2 Preface

this theory.(English translation by Professor Henryk Minc of the Univer-
sity of California).

Presenting  “Hypernumbers” in the volume of Studia Mathematica
dedicated to Professor Jan Mikusiriski, we would like to thank him for
all the theories and theorems with which he has enriched Polish and world
mathematics and for his constant pursuit of beauty, simplicity and el-
egance in mathematics.

We wish you, Dear Professor, good health. and long years of a,ctwﬂsy
to come.

Pupils
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Introduction. In this. article we introduce an analytic element com-
posed of a complex number and a vector; we call it a “hypernumber”. The
fundamental difference between a hypernumber and a quaternion lies in
differently defined mmultiplication; moreover, the vector space we consider
hag somewhat different properties from the one that plays a part in the
theory of quaternions. ,

Hypernumbers find applications in the theory of integral and differen-
tial equations reducing certain problems of particular character to purely
algebraic problems. By operating with a suitably chosen unit, compu-
tations have a very clear form, and some theorems, e.g., in the theory of
Fredholm’s equation become nearly obvious. ,

In an application to linear differential equations with constant coef-
ficients computations appear almost identical to Heaviside calculus().
Hypernumbers thus form a new algebraic basis for this calculus. It is
conceptually simpler than theory of Laplace transformation in which
Heaviside’s calculus found for the first time a rigorous justification (2).

As a particular interpretation of hypernumbers one could approxi-
mately regard also “commutative functions” (fonctions permutables),
the theory of which was developed by Volterra and Péres. However, these
authors have not defined accurately the concept of an elernent composed
of a number and a vector; their functions play the part of vectors, and in

(*) Doetsch, p. 344. Heaviside calculus in its original form serves only for find-
ing the integral satisfying initia “zero” conditions; whereas hypernumbers give
the general molution.

(3) Doetsch.



4 J. G.-M.

place of numbers they introduced “symbolic functions” (*) which acquire
a real meaning only when certain operations are performed on them.

We divide this paper into two parts: in the first (algebra) we give
the theory and certain applications of hypernumbers depending golely
on the four elementary operations. In the second part we shall introduce
the concept of the sum of an infinite series of hypernumbers. We shall
also discuss there an application to Volterra’s integral equation.

I sincerely thank Messrs. A. T., T. W., J. W. and A. B. for kind and
valuable remarks concerning the method of approach and of editing this
paper.
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§ 1. Abstract space W. We shall consider an abstract space W for
which we assume that

I. For every pair of its elements f, g there exists a sum f+ge W
and a product fg e W; ‘

II. For every element f e W and every complex number there exists

a product af e W, as well as fae W. '
We agsume that these operations satisfy the following postulates
(f; 9, b ave elements of the space W, whereas «, § are complex numbers):

(1) J;;—i fai ) } (commutativity)
F+(g+h) = (f+g)+5, ]
flgh) = (fg)h, ()

(2)  a(Bf) = (ep)f, (associativity)
a(fg) = (af)g, ()
(fg)e = f(ga); (%)

(®) Volterra—Péres, p. 8.
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a(f+g9) = af+ag,
(a+B)f = af +Bf,

%) (f+9)h = fh+gh, (%) (distributivity)
h(f+g) = hf+hg; (%)

4) f+g=f+h 2 g="n;

6 =7

The above system of postulates contains all the postulates adopted
for vector spaces(*); in addition it contains postulates relating to the prod-
uet of a vector by a vector (marked by stars). Thus the space W is a special
type of a vector space; for this reason its elements will be called veciors.
A product of two vectors of the space W differs from the “vector product”
in the classical vector algebra meaning only in that that the associative
law (%*) is postulated for it. '

Tt follows from the above adopted postulates that there exists exactly
one zero element @ possessing the following properties:

f+0 =71,
0-f =0,
Of =f0 = 6.

We shall denote the zero element by the same symbol as the number 0,
that is, we shall take @ = 0, which in the face of the above relations
does not lead to incorrect conclusions.

Further we adopt the usual definitions:

—f = (=1)f;
f—g9=Ff+(=9);
ff=f...f (n factors).

§ 2. Hypernumbers. A pair of elements (a, f), composed of & complex
number o and a vector f, belonging to space W, is called a hypernumber(®) 3
it ig written in the form of a sum

(ayf) = a+f.
Two hypernumbers are considered equal
a-tf=B+yg

(*) Banach, p. 25; Neumann, p. 19; Neumann’s system is somewhat different,
but it is equivalent. ‘ :

() A hypernumber is not a quaternion, because the product of two hypernumbers
will be defined differently.
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if and only if ¢ = f and f = ¢. In particular, we adopt the abbreviations

0+f =1,
a+t+0 = a;

in that way a vector and a number can be regarded as special cages of
hypernumbers.

The set of all possible pairs of complex numbers and vectors of space
W is called “the hypernumber space” and is denoted by [W]. We define
in this space addition and multiplication (f, ¢ denote vectors, a, f — num-
bers):

(a+1)+(6+9) = a+B+f+g,
number vector

(e+f)(B+g) = _aﬁ +ag+Bf+1ag.

number

Rules of addition and multiplication are therefore formally quite the same
as in ordinary algebra, except that, in multiplication, the order of vectors
must be preserved, for the law of commutativity does not apply in general.
If it is established which letters denote numbers and which denote vectors,
then the number part in the final result can be easily separated from the
vector part; it has only to be kept in mind that multiplication of a number
by a number gives a number, whereas multiplication of a number by a vec-
tor or a vector by a vector gives always a vector.

vector

§ 3. Invertible and commuting hypernumbers. We can also denote

hypernumbers a+f, f+g, ... by one letter, e.g., 4, B, ... If two hypernum-
bers A, B satisfy the relation

‘ AB = BA =1
then we shall”call them muiually inverse, and we shall write
(1 1
B =:~A—, .A == —'E".

It follows from the above definition that for a given hypernumber there
<can exist at most one inverse hypernumber. However, not every hypernum-
ber has an inverse element; for example, a hypernumber reducible to
a vector cannot have an inverse element, because if it is multiplied by
any hypernumber it always yields a vector. A hypernumber for which
there exists an inverse is called “invertible”.

If hypernumbers 4 and B are invertible then their product 4B ig
invertible as well, and we have
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Two hypernumbers A4, B are called “commuting” if
AB = BA.

For the commutativity of hypernumbers 4 = a+f, B = f+g it i8
necessary and sufficient that their vector parts commute: fg = gf. .

TFor commuting hypernumbers A, B it is easy to derive 'the following
formulas

1 1 . 1 :
A o o ot e — t8
A 5 =B A (provided that 5 exists),
1 1 1 1 1 . ‘ 1 1 .
e =R et = ded that — and —- exist).
IEF"F 448 @V A B

Tt follows from these formulas that operations on commuting hypernum-
bers can be performed as an ordinary algebraice fractions provided tpa;t the
denominators are products of invertible hypernumbers; moreover instead
1 s
of A B we can write simply ik
§ 4. Spaces .D and [D]. These spaces are a particular interpretation
of spaces W and [W]. .
We regard as elements (vectors) of space D all complex functions
f(t) of real variable t, continuous in a certain stipulated int.er.va.l a < t < b,
where ¢ is a (real) finite number and b is a (real) number, fnn?:e or infinite.
We adopt the usual definitions of addition and of multiplication of a fune-
tion by a complex number, but we shall define the product of a ve_ctor by
a vector differently. To avoid misunderstandings in multiplication, we
shall denote the vector corresponding to function f(f) by {f(t)}. The product
of vectors {f(t)} and {g(¢)} is defined by the equality
t
() oy} = {[ fla+t—v)g)a}.
It is easy to verify that all the postulates in § 1 are satistied for the above
definition of multiplication. Moreover, all vectors in the space D cox:nmgte
(to prove commutativity it suffices to make in integral (1) the substitution

a+t = a+t1).
Set 1 = {1}; then we have

gy = {[9(ach

the multiplication by 7 means integrating the function. We algo have

B =11= {ftdr},= {t —a},
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and in general

" ‘(t__a)’n--l
= e }

If 1 is an arbitrary complex number, then
(L—Al)(1+4 {e““"“’}) =1,
~ which is easy to verify by performing the multiplication according to the

definition. It means (in view of the commutativity of all vectors in space 1)
that ‘

1 .
T = M0

By means of this formula we can find the inverse of every hypéernumber
of the form ‘

A =14al+al+ ... +alt

where ay, ..., 0, are arbitrary complex numbers (a, % 0); it suffices
for this purpose to write it in the form of a product

A = 1 =201 =20 ... (L—4,),
which is always feasible according to theorems in algebra. We have then

11 1 1
T A T I I

The best way of effective computations is realized by performing firgt ,

the decomposition into partial fractions

Ea B B Bn

A -1 Tiog et L=

where By, B, ..., B, are complex numbers.
In this way we can find effectively the form (i.e., the number part
and the vector part) of a hypernumber given by the formula

(@) , g = DEnlt e bl
TFalt ... ol

(5) In the second part of the paper we sh

| all prove the commutativity of every
element a--f in space [D] for which « == 0
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Example:

l

4 1( 1 1 )
1 A%2 244 \1—4Al 1444l

= ’é%‘ [L+i2 {0} —1 442 {0}
? :

1 .
== {_é— (W(t—«z) - G——M(t-—ﬂ))} = {COSZ.(t — a,)},

By means of this result the number part and the vector part of an
arbitrary hypernumber @ of the form (2) can be computed without intro-
ducing imaginary units. It suffices for this purpose to decompose the frac-
tion @ into a sum of terms of the following types .

. 1 \P 1 oy
a, alﬁ, a(l——ZZ) ’ a(l_l_lglz)’ a(l"'{‘lzlz ?

where p is natural; it is easy to show that such a decomposition is a,lvfra,ys
feagible. We have already examined the first four types; as for the fifth,
it is immediately reduced to the above by writing

12 [/

14+ A2

§ 5. Application to Linear differential equations with constant coef-
ficients. Let

3) 2™ 4, p® D .. +ax = f(I)

be a given differential equation with constant coefficients 1y erey Ope
Wo look for a solution z(f) satistying at the point ¢ = & the initial con-
ditions

w(a) = yo, #'(@) =1 5.1 m(’?—l)(“) = Yn-1+
Integrating (3) # times, we obtain
@+ aliw o ol = byl e F v TS,
where the symbols are already treated as vectors:
s ={o)}, f={©)
Hence we have

(Lol .. + a8 = potpalb ooe P,
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g . 1
and multiplying both sides by Tt Fal’
2 = Yot val+ oo Fyp 1"} + " f
T 1l4al ... Fa,l” 14 a4+ ... +a,l* "

This is at the same time a proof of existence and uniqueness of the gsolution
-of the given equation.

The above method gives the general solution in contrast to the Laplace
trangformation method (7) in which the computations are formally almost
the same, but a condition is introduced that the funection f(!) be of
type £(%).

By means of hypernumbers of space [D] it is also possible to solve
-eagily systems of equations with constant coefficients; it suffices to intro-
duce the concept of a determinant with hypernumbers as elements, whose
definition, in the case of commuting hypernumbers suggests itgelf in
a quite natural way.

§ 6. Connection with Laplace transformation(’). Agsume now in
particular (with the notation of §4) that ¢ = 0. In this case we have

n . tn_
P = {m('n~—1)!} and
t i
all_l"agz—l" +a l —{al—[— %a + ..+"(*;bﬂ-—t—1—y'—}.

The expression on the left-hand side can be regarded formally as a poly-

nomial in 1; the equality expresses a certain connection between two
polynomials

wi®), W(@)..

If one of these polynomials is known, the other can be easily determined
and vice versa. We are dealing therefore with a certain transformation,
transforming a polynomial into a polynomial. If an arbitrary positive

number is substituted for I, then it is easy to verify by performing the
integration that

w(l) = [ e~"W (1)t
Q

(") Doetsch, pp. 321-329.
(®) Doetsch, p. 13.

(®) It is not necessary to read this chapter in order to understand the next part
«of the article.
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Hence polynomial w(l) is the resultant of Laplace transformation(*).
It is easy to verify that regarding I as an ordinary parameter, we
have for 1> 0

l (o5 n 4 Zz 1 o‘O il
= = € At)dt.
= bfe cos (At)dt, T }“oj e~ H'gin (1%)

On the other hand, if I has the meaning as in § 4 (with & = 0), then
12

1
== {GOS(/”)}, m = 7 {Slﬂ(lt)};

l
1+ 202

again we have a connection with Laplace transformation.
Now if f(¢) is a real function of a real varla,ble t, expansible into a Fou-
rier series in given interval [0, b]:

[20]

f(t) = Z(ancos

n=0

2nni . 2wt

then we can write formally

oy =F) = j (1+(2;zn1)2 * 2’7 1+(ﬁ;;:n1)2)-
b b

i

If in place of I we substitute an arbitrary real number, then due to the

convergence of Y (a2 p%) the series (1) will be also convergent. On the
n=0 .

other hand, replacing the expression in the parentheses by a suitable

Laplace integral we arxive for 1> 0 at the relation

FQ) = [ ¢ ft)at,

where f(f) should be understood as a periodic function with period b.

§7. Space T. This space is another particular interpretation of
space W. We ghall regard as its elements (vectors) every cemplex function
f(@,y) of two real variables z,y, possessing the following properties:

1) f(z,y) is defined in a square
Qla<a<<b, asy<b);

2) it is integrable in ¢ separately with respect to each variable;

(19)Doetsch, p. 13.
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'3) it is possible to choose such positive numbers m and & that
If(@, 9)| < m(@—a) (b—y)*~  (in Q).

Addition of two vectors {f(xz, )}, {g(@, y)} of space I and multipli-
cation of a vector by a complex number are defined by analogous operations
on functions f(z, y), g(z, y) (similarly as in § 4), multiplication of a vector
by a vector is defined by the equality

b
{flo, 9o, 9} = { [ fl@,9)9(s, )ds}),

The verification that the space satisfies the postulates in §1 (i.e.
that it is of type W) we leave for the reader.

By applying vectors of space ' we can give a particularly simple form
to Fredholm’s integral equation

b
(@) = f(@)+21 [ K(x,s)p(s)ds;

namely, regarding the functions appearing in it as vectors of space I
we can write

{p@)} = {f(@)}+ A{E (=, )} {p @)},

or simply
¢ = f+iKgp.

The fact that f(«) and ¢ (2) are functions of only one variable x is no obstacle
here, because we can always treat them as functions of two variables which
are constant with respect to y.

§ 8. Eigenvalues and the spectrum of a vector. In the next sections
we shall see that proofs of some theorems on Fredholm’s equation take
a very clear form by the introduction of vectors of gpace I and connected
with it hypernumbers. Of course, we shall state these theorems in a more
general form relating to an arbitrary space W; besides we shall keep the
terminology accepted in the theory of integral equations.

If K is a vector of space W, then the hypernumber

1—-1K

may be either invertible or not invertible, depending on the value of the
complex number 4. The values 1 for which the hypernumber 1 —AI is

(*1) Such an operation is called by Volterra “composition de deuxidmo egpéee” ;
Volterra—Péres, p. 5; Doetsch, p. 157.
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not invertible we shall call the “eigenvalues” of the vector K, and the set
of all eigenvalues — the “spectrum” of the véctor K.
Let us consider now vector equations

¢ =f+iKgp,
9 =f+ipK,

where ¢ is an unknown, whereas f and K are given vectors.

If 2 does not belong to the spectrum of I, then both equations have éxactly
one soluwition.

Indeed, we can write the first equation successively in the form

p—AiKep = f,
1—2K)p = f;
then multiplying both sides of the last equality by 1——11—5 we obtain
the solution
1
*=1ax’
In an analogous manner we obtain the solution for the second equation
1
v=I1oE

These equations are given in the clasgical theory of integral equations
in a somewhat different form. In order to obtain it we note that

1 K
R ey o
The vector
K
@ L=1T%

is called a resolvent of the vector K.
Ity introduction enables us to write the solutions in a form recalling
the given equations, namely

¢ = f+2AK,f
for the first, and

¢ = f+2fK,
for the second of the equations.
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A resolvent can also be written, as it can be easily verified, in the
form

1 1 :

§ 9. Properties of a resolvent. From formula (4) we can easily obtain
certain properties of a resolvent.
By performing the computations we can easily verify the equality

K E o gy K
1K 1—pr- M THTTIR TSk

K). —K” = (’1 '"""‘u)Ki.Kﬂ;

this equality is known in the theory of integral equations under the name
of the resolvent equation and was given by Hilbert('?).
If KN = NK = 0, a simple computation yields

K N K+ N

1oAK T 1oy 1—ME-+D)’

or
K+, = (K-+DN);

with reference to integral equations this equality expresses a theorem of
Goursat on orthogonal kernels(s).

§ 10. Vectors of finite rank. A vector K is called “of rank p” if the
infinite sequence K, K*, K*, ... contains exactly p linearly independent
vectors. ‘

THEOREM. If vector K is of rank p, then the veclors
K,K?, ..., K?

are linearly independent.
Proof. Suppose on the contrary that

o K+aBi+ ... 40, E? =0
for a certain system of complex numbers
(6) Upy Ogy ey Opy

(*%) Lalesco, p. 43; Kowalewski, p. 132.
(*%) Goursat, T. 2, Lalesco, p. 41.
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not all of which are zero. If a, is the last number of system (6) different.
from zero, then we have o, K-+ a, K2+ ... 4 0, K?= 0 (a,# 0);
this means that K? can be expressed as a linear combination of K , K2, ...
ooy K271 Multiplying this equality by K we obtain

o K2+ a, K34 ... 4 a, Kt = 0;

then K%' can be expressed as a linear combination of K K3, ..., K%
thus also of K, K?, ..., K%', Tt follows by induction that all K', where
i 2 ¢, are linear combinations of K, K*, ..., K%, which contradicts the
assumption that the infinite sequence K, K2, K?, ... has p linearly inde-
pendent elements.

We shall determine now the inverse element for the hypernumber
1—1K, where K is a vector of finite rank p.

We shall endeavour to determine complex .functions Py Pay ooy Op
of complex variable 4 so that (1 —21K)(1L+ ¢, K + @, K>+ ... + @, K?) = 1.
After multiplying out the factors in parentheses and cancelling the num-
bers 1, we have

(7) (pa= D E A+ (po—2p2) K2+ ... + (9, —Ap,_)) KP — A, B = 0.

On the other hand, since K is of rank p, there exists a system of p+1
complex numbers ay, ..., a,,, such that

(8) 0K+ ag B+ ..+ ay BP0y EPH =0 (a,,, £ 0);
from (7) and (8) we have, due to the independence of K, K?,..., K?,
2R 2 St o N et O
O ay a, QA1
Solving this system of equations we find that
AD;(2)
A ind . =1,...
Ps o () (¢ yeey D),
where
1 00... 0 0a
—A 10.. 0 0 a
0 —21 ... 0 0 a
el =1 ... E® R om Eew s s ’
0 00.. -1 1g
0 00 0 —2 a,,

and @,(4) is the minor corresponding to the ith element of the first row
in the above determinant.
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Hence we have the following formula
(9)

‘where ®(K, 1) = KPy(A)+ ... +E7 D, (A).

Since ¢(A) is a polynomial of degree < p and is not defined

1
1—iK
only -at the points at which @(1) = 0, then
The spectrum of a vector of ranlk p consists of p poinis at most,
‘We also find from formula (9), in view of (5), the following form of
the resolvent ‘

D (I, 1)
w(2) |
In the application to Fredholm’s equation the above way represents

-a convenient algorithm for finding the resolvent for the kernel with separate
variables(**):

.Ka.:

n

E(@,y) = D, ,(@)b, (y);

sv,‘)ﬂ
: r=1

for vector K = {K (x, y)} always is of finite rank,
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Abstract. In the paper it is proved that type II convergence in the field & of
Milkusirigki’s operators ig not topological (Theorem 2.1), which is & solution of the prob-
lem posed in [1]. It is given a chavacterization of type IT convergence and, defined
in the paper, type II’ convergence. A, deseription of compactness and boundedness
in & with type 11’ convergence is given and a sequential completeness of & ig proved.

1. In the field of Mikusinski operators three types of convergence:
type I; type I' and type IT are introduced (see [6], p. 144, 147 and [2])
Properties of type I and type I' convergences are described in [2], [3].

In the paper we shall describe properties of type IT convergence. In
particular, it will be proved that type IT convergence is not topelogical.
This is the negative answer to the problem Posed in [1]. Moreover, we shall
give some facts about type IT convergence, similar to that given in [3] for
type I’ convergence.

We shall nse terminology and notation from [3].

-

2. We say that a sequence {@,} of operators is type IT convergent to x
(and we write m, = @) if there exist continuous functions f, Gy far On
(n=1,2,...) such that a, = ful0n, @ =flgand f,~f, g,~g almost
uniformly.

In the above definition continuous functions can be replaced by locally
integrable functions (as in [3] I denotes the set of all such functions) and
the almost uniform convergence by the convergence with respect to the
following family of pseudonorms:

'{[" .
Ifllp == flf(t)lclt for any fel and T > 0.

; . %
The above convergence will be denoted by ==,

2 — Studla Math. 7.1
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