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ON INFINITE DAMS WITH MARKOV DEPENDENT INPUTS

0. The known expression for time-dependent probabilities of the
contents of an infinite dam given certain initial conditions is in the form
of a complicated double generating function. This makes the problem
of numerical evaluation of the probabilities extremely difficult. An explicit
exprcssion for these probabilities is. obtained by using combinatorial
methods, and it is shown how a matrix operation facilitates their nu-
merical evaluation.

1. Introduction. In this paper we consider an infinite dam whose
inputs X, =0,1,..., N< oo during consecutive intervals (n,n-1)
(n = —1,0,1,...) form an ergodic Markov chain and whose release at
the end of the time interval (n,n-4-1) is unity. Defining Z, as the dam
contents at time n, we have the recurrence relation

) Zy,, =Z,+X,—min{l,Z,+X,} (n=0,1,...).

Since {Z,, X,} and {Z,, X,_,} are bivariate. Markov chains, it is
possible to study the stochastic behaviour of the process {Z,} by extending
the methods employed for the case where {X,} are independent and ident-
ically distributed random variables. It is known that the results for
the Markov inputs case are similar in form, though not in the degree
of complexity, to those for the independent inputs case. For example,
for the independent inputs case, by letting Pr{X =14} =p, (¢ =0,1,...)
and

P(6) = D'pf  (101<1),

the stationary distribution n, = Pr{Z = u} (v = 0,1, ...)when z = E(X)
< 1 is given by

n(6) = Y w6 = (1—u)(1—0)[P(6)—61" (IBI<1).

Y=l
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For the Markov inputs case with transition probability matrix
P = (p;), where p; =Pr{X,,, =j|X, =1} and P(0) = (p;0'), the
limiting distribution
= limPr{Z, = u, X, = i}

when y = E(X) <1 is given by (see [5])

= Sn0t = A—w—0p PO 01,

u=1

where m, = (%ygy Ty1y +++y Tun) ADA Py = (Pooy Pors +++» Pon)-
Let us now consider the time-dependent probabilities; first the

probability of the time to the first emptiness of the dam.
For independent inputs, defining 7', as the time of the first emptiness
of the dam with initial contents , i.e., T, = min{n | Z, =0, Z, = u},
and letting
gin|w)=Pr{T, =n} and @(s|u)= Dgn|w)s",

n=u

it is known that
G(s|u) =G"(s 1) = §s),

where £(s) is the unique solution of s = P(s) with the properties 0 << &(s)
<1 for 0 <8< 1. For the Markov inputs case, defining T;(u) as the
time to the first emptiness with initial contents Z, = « and initial input
X_, =1, and letting

g(nlu,d) =Pr{T,(v) =n} (n=>u)
and

G(s|u,1) Zg'nluz

it is known (see [1] and [2]) that

G(s|u,9) =@(s]|1,0)G(s|1,0*" (1<i<N),
(2)

G(s|u,0) =G(s|1,0)"

Explicit expressions for the stationary distribution and the prob-
abilities of the time to the first emptiness have been obtained for the cases

(i) N =3 (see [4] and [6]),

(i) N < oo but P such that

sz,s’ = B(s) A'(s)

(see [8]).
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Our interest here is in the derivation of the time-dependent prob-
abilities
(3) Plv,jlu,t,n] =Pr{Z, =9, X, , =§lZ, =u,X_; =1}.
It is known that for the independent inputs case, letting
P™ =Pr{Z, =v|Z, = u}

and
D0, |w) = D PR (01<1, s <1),
we have
— - -1 {pu (1 - 0) £u+l (8)
(4) ®(0,s | u) = [0—3sP(6)] (a 1 T— 0] )

This is not a terribly convenient form for a numerical evaluation of
the probabilities P{™). However, either by expanding the right-hand side
of (4) in powers of sP(0)/60 or by using combinatorial methods (see [7])
we can obtain

n—u

(5) PI‘{Zn <v|Z, = u} = Pgan-l)-v-—u—.po 2 P%—m)pgnm-l:}l)’
m=2

where {p{™} is the n-th convolution of {p;} and P{® = 3 p{™. The above
i<
expression involves P for which an explicit expression can be obtained as

n+1 j
P = (po)~" 2 T P

J=u+l

An analogue of (4) for the case of Markov inputs does exist [1];
however, it is extremely complicated, and hence a numerical evaluation
of the probabilities in (3) is very difficult.

In this paper we give an explicit expression of the form (5) suitable
for a numerical evaluation, in those cases where G;(s) = G(s|1,1)
(¢ =0,1,..., N) are determinable, e.g., for the cases mentioned above.
The method uses combinatorial arguments similar to those used in de-
riving (5).

2. A preliminary lemma. Let §, =0, 8§, =X, +X,+ ... +X,_,
(n >1). Then for 4 >1 we have

gn |u, ) = Pr{T;(u) =n}
=Pr{u+8,—m =0, u4+8,—r>0,r=1,2,...,n—1 | X_, =1}.
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LEMMA. For > 1 we have

6) Pr{u4+8,—r>0(r=12,...,n-1), u+8,—n =9,

X, =k | X_y =} =Wy u(i, k)— Zg (n—m | w, §)hEM (0, k),
m=
where

(i, k) =Pr{S, =j, X, =k|X_; =1}.
Proof. We have
Ky (i, k) =Pr{S, =n+v—u,X, , =k|X_, =14}
=Pr{T;(uw)=n, v+8,—n =9, X,_;, = le_l =i} +
+Pr{T y<mn, u+8,—n =9, X, , =k|X_, =1}.

The first term on the right-hand side of the last expression is the
required probability. The second term can be written as

n—1

D Pr{T,(u) = m}Pr{u+8,—n =v, X, , =k |T;(u) =m, X, =1},
m=1

and since T';(#) = m implies X,,_, = 0, this reduces to
n—1

D) gim [u, DRG0, k) = D) g(n—m | u, i) (0, k),

m=1

thus completing the proof.

3. Derivation of time-dependent probabilities. Equation (1) can be
written as

Z, =max{0,Z,_,+X,_,—1}.
If Z, = u, we obtain
Z, =max{8,—-8,_,—r (r =0,1,...,n-1), u+8,—n}.
Hence
(1) Pr{Z,<v, X,_,=k|Z,=u,X_, =1}
=Pr{8,—8,_, —r<v (r=0,1,...,2-1), u+8,—n <,
X, .=k|X_, ZPr{S -8, _,—r<o(r=0,1,..., n—1),

J=u+l

Bp—n =v—j+1, X,y =k| X =i} = 3 Pr{S, ,—(n—r)

j=u+1
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> —j+1 (r=0,1,...,2—-1), 8, —n = v—j+1,

Xpr=Fk|X_, =7’} = Z Pr{.7+S +—(m—7)>0

j=u+1
(r=0,1,...,n-1), j+8,—n =0+1, X, , =k | X_, =1}
Y Pr{j+8,—r>0 (r =1,2,...,n), j+8,—n

j=u+1

=041, X, = k| X_,=1},
which, by (6), reduces to

n—j

(8) 3 [Werrnsy 1) 2 9 —m 15, )0 (0, )]

j=u+1l

7
Putting now H™(i, k) = > h{" (i, k), we reduce (8) to

1=0

n—-u—1

n—m
(9) H o 2 B o105 ) D gln—m |3, ).
j=u+1
This form is the Markov analogue of (5) and the g(» | j, {) may be
obtained from (2) when G;(s) (¢ = 0,1, ..., N) are known. Alternatively,
we can express the last summation in (9) in terms of the probabilities.

of emptiness not necessarily for the first time as in (5). We have
gn+11j,49) =Pr{j+8,—r>0 (r=1,2,...,m),
J+8pp—m+l) =0 X_; =i} =Pr{j+8,—r>0 (r yeeny B—1),

(
J+8,—n =1?.7+Sn+1 (n+1) —OIX = i}.

Since j4+8,—n =1 and j48,—r>0 (r =1,2,...,2—1) implies
X,_, =0 or 1, the above cxpression reduces to

PooPr{j+8,—r>0 (r=1,2,...,n-1), j+8,—n =1,
X, 1=0|X_, =3}+p,Pr{j+8,—r>0 (r =1,2,...,n-1),
j+8,—n =1, X, , =1|X_, =i}.
Using (7) for v = 0 and k¥ = 0,1, we therefore obtain

1 (o]
D pPr{Z, =0, X, , =112, =u, X_, =i} = Y g(n+11j,1)
1=0 j=u+1

32
:

= gn+1lin4l—r,d).

0

<
[
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Substituting this in (9) we finally obtain

PI‘{Zn<'U, Xn—l = k IZO =u, X—-l ='i}

n—u 1
= HDy ol B)— D { D' 2o P[0, 11wy i, n—m]} X KD (0, ).
m=2 l=0

The quantities P[0,1| u,%, » —m] for I = 0,1 can be obtained from
their generating functions. It is known (see, e.g., [1]) that
$71 (1 —8pyy) Gy (8) G4 (3)
{Poo 8 (D10P01 — PooP11)} {1 — G (8)}

P(0,0]s) = 219[0,0 lu,i,n]s" =
n

and

' P(0,0
P(O’lls)=ZP[0,1|u,i,n]s"=p°ls (0,01s)
n 1-—81)11

and these can be determined for the cases of Markov inputs mentioned
above.

The derivation of h{™(i, k) is facilitated by the following matrix
operation due to Conover [3].

Consider the [(p+41)x(g¢+1)]-matrix A = (a;) and the [(g+1) X
X (r41)]-matrix B = (b;) (0<i<p, 0<j<¢q 0<k<r). Ordinary
matrix multiplication of 4 by B results in the [(p+1) X (r+1)]-matrix
C = (c;), say. The operation A*B (A shift-multiplied by B) results in
the [(p+1+7) X (r+1)]-matrix D = (d;;), where

fei;; HO0<i—j<p+1,

A = |0 otherwise.

For example, if

then

2 @404 2 Q4o Do
2 Q30 bgo 2 1,04 ’

0 E a’Za bal *
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i.e. the matrix AB with its ¢-th column shifted downwards ¢ places and
the empty positions replaced by zeros.

Let 6™ = Pr{S,, =4} and let 4, = (6", j =0,1,...,mN) be
the [(mN +1)x1]-vector defining the probability distribution of &§,,.
Then 4, represents the distribution of X,, namely (D, Disy«--y Pin)"-

Denoting the (N -+1) x (N +1) identity matrix by I, and putting
Q, =d47+xI, Q,=0, *P (t=1,2,..),

it is easy to prove by induction that the element in the (j+41)-st row
and (k-+1)-st column of Q, is equal to Pr{S, =j, X,_, =k | X_, =4},
ie. W™ (¢, k).
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R. M. PHATARFOD (Clayton, Victotia)

0 NIESKONCZONYCH TAMACH
Z WEJSCIEM ZALEZNYM W SP0SOB MARKO WO WSKI

STRESZCZENIE

Znane wyrazenie na zaleine od czasu prawdopodobienstwa zawartosdei nie-
skoficzonej tamy przy danych warunkach poczatkowych ma postaé skomplikewanej
podwéjnej funkeji generujacej. Tym samym numeryczne obliczenie tych prawdopo-
dobienistw jest niezmiernie trudne. W pracy podano, przy uzyciu metod kombinato-
rycznych, jawne wzory na te prawdopodobienstwa i pokazano, jak pewien operator
macierzowy ulatwia ich numeryczne wyznaczenie.



