

# A characterization of Gaussian measures

by

### K. URBANIK (Wrocław)

Abstract. The main purpose of this paper is to characterize Gaussian probability measures among weakly stable ones.

This paper has its origin in the study of generalized convolutions [5] and [6]. In what follows two random variables X and Y are said to be equivalent, in symbols  $X \sim Y$ , if they have the same probability distribution. We say that a symmetrically distributed random variable X has the weakly stable probability distribution whenever for any quadruple  $X_1, X_2, Y_1, Y_2$  of independent random variables such that  $X_1 \sim X_2 \sim X$  there exist independent random variables  $X_3$  and  $Y_3$  with the property

$$X_1 Y_1 + X_2 Y_2 \sim X_3 Y_3$$

and  $X_3 \sim X$ . This definition is equivalent to the following one: for every pair a, b of positive numbers there exists a non-negative random variable  $Y_{ab}$  independent upon  $X_3$  such that

$$aX_1 + bX_2 \sim X_3 Y_{ab}.$$

Note that the case when  $Y_{ab}$  is constant with probability 1 corresponds to stable probability measures.

Throughout this paper we denote by  $\mathscr S$  the set of all symmetric probability measures on the real line.  $\mathscr P$  will denote the set of all probability measures concentrated on the half-line  $[0,\infty)$ . Further,  $\delta_a$  will denote the probability measure concentrated at the point a. We denote the convolution of two measures  $\mu$  and  $\nu$  by  $\mu*\nu$ . Moreover,  $\mu\nu$  will denote the probability distribution of the product XY of independent random variables X and Y with the probability distribution  $\mu$  and  $\nu$ , respectively. Consequently,

(2) 
$$(\mu \nu)(E) = \int_{u \neq 0} \mu(u^{-1}E) \nu(du) + \nu(\{0\}) \delta_0(E)$$

for every Borel subset E of the real line. Moreover, the characteristic

function of  $\mu\nu$  is given by the formula

$$\widehat{\mu v}(t) = \int_{-\infty}^{\infty} \mu(tu) v(du).$$

The set of all probability measures is equipped with the topology of the weak convergence. The following statements are evident:

- (i) if  $\mu_n \to \mu$ , then  $\mu_n \nu \to \mu \nu$  for every  $\nu$ ,
- (ii) if  $\nu \neq \delta_0$  and the sequence  $\{\mu_n \nu\}$  is conditionally compact, then the sequence  $\{\mu_n\}$  is conditionally compact, too.

We note that the definition of the weak stability can be formulated as follows. A probability measure  $\mu \in \mathcal{S}$  is weakly stable if and only if for every pair  $v_1$ ,  $v_2$  of probability measures there exists a probability measure v such that

(3) 
$$(v_1 \mu) * (v_2 \mu) = v \mu.$$

Moreover, condition (1) can be written in terms of characteristic functions as follows:

(4) 
$$\hat{\mu}(at)\hat{\mu}(bt) = \int_{0}^{\infty} \hat{\mu}(ut)\nu_{ab}(du),$$

where  $v_{ab} \in \mathcal{P}$ .

Now we shall quote some examples of symmetric weakly stable probability measures.

1. Symmetric stable measures.  $\hat{\mu}(t) = e^{-|t|^p}$  (0 <  $p \le 2$ ). In this case  $\nu_{ab} = \delta_{(a^p+b^p)^{1/p}}.$ 

2. 
$$\mu = \frac{1}{2}(\delta_c + \delta_{-c})$$
  $(-\infty < c < \infty)$ ,  $\nu_{ab} = \frac{1}{2}(\delta_{a+b} + \delta_{|a-b|})$ .

3. 
$$\mu(E) = \frac{\Gamma(q+3/2)}{\sqrt{\pi}\Gamma(q+1)} \int_{E \cap [-1,1]} (1-u^2)^q du \quad (q > -1),$$

$$\nu_{ab}(E) = \frac{\Gamma(q+3/2)}{\sqrt{\pi}\Gamma(q+1)4^{q}a^{2q+1}b^{2q+1}} \int_{E \cap [[a-l],a+b]} [((a+b)^{2}-u^{2})(u^{2}-(a-b)^{2})]^{q}u \, du.$$

4. 
$$\mu(E) = \frac{1}{2e} \int_{E \cap [-c,e]} du$$
  $(c > 0)$ ,  $r_{ab}(E) = \frac{1}{2ab} \int_{E \cap [|a-b|,a+b]} u du$ .

5.  $\hat{\mu}(t) = (1 - |t|^p)^n$  if  $|t| \le 1$  and  $\hat{\mu}(t) = 0$  otherwise (0 $n=1,2,\ldots$ ). For  $a \leq b$ 

 $v_{ab}(E) = (1 - a^p/b^p)^n \delta_b(E) + \sum_{k=0}^{n} p(n+1) \binom{n}{k} \binom{n}{k-1} a^{p(n+1-k)} b^{pk} \times \frac{1}{n} a^{p(n+1-k)} b^{pk}$  $\times \int\limits_{E \cap [b,\infty)} (u^p - a^p)^{k-1} (u^p - b^p)^{n-k} u^{-2np-1} du$ .

The main aim of this paper is to characterize Gaussian probability measures among weakly stable ones. Namely we shall prove the following theorems.

THEOREM 1. A measure  $\mu$  from  $\mathcal S$  is weakly stable, infinitely divisible and

 $\int\limits_{-\infty}^{\infty}|u|^p\mu(du)<\infty \ \ for \ \ 0< p< 2 \ \ if \ \ and \ \ only \ \ if \ \ it \ \ is \ \ Gaussian.$  Theorem 2. A measure  $\mu$  from  $\mathscr S$  is weakly stable,  $\int\limits_{-\infty}^{\infty}|u|^p\mu(du)<\infty$ for  $0 , <math>\int\limits_{0}^{\infty} e^{u^{2+\epsilon}} \mu(du) = \infty$  for all  $\epsilon > 0$  if and only if it is nondegenerate Gaussian.

**THEOREM** 3. A measure  $\mu$  from  $\mathcal{S}$  is weakly stable and has at least one atom if and only if it is of the form  $\mu = \frac{1}{2}(\delta_c + \delta_{-c})$  where  $c \ge 0$ .

The necessity of the conditions of all three theorems is evident We ought to prove their sufficiency. Before proceeding to prove it we shall establish some lemmas.

For a given probability measure  $\mu$  we introduce the notation

$$\tilde{\mu}(x) = \mu((-\infty, -x] \cup [x, \infty)) \quad (x \geqslant 0).$$

Put

$$\kappa(\mu) = \lim_{\overline{x \to \infty}} \frac{\log \log \tilde{\mu}(x)^{-1}}{\log x}.$$

Then from the inequality

$$e^{a|x|^p}\tilde{\mu}(x) \leqslant \int\limits_{-\infty}^{\infty} e^{a|u|^p} \mu(du) \quad (p>0)$$

and the formula

(5) 
$$\int_{-\infty}^{\infty} e^{a|u|^p} \mu(du) = ap \int_{0}^{\infty} u^{p-1} e^{a|u|^p} \tilde{\mu}(u) du + \tilde{\mu}(0)$$

we get the following lemma.

Lemma 1. If for some positive a and  $p, \int\limits_{-\infty}^{\infty} e^{a|u|^p} \mu(du) < \infty,$  then  $\varkappa(\mu) \geqslant p$ . Conversely, if  $\varkappa(\mu) > p$ , then  $\int_{-\infty}^{\infty} e^{c|u|^p} \mu(du) < \infty$  for all positive numbers c.

LEMMA 2. Suppose that  $\mu \in \mathcal{S}$  and  $\int\limits_{-\infty}^{\infty} |u|^p \mu(du) < \infty$  for  $0 . If <math>\mu$  is weakly stable, then  $\int\limits_{-\infty}^{\infty} e^{au^2} \mu(du) < \infty$  for a certain positive number a.

Proof. Since for  $\mu=\delta_0$  our statement is obvious, we may assume that  $\mu\neq\delta_0$ . Given 0< p<2, we put

$$\omega_p(E) = p \int_{E \cap [1,\infty)} u^{-p-1} du.$$

Then, by (2), we have the formula

$$\widetilde{\omega_p\mu}(x) = px^{-p}\int_0^x \tilde{\mu}(u)u^{p-1}du.$$

Consequently, by (5) and the assumption  $\mu \neq \delta_0$ , the function  $x^p \widetilde{\omega_p \mu}(x)$  has a finite positive limit when  $x \to \infty$ . Thus for all positive numbers  $y_n$ 

$$\lim_{x\to\infty}\frac{\widetilde{\omega_p\,\mu(x)}}{\widetilde{\omega_p\,\mu(xy)}}=y^p.$$

In other words the probability measure  $\omega_p \mu$  belongs to the domain of attraction of the symmetric stable probability measure  $\lambda_p$  with the exponent p, i.e.  $\hat{\lambda}_p(t) = e^{-|t|^p}$  ([1], Chapter XVII, § 5, Th. 1a). Consequently, there exists a sequence  $\{a_n\}$  of positive numbers such that

$$(\delta_{a_n} \omega_n \mu)^{*n} \to \lambda_n$$

when  $n\to\infty$ . By the weak stability of  $\mu$  (formula (3)) we infer that there exist probability measures  $r_{n,p}$  satisfying the condition

$$(\delta_{a_n}\omega_p\mu)^{*n}=\nu_{n,p}\mu.$$

By (6) and (ii) the sequence  $v_{n,p}$   $(n=1,2,\ldots)$  is conditionally compact. Let  $v_p$  be its cluster point. By (i) we have the formula  $v_p\mu=\lambda_p$  (0< p<2). But  $\lambda_p$  tends to the Gaussian probability measure  $\lambda$  when  $p\to 2$ , because  $\hat{\lambda}_p(t)\to e^{-t^2}$ . Thus, by (ii), the family  $v_p$   $(1\leqslant p<2)$  is conditionally compact. Denoting by v its cluster point we have, by (i), the equation  $v\mu=\lambda$ , where  $\hat{\lambda}(t)=e^{-t^2}$ . Consequently, for c<1/4 the integral  $\int\limits_{-\infty}^{\infty} e^{cu^2}\lambda(du)$  is finite, which, by (2), yields the finiteness of the integral  $\int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} e^{cu^2v^2}\mu(du)v(dv)$ . Since  $v\neq \delta_0$ , our assertion is the consequence of the Fubin Theorem.

We are now in a position to prove the sufficiency of the conditions of our theorems.

Proof of Theorem 1. Suppose that  $\mu$  fulfils the conditions of the theorem. Then, by Lemma 2,  $\int\limits_{-\infty}^{\infty}e^{au^2}\mu(du)<\infty$  for a certain positive number a.

Thus its characteristic function  $\hat{\mu}$  can be extended to an entire function without zeros on the complex plane ([4], p. 187). Hence it follows that  $\mu$  is Gaussian ([1], Chapter XV, § 8) which completes the proof.

Proof of Theorem 2. Suppose that  $\mu$  fulfils the conditions of the theorem. Then, by Lemma 2,  $\int\limits_{-\infty}^{\infty}e^{au^2}\mu(du)<\infty$  for a certain positive number a. Hence it follows that its characteristic function  $\hat{\mu}$  can be extended to an entire function on the complex plane. Moreover, by Lemma 1, we have the inequality  $\varkappa(\mu)\geqslant 2$ . Further, the assumption  $\int\limits_{-\infty}^{\infty}e^{u^2+\varepsilon}\mu(du)=\infty$   $(\varepsilon>0)$  yields, by Lemma 1, the inequality  $\varkappa(\mu)\leqslant 2+\varepsilon$ . Thus  $\varkappa(\mu)=2$ . Let  $\varrho(\mu)$  denote the order of  $\hat{\mu}$ . Then

$$\frac{1}{[\varrho(\mu)} + \frac{1}{\varkappa(\mu)} = 1$$

([3], p. 54). Consequently,  $\varrho(\mu)=2$ . It is well known that the maximum modulus of  $\hat{\mu}$  in the circle  $|z|\leqslant r$  is equal to  $\max\{\hat{\mu}(ir),\hat{\mu}(-ir)\}$  ([4], p. 134). Since  $\mu\in\mathcal{S}$ , we have  $\hat{\mu}(ir)=\hat{\mu}(-ir)$ . Then there exists a Valiron function f defined and differentiable on the positive half-line with the properties

$$\lim_{t\to\infty} f(t) = 2,$$

(8) 
$$\lim_{t\to\infty} f'(t)t\log t = 0,$$

(9) 
$$\overline{\lim_{t\to\infty}} \frac{\log \hat{\mu}(it)}{t^{f(t)}} = 1,$$

(10) 
$$\log \hat{\mu}(it_n) = t_n^{f(t_n)} \quad (n = 1, 2, ...)$$

for a certain sequence  $t_1 < t_2 < \dots$  tending to  $\infty$  ([2], p. 52). By the Lagrange mean value theorem we have, in view of (8), the formula

$$\lim_{t\to\infty} (f(t) - f(c^{-1}t)) \log t = 0$$

for every positive number c. Hence, by virtue of (7) and (10) we get the formula

(11) 
$$\lim_{n\to\infty} \frac{\log \hat{\mu}(icr_n)}{r_n^{f_n}(r_n)} = c^2,$$

where  $r_n = e^{-1}t_n$  and the sequence  $\{t_n\}$  is defined by (10). By (3) we have a measure  $v \in P$  with the property

$$\mu * \mu = \mu \nu$$

or in terms of the characteristic functions

$$\hat{\mu}(t)^2 = \int\limits_0^\infty \hat{\mu}(tu)\nu(du).$$

To prove that this equation remains true in the complex plane, i.e.

$$\hat{\mu}(z)^2 = \int\limits_0^\infty \hat{\mu}(zu)\nu(du)$$

for all complex numbers z it suffices to prove that the right-hand side of (13) is an entire function or, equivalently, that for all t>0

(14) 
$$\int_{0}^{\infty} \hat{\mu}(itu) \nu(du) < \infty.$$

This inequality is obvious when  $\nu$  has a compact support. Therefore we consider the case when  $\nu$  is not concentrated on a compact set. We already know that  $\int_{-\infty}^{\infty} e^{au^2} \mu(du) < \infty$  for a certain positive number a. Since

$$\int\limits_{-\infty}^{\infty}e^{(a/2)u^2}(\mu*\mu)(du)\leqslant\Bigl(\int\limits_{-\infty}^{\infty}e^{au^2}\mu(du)\Bigr)^2,$$

we have, by virtue of (12),

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} e^{(a/2)u^2v^2} \mu(du) \nu(dv) < \infty.$$

Taking into account that  $\nu$  has an unbounded support and  $\mu \neq \delta_0$  because of  $\int_{-\infty}^{\infty} e^{u^2+\epsilon} \mu(du) = \infty$  ( $\epsilon > 0$ ) and applying the Fubini theorem, we have the inequalities

$$\int\limits_{-\infty}^{\infty}e^{au^2}\mu(du)<\infty,\quad \int\limits_{0}^{\infty}e^{bv^2}\nu(dv)<\infty$$

for all a>0 and a certain b>0. Since  $|tuv|\leqslant b^{-1}t^2u^2+bv^2$ , we get the inequality

$$\begin{split} \int\limits_0^\infty \hat{\mu}(itu)\nu(du) & \leqslant \int\limits_0^\infty \int\limits_{-\infty}^\infty e^{|tuv|}\mu(du)\nu(dv) \\ & \leqslant \int\limits_{-\infty}^\infty e^{b^{-1}t^2u^2}\mu(du) \int\limits_0^\infty e^{bv^2}\nu(du) \,, \end{split}$$

which yields (14) and, consequently, completes the proof of (13).

Let c be an arbitrary positive number with the property  $r([c, \infty)) > 0$ . Let  $\{r_n\}$  be the sequence appearing in (11). By (13) we have the inequality

$$\hat{\mu}(ir_n)^2 \geqslant \int\limits_c^\infty \hat{\mu}(iur_n) \nu(du) \geqslant \hat{\mu}(icr_n) \nu([c, \infty)).$$

Consequently, by (9) and (11),

$$2 \geqslant \overline{\lim_{n \to \infty}} \frac{\log \hat{\mu}(ir_n)^2}{r_n^{f(r_n)}} \geqslant c^2,$$

which shows that  $c \leq \sqrt{2}$  or, in other words,  $\nu$  is concentrated on the interval  $[0, \sqrt{2}]$ . Differentiating (13) we get the equation

$$2\int\limits_{-\infty}^{\infty}v^2\mu(dv)=\int\limits_{-\infty}^{\infty}v^2\mu(dv)\int\limits_{0}^{\sqrt{2}}u^2
u(du)$$

which yields

$$\int_{a}^{\sqrt{2}} u^2 v(du) = 2$$

because  $\mu \neq \delta_0$ . The last equation shows that  $\nu = \delta_{V2}$  which implies, in view of (13),  $\hat{\mu}(t)^2 = \hat{\mu}(\sqrt{2}\ t)$ . Hence by induction we get the formula  $\hat{\mu}(t) = \hat{\mu}(t/\sqrt{2^n})^{2^n}$   $(n=1,2,\ldots)$  which, by the Central Limit Theorem shows that the measure  $\mu$  is Gaussian. The theorem is thus proved.

Proof of Theorem 3. Let A be the set of all atoms of the measure  $\mu$ . Of course, A is at most denumerable and, by the symmetry of  $\mu$ ,  $\mu(\{c\}) = \mu(\{-c\})$  fr  $c \in A$ . For every pair a, b of positive numbers,  $v_{ab}$  will denote a measure from P satisfying condition (4) or, equivalently, the equation

$$(15) \qquad (\delta_a \mu) * (\delta_b \mu) = \mu \nu_{ab}.$$

First consider the case  $A = \{0\}$ . Then the last equation yields

$$\mu(\{0\})^2 = (\mu * \mu)(\{0\}) = \mu(\{0\}) (1 - \nu_{11}(\{0\})) + \nu_{11}(\{0\}).$$

which implies the inequality  $\mu(\{0\})^2 \ge \mu(\{0\}) > 0$ . Consequently,  $\mu(\{0\}) = 1$ , i.e.  $\mu = \delta_0$  which completes the proof.

Now let us assume that  $0 \in A$  and  $A \setminus \{0\} \neq \emptyset$ . Let a, b be a pair of linearly independent positive numbers over the denumerable field generated by the set A. Then from (15) we get the equation

$$\mu(\{0\})^2 = (\delta_a \mu) * (\delta_b \mu)(\{0\}) = \mu(\{0\}) (1 - \nu_{ab}(\{0\})) + \nu_{ab}(\{0\})$$

whence the inequality  $\mu(\{0\})^2 \geqslant \mu(\{0\}) > 0$  follows. Thus  $\mu(\{0\}) = 1$ , i.e.  $\mu = \delta_0$  which completes the proof.

Finally consider the case  $0 \notin A$ . Passing to  $\delta_c \mu$  if necessary, we may assume without loss of generality that

$$(16) 1 \in A.$$

Let a, b be a pair of linearly independent positive numbers over the field generated by the set A. Let  $A_{ab}$  and  $B_{ab}$  denote the set of all atoms of the measures  $(\delta_{a\mu})*(\delta_{b\mu})$  and  $v_{ab}$ , respectively. From (15) we get the equations

$$A_{ab} = \{ac_1 + bc_2 : c_1, c_2 \in A\},\$$

(18) 
$$A_{ab} = \{cd: c \in A, d \in B_{ab}\}.$$

Thus

$$0 \notin B_{ab}$$

and, by (16),

$$(20) B_{ab} \subset A_{ab}.$$

The last inclusion shows that every number d from  $B_{ab}$  has the unique representation d=ag+bh, where g,  $h\in A$ . Let  $C_{ab}$  be the set of all such coefficients g and h. By (18) for every  $c\in A$  we have the relation  $cd=acg+bch\in A_{ab}$ . Hence, by the linear independence of a, b we infer that cg,  $ch\in A$ . Consequently, denoting by  $sem(C_{ab})$  the multiplicative semigroup generated by  $C_{ab}$  we have the inclusion

(21) 
$$\operatorname{sem}(C_{ab}) \subset A.$$

Further, by the linear independence of a and b, we have the equation

$$(\delta_a \mu) * (\delta_b \mu) (\{ac_1 + bc_2\}) = \mu(\{c_1\}) \mu(\{c_2\}) \quad (c_1, c_2 \in A),$$

which, by (15), yields

(22) 
$$\mu(\{e_1\})\mu(\{e_2\}) = \sum_{d \in B_{ab}} \mu\left(\{d^{-1}(ac_1 + bc_2)\}\right) \nu_{ab}(\{d\})$$

for all  $c_1, c_2 \in A$ . In particular, for every  $c \in A$  we have the formula

(23) 
$$\mu(\lbrace c \rbrace)^{2} = \sum_{d \in E_{ab}} \mu\left(\lbrace d^{-1}c(a+b) \rbrace\right) v_{ab}(\lbrace d \rbrace).$$

Suppose that  $c \in A$ ,  $d \in B_{ab}$  and  $g = d^{-1}c(a+b) \in A$ . Then  $g^{-1}c(a+b) \in B_{ab}$  and, consequently, by (20),  $g^{-1}c(a+b) \in A_{ab}$ . By the linear independence of a, b and by (17) we infer that  $h = g^{-1}c \in A$ . Moreover, d = h(a+b). Thus setting

$$H_{ab} = \{h: h \in A, h(a+b) \in B_{ab}\}$$

we have, by virtue of (23),

(24) 
$$\mu(\{e\})^2 = \sum_{h \in \mathcal{U}_{ab}} \mu(\{eh^{-1}\}) \nu_{ab}(\{h(a+b)\})$$

for every  $c \in A$ . Moreover,

$$(25) H_{ab} \subset C_{ab}.$$

Now we shall prove that

$$(26) H_{ab} = \{1\}.$$

Contrary to this let us assume that  $H_{ab}$  contains a positive number d different from 1. Then, by (21) and (25),  $d^k \in A$  (k = 1, 2, ...) and, by (24),

$$\mu(\{d^{k+1}\})^2 \geqslant \mu(\{d^k\}) \nu_{ab}(\{d(a+b)\})$$
  $(k = 1, 2, ...).$ 

Hence we get the inequality

$$\sum_{k=n+1}^{\infty} \mu(\{d^k\})^2 \ge v_{ab}(\{d(a+b)\}) \sum_{k=n}^{\infty} \mu(\{d^k\}) \quad (n = 1, 2, ...)$$

which yields

$$\nu_{ab}(\lbrace d(a+b)\rbrace) \leqslant \max_{k \geqslant n} \mu(\lbrace d^k\rbrace) \quad (n = 1, 2, \ldots).$$

Consequently,  $v_{ab}(\{d(a+b)\}) = 0$  which contradicts the assumption  $d \in H_{ab}$ . Formula (26) is thus proved. Now equation (24) can be written in the form

$$\mu(\{c\})^2 = \mu(\{c\})\nu_{ab}(\{a+b\}) \qquad (c \in A).$$

Thus

$$\mu(\{c\}) = \nu_{ab}(\{a+b\}) \quad (c \in A).$$

Hence it follows that the set A is finite. Consequently, by (21), the set  $C_{ab}$  is contained in the two-point set  $\{-1,1\}$  which implies the inclusion

$$B_{ab} \subset \{|a-b|, a+b\}$$

because  $B_{ab}$  consists of positive numbers. Further, taking into account (18), we have the inclusion

(27) 
$$A_{ab} \subset \{c \mid a-b \mid : c \in A\} \cup \{c(a+b) : c \in A\},$$

By (16) and the symmetry of  $\mu$  we have the inclusion  $\{-1, 1\} \subset A$ . Hence by the linear independence of a, b it follows that inclusion (27) holds in the case  $A = \{-1, 1\}$  only. Of course, we have then  $B_{ab} = \{|a-b|, a+b\}$  which together with (22) yields

$$\begin{split} \mu(\{1\})^2 &= \mu(\{1\}) \, \mu(\{-1\}) = \mu\big(\{\mathrm{sgn}(a-b)\}\big) \, v_{ab}\big(\{|a-b|\}\big) \\ &= \mu(\{1\}) \, v_{ab}\big(\{|a-b|\}\big). \end{split}$$

Thus

(28) 
$$\nu_{ab}(\{|a-b|\}) = \mu(\{1\})$$



for every pair a, b of positive numbers linearly independent over the field generated by A, i.e. the field of rational numbers. Suppose now that  $b \rightarrow a$ , a, b being linearly independent. Then, by (i) and (15), the family  $\{v_{ab}\}$  is conditionally compact. Let  $\nu$  be its cluster point. Then by (15)

$$(29) \qquad (\delta_a \mu) * (\delta_a \mu) = \mu \nu$$

and, by (28),

$$\nu(\{0\}) \geqslant \mu(\{1\})$$
.

Since  $A = \{-1, 1\}$ , we get, by virtue of (29), the relation

$$2\mu(\{1\})^2 = (\delta_a \mu) * (\delta_a \mu)(\{0\}) = (\mu \nu)(\{0\}) = \nu(\{0\}) \geqslant \mu(\{1\}).$$

Thus  $\mu(\{1\}) \ge 1/2$ . Since  $\mu(\{-1\}) = \mu(\{1\})$  and  $\mu(\{-1\}) + \mu(\{1\}) \le 1$ , we have  $\mu(\{1\}) = \mu(\{-1\}) = 1/2$  and, consequently,  $\mu = \frac{1}{2}(\delta_1 + \delta_{-1})$  which completes the proof.

#### References

- [1] W. Feller, An introduction to probability theory and its applications, Vol. II John Wiley and Sons, Inc. New York, London, Sydney 1966.
- [2] B. Ya. Levin, The distribution of zeros of entire functions, G.I.T.T.L., Moscow 1956 (in Russian).
- [3] Yu. V. Linnik and J. V. Ostrovskii, Decompositions of random variables and vectors, Nauka, Moscow 1972.
- [4] E. Lukacs, Characteristic functions, Charles Griffin, London 1960.
- [5] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), 217-245.
- [6] Remarks on B-stable probability distributions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 783-787.

WROCŁAW UNIVERSITY

Received March 5, 1982 (1741)

## Non-Leibniz algebras

by

### D. PRZEWORSKA-ROLEWICZ (Warszawa)

Dedicated to Professor J. Mikusiński on the 70th birthday

Abstract. We consider algebras with right invertible operators in the case when the Leibniz condition

(L) 
$$D(xy) = xDy + yDx$$
 for  $x, y \in \text{dom } D$ 

(provided that  $xy \in \text{dom}\,D$ ) is not satisfied. In particular, it is shown that in a large class of non-Leibniz algebras all initial operators are averaging.

We shall consider algebras with right invertible operators in the non-Leibniz case, i.e., in the case where the condition

(L) 
$$D(xy) = xDy + yDx$$
 for  $x, y \in \text{dom } D$ 

is not satisfied (provided that  $xy \in \text{dom } D$ ).

Some particular cases have been studied by Dudek [1] and by the author and von Trotha (cf. [3], [4], [9]).

In [5], [6], [7] we have shown that the Green formula, the Euler–Lagrange equation and the P cone identity hold in the general non-Leibniz case. In [8] there was given a classification of non-Leibniz algebras. A large class of algebras which are in a sense "close" to Leibniz case has been distinguished. Properties of right invertible operators and their inverses in these algebras, in particular, Wroński theorems have been studied.

1. Preliminaries. Let X be a linear space over a field  $\mathscr{F}$  of scalars. Let L(X) be the set of all linear operators A such that the domain of A (denoted by  $\operatorname{dom} A$ ) is a linear subset of X and  $AX \subset X$ . In particular, we write:  $L_0(X) = \{A \in L(X) \colon \operatorname{dom} A = X\}$ . Let R(X) be the set of all right invertible operators belonging to L(X). For a given  $D \in R(X)$  we denote by  $\mathscr{B}_D = \{R_\gamma\}_{\gamma \in \Gamma}$  the set of all right inverses of D. We shall assume that  $R_\gamma \in L_0(X)$  for  $\gamma \in \Gamma$ . Here and in the sequel we shall assume also that  $\dim \ker D > 0$ , i.e., D is right invertible but not left invertible. Any element of  $\ker D$  is a constant for D. By definition, F is an initial operator for D if is a projection onto  $\ker D$  such that FR = 0 for a right inverse R.