icm°

STUDIA MATHEMATICA, T. LXXVIL (1983)

A characterization of Gaussian'measures

by
K. URBANIK (Wroclaw)

Abstract. The main purpose of this paper is to characterize Gaussian probability
measures among weakly stable ones.

This paper has its origin in the study of generalized convolutions [5]
and [6]. In what follows two random variables X and Y are said o be
equivalent, in symbols X ~7, if they have the same probability distri-
‘bution. We say that a symmetrically distributed random variable X has
the wealkly siable probability distribution whenever for any quadruple
Xy, Xy, ¥y, Y, of independent random variables such that X, ~X,~X
‘there exist independent random variables X, and Y, with the property

X, Y+ X, Yy~ X, T,

and X;~X. This definition is equivalent to the following one: for every
pair a, b of positive numbers there exists a non-negative random variable
Y, independent upon X, such that

(1) X, +bX,~X, ¥V, )
Note that the case when Y, is constant with probability 1 corresponds to
stable probability measures.

Throughout this paper we denote by & the set of all symmetric prob-
ability measures on the real line. # will denote the set of all probability
measures concentrated on the half-line [0, co). Further, 6, will denote the
probability measure concentrated at the point a. We denote the convol-
ution of two measures u and » by u+v. Moreover, uy will denote the prob-
ability distribution of the produet XY of independent random variables X
and ¥ with the probability distribution 4 and », respectively. Consequently,

@) () (B) = [ p@™B)v(dw)+v({0}) & (E)

uF0

for every Borel subset B of the real line. Moreover, the characteristic
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function of uv is given by the formula

o

f u(tw)y (du).

— 0

o (e) =

The set of all probability measures is equipped with the topology of the
weak convergence. The following statements are evident:
() if p,—p, then w,»—>uy for every »,

(i1) if » 5% §, and the sequence {u,s} is conditionally compact, then
the sequence {z,} is conditionally compact, too.

‘We note that the definition of the weak stability ean be formulated
as follows. A probability measure u e & is weakly stable if and only if for
every pair ¥, », of probability measures there exists a probability measure
» guch that

(3) (vopo) % (o) = Ve

Moreover, condition (1) can be written in terms of characteristic functions .
as follows:

)

) utan)i(vt) = [

(ut) vy (Ans),

where »,;, € 2.
Now we shall quote some examples of symmetric weakly stable prob-
ability measures.

1. Symmetric stable measures. (i (t) = ¢~ (0 < p < 2). In this cage
Yab = S pymyune
2. s = %(aa_f'é—c) (—o<e< 00)7 Yap = %(6a+b+6|a—b[)'
I'(g+3/2
3. am) = UE32) @ —w)ldu  (g> —1),
Vel(g+1) Enf-1,1]
I'(g+38/2)
V() = —— atbY—u?) (4P —(a—b))| % duo .
v l/nf(q+1)4!la2q+1b2q+1 - [(( b —u )(“ (a—b) )l war
4. w(B) = L du  (6>0), wv,(E) 1 ud
. T — b o Ab o
20 1o e Y S
5. /u(t (1-—]t”)" i [{<1 and p(1) = 0 otherwise (0<p <1,
n==1,2,...). For a<<b
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on
Voo (H) = (1 —a® [b?)"§,(B) -+ Zp (n+1) (Z) (k fl)a,p(nﬂ—k)b;nk %
X f (IMP ap)k 1( bp)n—-k —21Lp—1du
En[b,c0)

The main aim of this paper is to characterize Gaussian probability
meagures among weakly stable ones. Namely we shall prove the following
theorems. }

THROREM 1. A measure u from 5 is weakly stable, infinitely divisible and

o«
luPu(du) < o for 0<p<2 if and only if it is Gaussz‘an.
H »
—00

THEOREM 2. A measure u from & is weakly stable, f |l u(du) << oo

it w(du) = oo for all ¢ > 0 if and tmly if it is non-

for 0<p<?2, f )
degenerate Gausswfn

THEOREM 3. A measure u from & is weakly stable and has at least one
atom if and only if it is of the form p = }(6,4 6_.) where ¢ = 0.

The necessity of the conditions of all three theorems is evident
We ought to prove their sufficiency. Before proceeding to prove it we shal

establish some lemmas.
For a given probability measure u we introduce the notation

B(@) = p((— o0, —2]U[z, ) (230).
Put
loglog i (%)~*
»(p) = lim loglogp (@)™
== logz
Then from the inequality
P fe‘““'p (dw) (p>0)
and the formula
®) [ e u(du) = ap f WP G () s+ 5 (0)

we get the following lemma.

Leywa 1. If for some positive a and , f e u(du) < oo, then
#(p) = p. Conversely, if »(u) > p, then f ec'”‘p,u,(du)< oo for all positive

aumbers ¢.
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LemwMa 2, Suppose that ue & and I 1ul? u(du) < oo for 0<p<a,
© —00
If p is weakly stable, then [ it #(du) < oo for a certain positive number o.

Proof. Since for u = §, our statement is obvious, we may assume
that u == 6. Given 0 <p < 2, we put
' (M) =p [ wr .
. EN[1,00)
Then, by (2), we have the formula

p— @
w, (@) = pw‘”fﬁ(u)u”‘ldu.
0

Consequently, by (5) and the assumption u == dgy the funetion m“’a;;y(w)»
hag a finite positive limit when 2-—oco. Thug for all positive numbers y,, .
lim -22400) o

Ty p(wy) ‘
In other words the probability measure w, 4 belongs to the domain of
attraction of t]ae symmetric stable probability measure 4, with the
exponent p, i.e. 4,(t) = ¢~" ([1], Chapter XVII, §5, Th. 1a). Conge--
quently, there exists a sequence {a,} of positive numbers such that

(6) (8a,, 0p )"~ 2,

when n-»>oco, By the weak stability of 4 (formula (3)) we infer that there
exist probability measures ¥n,p Satisfying the condition

(6an wp/‘)*n =V, plhe
By (6) and (ii) the sequence Vnp (7 =1,2,...) is conditionally compact..
Let », be its cluster point. By (i) we have the formula vt =2, (0 <p<2).
But 4, tends to the Gaussian probability measure A when p—2, because
ip(t)——w*‘z. Thus, by (ii), the family », (1 < p < 2) is conditionally compact..
Denoting by » its cluster point we have, by (i), the equation vu = ], where:

i) = P Consequently, for ¢< 1/4 the integral [ e”“zit(rlu,) iy finite,,
"o o
which, by (2), yields the finiteness of the integral [ [ 6™y (du)y(dv).

00 =00

Since » s£ §,, our assertion is the congequence of the Fubini Theorem.

‘We are now in a position to prove the sufficiency of the conditions.
of our theorems.

Proof of Theorem 1. Suppose that x fulfils the conditions of the the-

orem. Then, by Lemma 2, [ e #(du) < oo for a certain positive number a..
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Thus its characteristic function # can be extended to an entire function
without zeros on the complex plane ([4], p. 187). Hence it follows that u
is Gaussian ([1], Chapter XV, § 8) which completes the proof.

Proof of Theorem 2. Suppose that x fulfils the conditions of the the-
orem. Then, by Lemma 2, | ¢ u(du) < oo for a certain positive number a..

Hence it follows that its characteristic function z can be extended to an
entire function on the complex plane. Moreover, by Lemma 1, we have

the inequality »(u)> 2. Further, the assumption [ e“”s‘u(du) = oo

(¢ > 0) yields, by Lemma 1, the inequality =(u)<<2+e Thus x(u) = 2.
Let o(u) denote the order of i. Then

1 1
s

=1
le(w)  =(n)

([3], p. 54). Consequently, ¢(u) = 2. It is well known that the maximum.
modulus of z in the circle {z| < r is equal to max {i (ir), i ( —ir)} ([4], p- 134).
Since p € #, we have u(ir) = u( —ir). Then there exists a Valiron functifm-
f defined and differentiable on the positive half-line with the properties.

(1) limf(t) = 3,

(8) limy (1) logi = 0,

) £;‘;‘Iogt}u(t()fit) -1,

(10) logi(it,) = tit0  (n=1,2,...)

for a certain sequence #, < t,<< ... tending to oo ([2], p. 52). By the La-
grange mean value theorem we have, in view of (8), the formula

lim (f (t) —f (¢~)) logt = 0

00
for every positive nurmber ¢. Hence, by virtue of (7) and (10) we get the
formula )

log pu(icr.
(11) lim ,P_gﬁ(w_”) = ¢,

(7
n—+00 7'”( n)

where 7, = ¢, and the sequence {t,} is defined by (10).
By (3) we have a measure » e P with the property

(12) WEp = uy
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‘or in terms of the characteristic functions
(=]

AR = [ fi(tu)r(du).

To prove that this equation remaing true in the complex plane, i.e.

o

{(13) 4(z)? = f v(du) .

[

for all complex numbers = it sutfices t0 prove that the right-hand side of
{13) is an entire function or, equivalently, that for all ¢ > 0

(14) f b (Gtu)y (du) < oo,

“This inequality is obvious when » has a compact support. Therefore we
-consider the case when » is not concentrated on a compact set. We already

know that f o #(du) < oo for ‘& certain positive number a. Since

f e (1 ae a) () < (fm “M/“(d“))

we have, by virtue of (12),
f f 6(“/2)“2”2 Jr(dv) < oo.
0 —oo

Tang into aceount that » has an unbounded support and x # §, because
-of f ottt #(du) = oo (2> 0) and applying the Fubini theorem, we have
‘the mequahmes

o] o0
f 6y (dw) < oo, f & (dv) < oo

for all ¢ > 0 and a certain b > 0. Since [twv] < b7 - bo*, we got the
inequality

(=] o0 [2¢]
f () v (du) < f f e (du) v (d)
0 0 —o0

g 12,2 2
< fab" “u ,u(du)f 'y (du),
0

-0

“which yields (14) and, consequently, completes the proof of (1.3).
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Let ¢ be an arbitrary positive number with the property »([e, o)) > 0.
Let {r,} be the sequence appearing in (11). By (13) we have the inequality

e (3 f [ (G, ) (@) > fa(ier,) v ([e, o0)).

Consequently, by (9) and (11),

— logu(ir,)?
2> lim ——-—g’l;((r )”) - 2,
n—>00 T ™
which shows that ¢ < V2 or, in other words, » is concentrated on the inter-
val [0, 1/5]. Differentiating (13) we get the equation
co V2

2 [ vip(do) = fvz,u(d'u)f w2 ()
which yields
Va
f v(du) = 2
e

because u ## d,. The last equation shows that » = d,; which implies,
in view of (13), u(t)? = u( 1/2 t). Hence by induction we get the formula
Aty = L(t{ V3" (n =1,2,...) which, by the Central Limit Theorem
shows that the measure u is Gaussian. The theorem is thus proved.
Proof of Theorem 3. Let 4 be the set of all ators of the measure .
Of course, 4 is at most denumerable and, by the symmetry of u, u({c})
= p({—¢}) L r ce A. For every pair a,d of positive numbers, »,, will
denote a measure from P satisfying condition (4) or, equivalently, the
equation
(15) (Oaps)* (Opps) = pvgy.
First consider the case A = {0}. Then the last cquation yields
p({03)2 = (u*p)({0}) = ({0} (L =212 ({0})) + 951 ({0}).

which implies the inequality u({0})2 = u({0})> 0. Consequently, u({0})=
ie. p = 6, which completes the proof.

Now let us assume that 0 € 4 and A~ {0} # @. Let a, b be a pair of
linearly independent positive numbers over the denumerable field gen-
erated by the set 4. Then from (15) we get the equation

n({oh? = (Bau) % (8p) ({03) = /4({0})(1 —"’ab({o}))‘f”Vab({O})

whence the inequality w({0})*z p({0})> 0 follows. Thus p({0}) = 1,
ie. g = §, which completes the proof.

$ — Studla Math. 77.1
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Finally consider the case 0 ¢ 4. Passing to d,u if necessary, we may
assume without loss of generality that

(16) led.
Let a, b be a pair of linearly independent positive numbers over the field

generated by the set 4. Let 4,, and B, denote the set of all atoms of the
measures (Oqpu)x(0yu) and vy, respectively. From (15) we geb the equations

7) Ay = {ac,--bey: ¢y, ¢ 6 A},
(18) Ay = {cd: ce d,deBy}.
Thus

(19) 0 ¢ B,

and, by (16), :

(20) By, < 4.

The last inclusion shows that every number d from B, has the unique
representation d = ag--bh, where g, h € A. Let O, be the set of all such
coefficients g and k. By (18) for every ¢ e 4 we have the relation ed = acq -+
bk € Ay Hence, by the linear independence of «, b we infer that
¢y, ch € A. Consequently, denoting by sem(C,) the nlulmpllca,mve semi-
group generated by ¢, we have the inclusion

(e1) gsem(C,) = 4.

Further, by the linear independence of ¢ and b, we have {he equation
(8apa) % (Sy ) ({aey +os}) = p({en}) u({e})

which, by (15), yields '

(22) u{ou({e.}) =

(¢, 05€ 4),

D' ({@ 7 aoy +vey)}) v ({d)

deByp,
for all e;, ¢, € A. In particular, for every ¢ € 4 we have the formula
(23) pUeD = 37 p({a ela-0)})r, ({3)).
deBay

Suppose that ce 4, d € By and ¢ = d~'¢(a-+b) € 4. Then g e(a--b) € By,
and, eonsequently, by (20), ¢~'c(a -+ )E-Aab By the linear independence
of a,b and by (17) we mfel that 2 == g~'¢c e 4. Moreover, d == h(w-1-b).
Thus setting

Hy, = {h: he d, ha
we have, by virtue of (23),

(24) s = 3 u({feh™ v ({hia+ b))

hel

'I" b) € Bab}
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for every ¢ € 4. Moreover,

(25) Hab < Oab'
Now we shall prove that
(26) Hyy = {1}.

Contrary to this let us assume that H,, containg a positive number d
different from 1. Then, by (21) and (25),d* e 4 (k =1, 2, ...) and, by (24),
RUZTN? > (@ ra({da+b))) (B =1,2,..).

Hence we get the inequality

2 B 2 v ({@a+0)}) D u({@ (v =1,2,..)
k=n+t1 k=n
‘which yields
maX/z({d’“})

o (1d(a+D)}) < (n=1,2,...).

Consequently, v,({d(a+5)}} =0 which contradicts the assumption
d € Hy,. Formula (26) is thus proved. Now equation (24) can be written
in the form

{3 = p({Hra(fa+b)) (ced).
Thus
sl{el) = vap({a+d}) (ced).

Hence it follows that the set A is finite. Consequently, by (21), the set g,
ig contained in the two-point set {—1,1} which implies the inclusion
Bab < {la‘—b s a’+b}
because B, consists of positive numbers. Further, taking into account

(18), we have the inclusion

27) Ay c{ola—bl: ced}ufc(a+b): ceA}.

By (16) and the symmetry of x we have the inclusion {—1,1} c 4. Hence
by the linear independence of 4, b it follows that inclusion (27) holds in
the case 4 = {—1, 1} only. Of course, we have then B, = {la —b], a-+b}
which together with (22) yields
pAD? = p({@Nu({—1}) = u({sen(a —b)})ru ({ls —b1})
= p({1})rp({la —dl}).
Thus

(28) vap({la—bf}) = u({1})
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for every pair a, b of positive numbers linearly independent over the field
generated by 4, ie. the field of rational numbers. Suppose now that
b—a, a, b being linearly independent. Then, by (i) and (15), the family
{rp} is conditionally compact. Let » be its cluster point. Then by (15)

(29) (ap) *(Ogp) = py
and, by (28),

»({0}) = u({1}).
Sinee 4 = {—1,1}, we get, by wvirtue of (29), the relation

2u({1})* = (8ap)#(8,0)({0}) = (w)({0}) = »({0}) > u({1}).

Thus w({i}) >1/2. Since u({—1}) = p({1}) and p({—1}+u({1}) <1,
we have u({1}) = u({—1}) =1/2 and, consequently, u = }(d,--d_,)
which completes the proof.
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Non-Leibniz algebras
by '
D. PRZEWORSKAROLEWICHZ (Warszawa)

Dedicated 1o Professor J. Mikusirislki
on the 70th birthday

Abstract. We consider algebras with right invertible operators in the case when
the Leibniz condition

(L) D(xy) = «Dy+yDx for x,yedomD

(provided that oy € dom D) is not satisfied. In particular, it is shown that in a large
class of non-Leibniz algebras all initial operators are averaging.

‘We shall consider algebras with right invertible operators in the non-
Leibniz case, i.e., in the case where the condition

(L) D(zy) = 2Dy+yDx for z,yedomD

is not satisfied (provided that ay e dom.D).

Some particular cases have been studied by Dudek [1] and by the
author and von Trotha (cf. [3], [4], [9]).

In [3], [6], [7] we have shown that the Green formula, the Euler—
Lagrange equation and the P'eone identity hold in the general non-Leibniz
case. In [8] there was given a classification of non-Leibniz algebras. A large
class of algebras which are in a sense “close” to Leibniz case has been di-

-stinguished. Properties of right invertible operators and their inverses in =

these algebras, in particular, Wronski theorems have been studied.

1. Preliminaries. Let X be a linear space over a field & of scalars.
Let L(.X) be the set of all linear operators 4 such that the domain of A4
(denoted by domAd) is a linear subset of X and AX < X. In particular,
we write: Ly(X) = {4 e L(X): domA = X}. Let R(X) be the set of all
right invertible operators belonging to L(X). For a given D e R(X) we
denote by #p = {R,},.r the set of all right inverses of D. We shall assume
that R, € Ly(X) for y e I Here and in the sequel we shall assume also
that dimkerD > 0, i.e., D is right invertible but not left invertible. Any
element of ker.D is a:constant for .D. By definition, F is an initial operator
for D if is a projection onto ker D such that FR = 0 for a right inverse E.
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