 1y g [a]a—f}
(A fad ™) < |ad™ Ny MR

Hence

[y [*] Aoo]es < JA%y s,

This implies
[y P Al <1217 2y ofer <[ A2y 2los <ol

5.5, Timorum. Let o be an (s, t)-convex modular on X; then an T-quasi
norm | -{,, has property (B).

Proof. Suppose that condition (B) is not satistied. Then there exists
AeXk® |A]>1 such that for every m e N there exists # € X, such that
nfals, < JAn],,.

We now choose n &N, pel such that

[A|<n, 1<|Bf<mn and |42/B]<1.
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By ~ (B), there exists an element x, € X, such that

181 ] Bo)ss < nf@o]ss < [20]s,: -
Hence

(%) 1B1° @ols,s <1 0}s-

We denote y = f71; then |y} << 1 and |A%|< 1. So, by Lemma 5.4, it fol-
lows J Azl |817° <} wolssy and we get a contradiction with (x).

From Theorems 5.2, 5.5 and from monotonity of |-J,, follows

5.6. TurorEM. Let X be a veclor space over a field K with nontrivial
valuation |-| and let ¢ be an (s, t)-convew modular on X, where 8 ¢ 2 0,
s> 0. Then the functional § -], , is an F-quast norm on X, satisfying aondztwn
(B). Moreover, if s = t, then the functional ﬂ ls,c s - komo meo'ws

5.7. Remarks. In the case 'when

(a) s =1, t =0, (1, 0)-convex modular ¢ is a nonconvex modular
defined by Musielak and Orlicz in [3]. For K = R or C (eomp]ex number)
the funetional | -], , is the F-norm infroduced in [3].

(b) s =1, t =1, (1,1)-convex modular o is the convex modular
considered in [5]. For K = R or C the functional | -], , is the homogeneous
norm. given in [5].

(¢) s =1, 0<<s <1, (s, 8)-convex modular o ig the s-convex modular
defined in [5]. For K = R or C, | -], , is the s-homogeneous norm (see [57).

In [3] and [5] in each of the above cases the functional | -§, has been
defined separately.

5.8. Exaweres. (1) Let g be a nonnegative convex funection on R*,

vanishing only at 4 = 0. Then f(u) = g(|u]*), 0 << s < 1is an (s, s)-convex
modular on R.
(2) If ¢ is an (s, s)-convex modular on R, then the function f(w)
= g2 (u), 0 <t<s, is an (s, t)-convex modular on R.

(3) Let K be a field with nontrivial valuation }-|. Moreover, let f be
an (s, t)-convex modular on R, where 0 <t <{s <1, s > 0. Given X == K
Then the functional ¢(x) = f(|#]) is an (s, t)-convex modular on X.
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