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for every pair a, b of positive numbers linearly independent over the field
generated by 4, ie. the field of rational numbers. Suppose now that
b—a, a, b being linearly independent. Then, by (i) and (15), the family
{rp} is conditionally compact. Let » be its cluster point. Then by (15)

(29) (ap) *(Ogp) = py
and, by (28),

»({0}) = u({1}).
Sinee 4 = {—1,1}, we get, by wvirtue of (29), the relation

2u({1})* = (8ap)#(8,0)({0}) = (w)({0}) = »({0}) > u({1}).

Thus w({i}) >1/2. Since u({—1}) = p({1}) and p({—1}+u({1}) <1,
we have u({1}) = u({—1}) =1/2 and, consequently, u = }(d,--d_,)
which completes the proof.
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Abstract. We consider algebras with right invertible operators in the case when
the Leibniz condition

(L) D(xy) = «Dy+yDx for x,yedomD

(provided that oy € dom D) is not satisfied. In particular, it is shown that in a large
class of non-Leibniz algebras all initial operators are averaging.

‘We shall consider algebras with right invertible operators in the non-
Leibniz case, i.e., in the case where the condition

(L) D(zy) = 2Dy+yDx for z,yedomD

is not satisfied (provided that ay e dom.D).

Some particular cases have been studied by Dudek [1] and by the
author and von Trotha (cf. [3], [4], [9]).

In [3], [6], [7] we have shown that the Green formula, the Euler—
Lagrange equation and the P'eone identity hold in the general non-Leibniz
case. In [8] there was given a classification of non-Leibniz algebras. A large
class of algebras which are in a sense “close” to Leibniz case has been di-

-stinguished. Properties of right invertible operators and their inverses in =

these algebras, in particular, Wronski theorems have been studied.

1. Preliminaries. Let X be a linear space over a field & of scalars.
Let L(.X) be the set of all linear operators 4 such that the domain of A4
(denoted by domAd) is a linear subset of X and AX < X. In particular,
we write: Ly(X) = {4 e L(X): domA = X}. Let R(X) be the set of all
right invertible operators belonging to L(X). For a given D e R(X) we
denote by #p = {R,},.r the set of all right inverses of D. We shall assume
that R, € Ly(X) for y e I Here and in the sequel we shall assume also
that dimkerD > 0, i.e., D is right invertible but not left invertible. Any
element of ker.D is a:constant for .D. By definition, F is an initial operator
for D if is a projection onto ker D such that FR = 0 for a right inverse E.
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This implies that F is an initial operator if and only if there is a right
inverse R such that F = I—RD on domD.
One can also prove (cf. for ingtanee [3]) that any projection I' onto

—F R, and that the definition of B does not depend on the choice of the
right inverse R,. :

2. Integration in D-algebras. Let X be a commutative algebra over &
(i.e., a commutative linear ring over #) and let D € B(X). X is said to be
& D-algebra if the following condition is satisfied:

(2.1) vzedomD and ye domD implies  ay e dom.D

i.e, if the domain of D is a sub-algebra of X. Here and in the sequel
we shall assume that X is a D-algebra. Write:

(2.2)  fp(®,y) = D(wy) —ep(@Dy+yDz) for all x,y e domD

where

(1) ep is a scalar dependent on D only;

(2) fp: domD x domD—dom.D is a bilinear and symimetric mapping
dependent on D only, i.e.,

(2.3) fo(y,2) = fp(®,y) for all m,y edomD.
Using - the notation (2.2) we can write
(2.4) D(my) = ep(@Dy+yDw)+fp(m,y) for ,yedomD.

The bilinear operator f,, will be called a non-Leibniz component. Non-
Lebniz components for powers of D are determined by the following re-
cursion formulae (proof by induction):

‘ =0, fP=f, andfork=2,3,...,s,vecdomD"
(2.8) 1§ (2, y) = ch[(Da)(D*y) + (D" 'a)(Dy)]+
o5 fp(@, D*'y) + (D" e, )]+ D% (@, y)
or in another (equivalent) form:
2:5) [z, 9) = dh(De)(D¥~y) (D) (Dy)]+
+op[f* (@, Dy)+- 14 (Da, y)14- D51 fp (@, y).

Similar formulae hold for a superposition of right invertible operators,
For an arbitrary scalar p s 0 we have Cop = Opy fop = Pfp.

Other properties of non-Leibniz components and several examples
of D-algebras can be found in [6] (cf. also [5]). Without loss of generality
Wwe can assume here and in the sequel that ¢y, 5% 0 (cf. Example 1.8 in [67).
An extension of a D-algebra over R to a D-algebra over the field ¢ of com-
plexes can be made in a standard way (¢ [B]).

Non-Leibniz algebras 71

TurorEM 2.1 (Generalized integration by parts formula™). Let X be
a D-algebra and let I be an inilial operator for Id corresponding to @ right
inverse . Then for all @,y e dom.D and for any positive integer n the fol-
lowing formula holds:
(2.6)  R"(my) = cp"aRy —~

— 3 5B (o, R[(Da) Riy]-+ T (wBly) -+ Rf (e, B}
beri

Proof. Let @,y ¢ domD, Write 1 == Ry. Then « e dom.D, aynd’ ?for-
mula  (2.4) implies that »Du = ¢p'D(mu)—uDs—op'fp(w, u). Since
RD == I —1I" and y == Du, acting on both sides of this equality by the
operator B wo obtain

2.1 R(y) = R@Du) == o' BD (wu) — B (4Dw) — 5" Bf , (@, #)
= 07 [ww — R (D) — F (au) — Bfp (2, ©)]
= op'wRy — R[(Dw)(Ry)]—op'F (2By) — 5 Bfp(e, Ry),
which. proves formula (2.6) for » = 1. .
Suppose now formula (2.6) to be true for an arbitrary fixed n > 1.
Then

(2.8)  R"(ay) = R[R"(2y)]
N K )
== 07 (2 R™My) — 2 ¢RI {op, R[( D) By 1+ F (2 RY) + Bf p (2, Bly)}

gl
= OO pRM Yy — ¢ R (D) (R )] — op IR (0B y) —

k3
”05(""‘1)Rfu(f7li, R"“"]y) - Ec;’R""“'f{cﬂlﬂ[(Dm)Rfy] »kIf’(ijy) +Rfp(@, R’y)}

i=i

n1 :
= a5 aRM Yy — 3] R0, R(Da) (BYY)1+ F(aR'y) + Bip(e, B}
fel
which proves formula (2.6) for n-|-1. ‘
COROLLARY 2.1, Suppose that all asswmptions of Theorem 2.1 are
satisfied.
() If # e keed), o e dom.D) then

ki
(2.9)  BMew) ~ op"eRw— ) RV [F (2Bhe) - Rfp e, Bla)].
jmal

* This formula and formulae (2,9), (2.10), (2.11), (2.12) in the Leibniz case have
beon proved by H. von Trotha.
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(b) If X has a wnit e, zekerD and o e domD then

) n
(2.10) R"» = c¢3"wR" — 205" " e, R [(D) Rie]-+ I (aRIe) |- fp (2, Rle)},
=1

n
(211) R = og"eR'e— D) e R*I[F(eRie)+ Bf p(e, Rle)].

j=1

(€) If X has a unit ¢ then the vemainder in the Taylor Formula is of
the form
(2.12)  R"D"% = cp"(D"w)R'e —

i3
— DGR epRI(D™ )R]+ P (D) By ] +y + Bf (D", Rle)}

=1
provided that » e dom D™,
(A) If % has o unit ¢ and T is multiplicative then Jor ® e dom D, 2 € ker I»

n
(2.13) RB" = c3"sRr —205"1?,“"’ {epR[(De)Rie]+ Bfp (e, Rie)},
i=1
n
R = ¢j"2R" — ZG%R”'H“{/D(z, Rie).
J=1

Proof. In order to prove formula (2.9) observe that Dz == 0 and apply
formula (2.6) for y =z If X hag a unit ¢ then applying formula (2.6)
for y = ¢ we obtain (2.10) for we = . Applying formula (2.10) for @ = &
ekerl? We obtain (2.11). Write: w = D",y = ¢. Then Dw == D"y,
Applying formula (2.10) to the element w e dom D, we obtain the required.
formula (2.12).

If 7 is multiplicative, we have IR = 0 by definition. Then H (wRe)
= (Fo)(FRey = 0 f.or J=1,...,m. This and formula (2.10) together
imply (2.13). Applying (2.13) for =z ekerD, we obtain (2.14).

‘ Formulae (2.6)-(2.14) are, as & mattor of fact, formulae of integration
in D-algebras.

_ '_.EI-IEOREM 2.2. If X is & D-algebra, » € domD and n > 2 is an arbitrary
Dpositive integer them ™ e domD and

(2.14)

n—2
(2.15) D" = @@+ 3 chaif, (w, a1y
Fa=0)
where
-2
(216) dy =15 dy=20p; @, =2d57+ Nl for w>2.
J=1

Proof. It is by induction (cf. [8]).

©

icm
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" COROLLARY 2.2. Tf X is o D-algebra then, for oll © € dom D", 2 e kexD,.
nelN,
(2.17)

where 157 ave dofined by formulas (2.5);

D) == D™ (2, D)

N2
Dat o Z N T I AR

(2.18)
=i
Indeed, sineo Dz == 0, we have D"(@z) = ¢ (wD"% - aD") -5 (2, D)
= ¢ 2D 5 (2, D). Also formula (2.15) fmplies (2.18).
JOROLLARY 2.3, If X s a D-algebra with unit ¢ then
(2.19) (1 ~2ap).De = fple,e),
(2.20) gD o 67" (2, D)  for all zekerD, neN.

since Dz == (.
Formula (2.19) implies that the unit ¢ is a constant if fi(e, 6) = 0.

3. Initial operators in D-algebras. In order to study some properties.
of initial operators in D-algebras we have to introduce some definitions.

Suppose that X is a commutative algebra. An operator 4 e L(X).
is said to be averaging if

(3.1) A(wdy) = (dx)(dy) for @,y edomd

A eL(X) is said to be a Reynolds operator if

8.2)  A(ay) = A(wdy)-A[(z—Ax)(y—4y)] for 2,yedomd

(et [117]).

Suppose that X iy a D-ulgebra and F is an initial operator for D..
Then B i3 said to bo almost averaging if
for all # € X, ¢ ekerD.

(3.3) I (ear) == allw

The last property is very useful and has been used in geveral applications.
(cf. [2]-[0]). A '
By definition, any multiplicative initial operator is almost averaging.
Indeod, since Fe = ¢ for # e kerD, we find that X' (ew) = (I'2) (F2) = 2B
for w e X.
The eonverse statement is not true, as several oxamples show.
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TasorEM 3.1. Suppose that X is a D-algebra and I is an initial operator
for D, Then the following conditions are equivalent:

(i) I is almost averaging,

(ii) F is averaging.

Proof. Suppose that I is averaging and 4 € X, # € ker D arc arbitrary.
Since I is a projection onto ker.D, there exist y € X such that Ty =: g,
Then condition (3.1) implies

F(20) = F(xly) = (Fp)(Fy) = Mz,
ie., ¥ is almost averaging. Conversely, suppose that 7' is almost aver-

aging and @,y are arbitrary. Since z = Fy e kerD and condition (3.3)
holds, we have

F(eTy) = F(w0) = elo = (Fa)(Iy),

ie., F is averaging.

TEEOREM 8.2. Suppose that X is ¢ D-algebra with unit ¢ & kex D (over
a field F of characteristic zero) and I is an almost averaging inttial operator.
Then

(a) F is o Reynolds oporator;

(b) we have

{3.4) B =" for all g ekerD, ne N;
(e) any power of a constant is again a constant;
(d) we have

(8.5) ) fl,(z,@v) =0 for all 2 ekerp.

Proof, By our assumption Fe = ¢. By Theorem 3.1 7 is averaging.
Any averaging operator in a commutative algebra with unit such that
Ae = ¢ is a Reynolds operator (cf. Rota, [11]). Sinee J is g Reynolds
operatior in a commutative algebra with unit (over a field of characteristic
zero), the following identity holds:

(3.6)  nF[2(Fo)" '] = (n—1)T[(Fu)*]-- (Fw)*  for all e X, neN
(ef. also Rota, [11]). Bubt 2 == Fau e kerD and ' is almost averaging. Then
identity (3.6) can be rewritten ag follows:

(3.7) nF(#" ) = (n—1)Fe"-+2" for meN.

For n = 2 we have 22 = %2Fw = 28 (w2) = Fzt--2*, which implios
that Fe? = 2* and 2% is a constant for Fe? ekerD. Suppose that
Fé¥ = 2" for an arbitrary fixed 2< kheXN. Then 2 = I ekerD

~1

(o
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RBince F is averaging and (3.7) holds, we find
(B2t e (ot 1)@t B s (Toob- 1) I (a00") = TP+ - g1,
which implies Fekt* . - 21 Therefore Fe™ == #* for all n e N. Since 2"

e ker D2 for n & N, wo conclude that any power of a constant is again a con-
stant. Sinco 22 ¢ kerD for any & ¢ kerd), we conclude that

0 == D = 20202 I (2, 2) == fp(e, ),
i.e., the non-Leibniz component f;, vanishes on congtants.
4. Almost Leibniz algebras, A D-algebra X is said to be almost Leibniz
if
{4.1) fplw, &) =0 for all # edomD, zekerD.
The following D-algebras are almost Leibniz:
(1) Leibniz algebras since we have
D(xy) = oDy--yDy for o,y edomD.
Here fi, = 1.
(2) Quasi-Leibniz algebras since we have
Day) = oDy -+yDo-d(Dw)(Dy) for o,yecdomD
(where d % 0 is a given gecalar dependent on D only). Hence
fo(2, 8) == d(Da)(De2) == 0 for 2 ekerD,
(8) Simple Duhamel algebras since we have
D(xy) = oDy for o,y edomD. ‘4

Indeed, the commutativity of mulfiplication in X implies that D(zy)
= yDm. We therefore conclude that D(wy) = §({eDy-+yDz) for o,y
e dom.D, which implies fr, == 0.
(4) Suppose that X v a Leibniz D-algebra. o
Then, for am srbitrary positive integer # > 1, X is an almost-Teibniz
Dralgebra. Indeed, the Leibniz condition implies that for o,y e dom.D

n—1

n - - ~
D" (ay) = ‘}j(;j) (Dk) (D" Yy) == @D gD - IZ: (’7:) (D)D" Ty,
L) . o s
Heneo
#-l , - -
Fonlar, 2) = ]Z]’ ('h?) (Dhe)(D"%) = 0 for zekerD

(cf. also Ixamples 1.1~1.8 in [67]).
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THEOREM 4.1. Suppose that X is an almost Leibniz D-algebra. Them
(42)  fSw,2) =0 for all wedomD, cekeaD (n =1,2,...).

Proof. Itis by induction (cf. [8]).

COROLLARY 4.1. Suppose that X is an almost Leibniz D-algebra. Then

(43)  D"(as) = ¢} 2D"s  for oll ¥ edomD", zekearD (n =1,2,...),
(4.4) zekerD dmplies "ekerD for w =1,2,...,

i.e., @ power of a consiant is again a constant. If X has a wnit ¢ and

(4.5) D% = 0  for all zekerD (n =1,2,...).

Indeed, formulae (4.2) and (2.17) imply (4.3). Formula (4.2) and con-
dition (4.1) imply that Dz” = 0. Hence 2" e kerD (n == 1,2, ,..) and 2" is
a constant. Formulae (2.19) and (4.2) imply (4.5).

COROLLARY 4.2, If X is an almost Leibniz D-algebra with wnit ¢ ond
constants are not zero divisors then ¢ € ker D, i.c., ¢ is a constant and cp = 1.

TrEOREM 4.2. Suppose that X s an almost Leibniz D-algebra and I
is am nitial operaior for D corresponding to a right inverse K. Then for
s,y edomD, zekerD and n e N

n
B ay) = ep aR™y — Z e R {e, R [(D) Ry -+

(4.6) 1:1 + T (@Ry) - Bf p(@, By)},
R"(z2) = cpeR"x — Zc}; R"T (2R'w).
i=1

If X has a unit then

(4.7) Rz = c5=R" — ch)fR"‘fF(sze).

j=1

The proof immediately follows from our assumptions, Theorem 2.1
and ‘Corollary 2.1.

THROREM 4.3. Suppose that X is an almost Leibniz D-algebra. Then alt
nitial operators for D are averaging.

Proof. Let I be an arbitvary fixed initial operator. Let » ¢ X and
2 ekor.D 'be also arbitrary, By our assumption, fy, (1, 2) = 0. By formula.
4.7, since RD = I—TF, we find

(4.8) F(w2) = @z —RD(22) = w2 — R[ep(wDz+2Du) 1 (a2)]
@z —cpR(eDx) = w2 — 2R Dy — F (2RDx)
22—zl —Ta—TF[2(I—F)z]

= 22 —ag+oFy — F(2n)+ F (2Fz),

I

i
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which implies

(4.9) 2B (wz) = 2Ba-|-F(lr) for weX, zekerD.

Since F* == I, acting on hoth sides of this equality by the operator F we
obtain

210 (we) == 20" (w8) = T (2F'w)+ F* («Fw) = 9T (27'w),

- ie.,

(4.10) I (wg) == F(elz)y for welX , 2 €kerD.
It we apply the last equality in (4.9) we get
28 (2liw) = 20 (we) == elw - T (sFw),
i.e.,
{4.11) I allw) = zFw  for welX,zekerD,
Bqualities (4.10) and (4.11) together imply that
(4.12) INwe) = F(al'w) = =2lp for we X, ¢sekerD,

i.e., I is almost averaging. By Theorem 3.1 we conclude that # iy averaging.

Note that Theorems 4.3 and 3.2 together imply that in almost Leibniz
D-algebras a power of & constant is againla constant, which gives another
proof of formula (4.4). )

COROLLAWY 4.8. Suppose that X 43 an almost Leibniz D-algebra with wnit
¢ and I is an inilial operator for I corresponding 1o a right inverse R, Then
(4.13) I (zR") == 0
{4.14) Rz = o el

Indoed, by our assumptions F satisfies (4.12) and PR = 0. Hence for
zekarD and n == 1,2,.,. we have

I'(zR") = #FR" = 0

Jor zekerD (n=1,2,..),

and

13
R == oi"eRe— ) 6i/ BT (eRie) = o7"2R".
Jeml
Trwonum 4.4 (Totegeation of unit formula). Suppose that X is an
almost Leibwiz D-algobra with unit ¢ such that constants are not zero divisors.
Suppose that I is an indtial operator for 1 corresponding o a right inverse R.
Then
S
e RV EP[(RE)*]  (n=1,2,...)

4 Rl == ot
(415)  R'e )
Jown



GUEST


78 D. Przeworska-Rolowicz

where we assume that

(4.16) diny =dy...d, %0 (n=1,2,..)
and dy, ..., d, are defined by formulae (2.16), i.e.,
f n—2
(417) dy =1, dy=20p, 4, =247+ b for w3
j=1

Proof. Observe that by our assumption d, # 0, d, % 0 and
pyy = op(dy+1),  d(nA41) = dyad(n), dn) #0  (n=1,2,...).

Our assumptions and Corollary 4.2 together imply that De = 0. Then
¢ is a constant. Write: g = Re. Then Dg = DRe = ¢. Theorem 2.2 and
our assumptions together imply that Dg" == d,¢"~'Dg = d,g" ¢ = d,g"*
(n =1,2,...). Hence

g —Tg" = (I—F)g" = RDg" = d,By" (n =2,3,...).

Observe that d(2)R% = d,Rg = g2 — Fg? = ¢*—d,Fg? Supposo that for
an arbitrarily fixed # > 2 we have

n
Rre = gn) . éj 1 Rn——k_nglc-
v
Toe=2

a a (k)
Then
. 1 o1
R*"le = B(R"%) = —— Rg"— - putl-kpk
(B") am 2170 R Ty
= ;_ (gn+1_an+1) — - 1 R17,-1~1-Ic1,y s
B gad(m) i a (k) g
1 1 51
= L T+t Rk LRt T
d(n+1) ¢ dnrn) ! 24 ag Ty

l==2

n+1

ot NT_ L i
_ e ]2/ WR Ty",

fomn

which wag to be proved.
In the Leibniz ease this theorem was proved in [9]. The present proof
is simpler. Note that in the Leibniz case ¢, = 1. Hence d, = n and

(4.18) d(n) =nl (n=1,2,..).
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