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Psendo-Markov transformations

by Haruo Totok1 (Kyoto, Japan)

Abstract. Pseudo-Markov transformations on intervals are defined, cxtending Lhe notion of
pseudo-r-adic transformations introduced by Lasota [7]. Ergodic Markov invariant measures for
such a transformation are shown to exist. A sufficient condition for the transformation to be
mixing and hence exact under the Markov invariant measure is given. Conlinuous maps of
intervals with arbits of odd period > 3 are known to be pseudo-Markov and to satisly the
above condition.

1. Introduction. Recently many authors are interested in continuous
maps with orbits of period three. For instance the map

f(x) = rx(l-x),

which is originated in a biological problem of the population growth of a
single species (cf. [6]), has an orbit of period three if 3.83 < r < 4. Li and
Yorke [9] proved that period three implies chaos. This suggests to us the
existence of a continuous invariant measure. Indeed, Lasota [7] showed that
any continuous map with an orbit of period three possesses a continuous
ergodic invariant measure.

In this note we are concerned with a class of piecewise continuous maps,
namely the pseudo-Markov transformations, of intervals including the maps
mentioned above. We will show the existence of an ergodic Markov invariant
measure for a pseudo-Markov transformation. For a continuous map t with
an orbit of period three, this Markov measure m turns out to be mixing and
so (r, m) is exact in the sense of Rohlin [11].

On the other hand, expanding piecewise C? maps of intervals were
studied by several authors. Lasota and Yorke [8] showed that such a map g
possesses an absolutely continuous (with respect to Lebesgue measure)
ergodic invariant measure m. Bowen [2] proved the weak Bernoulliness of
(g, m) under suitable conditions. In this case the natural extension of (g, m) is
Bernoulli, In our case it seems that one can not expect in general the
existence of an invariant measure with such strong properties as absolute
continuity and Bernoulliness, because of the generality of our setting.

The main part of this note is Section 3, where we prove the existence of
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Markov invariant measures for pseudo-Markov transformations. The method
is an imitation of Lasota’s one ([7]). We construct a Borel injection from a
Markov subshift to the considered transformation on an interval. Then the
image measure of a Markov invariant measure of the subshift is invariant
under the transformation. In Section 2 we give the definition of pseudo-
Markov transformations and we explain some known things about Markov
subshifts. In Section 4 we consider a simple example, in which the Markov
invariant measure equivalent to Lebesgue measure does not attain the
maximum of the metrical entropies. Thus this invariant measure is not the
most random one in a sense among invariant measures.

I would like to thank Professor M. Yamaguti who attracted my
attention to this interesting subject.

2. Pseudo-Markov transformations. Let I be an interval (bounded or
not) of the real line. A Borel map t: I — I is called a pseudo-Markov trans-
Jormation if there are disjoint bounded non-empty open intervals
Iy, I;,...,I; = I, d 2 2, with the following two properties:

(1) Define

R if =(I) = I,
My = 0, otherwise,

then the matrix M = (my)), <; ;<4 15 irreducible, i.e. for any i and j there are
ip =& iy, ..., 4, = jsuch that m _, =1 for all 1 < k < n, and (i) if m,
= 1, then there is a non-empty open interval I;; c I, such that t(I;) = I
and 7|, extends to a continuous function 7;; on the closure I,; of I;;. The

matrix M is called a structure matrix of .

The pseudo-d-adic transformations in the sense of Lasota [7] is pseudo-
Markov, in which m; =1 for all 1 < i, j € d. A continuous map of an
interval with an orbit of period three is also pseudo-Markov. Indeed, if a
=1*(a) <1(a) <7*(a) is an orbit, then putting I, =(a, t(a)) and I,
= (r(a), t*(a)) we obtain the pseudo-Markov property with

01
) M=(1 1).

If a =1%(a)>1(a) >7*(a), then putting I, = (x(a),a) and I,
= (t%(a), 7(a)) we have the same M.

Now let M be a dxd structure matrix and N the set of all nat-
ural numbers. Define Q = {0 = (w;, w,,..); my, =1 for all n

natl

21} < !1,2,...,d". Endowed with the product of discrete topology,
(1,2,...,d}" is a compact metrizable space and @ is its closed subset. Let T
be the shift of Q defined by (Tw), = w,,,, n > 1. The pair (2, T) is called a
Markov subshift. Let P = (p;) be a dxd non-negative matrix such that
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(i) Y py=1for all i and (ii) P is consistent with M, ie. p;> 0 iff my; = 1.
]

Because of the irreducibility of P and the above property (i), Perron—
Frobenius Theorem (cf. [3]) implies the existence of a positive row vector =

= (my, Mg, ..., ) (i€ m > 0 for all i) such that Y n, =1 and ) = py,
i i

= x; for all j. Then there exists a T-invariant ergodic probability measure u
such that

f . _ — 7 1) —
y(leQ, Wi = gy ooy Wipyy = ’n)) - niopioil - b

n~1in

for all ig,...,0i,e{l,...,d},n>.0 and k > 1. This u is called a Markov
measure, P a transition matrix and n the stationary measure for P.

There is a special T-invariant Markov measure as follows. By Perron—
Frobenius Theorem, there are positive right (column) eigenvector (¢,, ..., ;)
and positive left (row) eigenvector (#,, ..., n,) associated with the largest
eigenvalue 4 > | of M. Then a Markov measure py, is defined by

px]=m;j~qi’ lsls."{ds
<
and
n'__:éir’i, 1<i<d
kaﬂk

It is proved by Parry [10] that
h(T, po) = logd > h(T, p)

for any T-invariant probability measure u # ugo, where h(7, u) denotes the
metrical entropy of T with respect to u.

Throughout the sequel we mean by measure a Borel - probability
measure.

3. Invariant measures. Let t be a pseudo-Markov transformation on an
interval I with sub-intervals I, ..., I, and the structure matrix M = (m;)). In
order to prove the existence of an invariant measure of 7, we will construct
a Borel injection from the Markov subshift defined by M to I.

First we will define inductively open intervals I; ; = (g ., bi,...) OT
O, 1<i,<d 1<k <n n21, with the following properties:

(2) T(]i,...i,,) =1
(3) Ii,...i,, < I

4 L., =0 iff m, =0 forsomel <ks<n—l,

[P

il"'fn-l’



152 Haruo Totoki

and hence

(5) L a0l = O i (i i) #F U )

(6) L ., < I m'5_1(11'1...1,.)-

Putting I;; = @ if my = 0, we have intervals {I;}, {I;} satisfying (2)—(6).
Suppose that intervals {I; ;| are already defined up to n. Put I; ; =

if my;, = 0 for some { < k<n If m,m ,,=1forall 1l <k<n we
dCﬁne E‘]-.-I,H.l = lXEIll l’ tillz(x) lz l+1} and El] i = 1xEII1 i’
T, (X) = by, }- Since I # O, L, .. #Oand1 1,1 IR
we have E! ;é (Z) and E # (). Hence there exists an open interval

iyedns g

Liipe, = @y bisin,y) ;é d)satxsfymg properties (2), (3) and so (5), (6) (cf.

(7D
Now let (2, T) be a Markov subshift defined by M (cf. Section 2). Put

@) = N lo.0 1 for ®eQ and Q, = {weQ; ¢(w) is a singleton}.
n=1

Then it is not hard to see that Q\Q, is countable (cf. [7]) and ¢ (w) N ¢ (w)
=0 if w # w'. We have

(7) TQ, = Q,,

(8) o(T(w) = t(p(w) for weL,.

Indeed for weQ,, ¢(T(w) = ﬂ Iy, .o, = ﬂ (ly,..0) 2 TN, )

= t(p(w)). If xep(T(w)) there is x, eI o, such that 7(x,) = x for all n
> 1. By the definition x, converges to (p(w) Thus we have x = 1(¢(w))
hence ¢ (T (w)) = t({p(w ) and T(w)eQ,.

Since ¢: Q, — I is a limit of Borel maps ¢,(w) = infl,, . ¢ is itself a
Borel injection which satisfies (8). Therefore for any Tinvariant continuous
measure u on £2, the image measure m = po @~ ' is a r-invariant continuous
measure on I. If p is an ergodic T-invariant Markov measure, then m is an
ergodic t-invariant Markov measure, under which (I, N @(Qy), ...
I (820)) is a Markov generator for 1.

Thus appealing the argument in Section 2, we have

THEOREM. For any pseudo-Markouv transformation t with a structure
matrix M, there exists an ergodic Markov invariant measure m such that
h(z, m) = log4, where A = 1 is the largest eigenvalue of M.

CoroLLARY 1. If there exists n > 1 such that M" = (m{]) > 0 (ie
m > 0 for all i and j) for the structure marrix M of a pseudo-Markov
transformation t, then for any eryodic t-invariant Markov measure m, the
dynamical system (t, m) is exact in the sense of Rohlin [11].

Indeed, letting m = po@~' we are enough to show that (T, p) is exact.
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In this case (T, u) is mixing (cf. [1]) and hence exact (in fact its natural
extension is Bernoulli, cf. [5)).

Since the structure matrix (1) satisfies the condition of Corollary 1, we
have

CoroLLARY 2. For any continuous map t of an interval with an orbit of
period three, there exists an ergodic Markov invariant measure m such that
(r, m) is exact and h(z, m) = log {(1+\/§)/2}, where (1 +\/§)/2 is the largest
eigenvalue of the matrix (1) in Section 2.

Since the topological entropy of a continuous map of a compact metric
space bounds its metrical entropy for any invariant measure (cf. [4]), we have

CoroLLARY 3. For any continuous map of a compact interval with an orbit
of period three, its topological entropy is not less than log {(1+\/§)/2}.

4. Examples. In this section we continue to use the same notation as in
the preceding sections. The simplest example of a continuous map with an
orbit of period three is as follows.

Let I = [0, 1] and

1—
_'q_q'x'i"q, 0 S b Y S q:l

1(x) = i

—(1~-x), g x<1,
1-gq

where 0 < g < 1. For any 0 < p < 1, the matrix

p (01
P \p1-p

is a transition matrix consistent with the structure matrix of = which is given
by (1) in Section 2. Its stationary measure is n, = (p/(1+p), 11+ p)). In this
case I\ @(£,) is countable where the Borel injection ¢ is defined in Section 3.
Let p, be the Markov measure defined by P, and n, on the space Q of
the Markov subshift, and m, = p,0¢~ ' on 1. Then Birkoff ergodic theorem
implies that m, and m, are mutually singular if p # p". Thus we have

h(z, m) < h(z, m,) = log{(1+/5)/2}

for any p # p,, where py, = ((l-i-\/g)/Z)'2 = (3—\/3)/2. It is. easy to see
that m, is the unique ergodic t-invariant measure equivalent to Lebesgue
measure. Therefore except the case g = p,, the ergodic t-invariant measure
equivalent to Lebesgue measure does not attain the maximum of the metrical
entropies.

Let us now consider a continuous map t of an intetval with an orbit of
period d > 3. In general 7 is not pseudo-Markov because of the lack of
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irreducibility of the structure matrix. But if 7 has an orbit of odd period, then
it is shown to be pseudo-Markov as follows.

Assume that the continuous map t has an orbit w of odd period d
=2k+13>5 and it has no orbit of odd period d’, 3 < d <d. Stefan [12]
investigated such a map. It is proved that numbering @ = {a; < a, < ...
<a,l (or  ={a, >a;> ... >a,}) we have

Qap+3-i 2
2 <

<
Asps2-1n k+ | <

k+1,
i 2

1(ay) = 4y, (@) = { ka1,
Define 2k intervals Iyi_; = (@1 Gsivth T2 = @ermipez-ih 1| S P <k
Then we obtain the 2k x 2k structure matrix

00 ... 00
0
0
M =
0 0 0 0
[ 1 L 1 0]

with the characteristic polynomial f (i) = (A4—22"2—1)(A+1)"'. It is seen
that the largest eigenvalue 2 of M is bigger than /2 (c[. [12]). It is also
easily seen that M* > 0. Thus we obtain an ergodic t-invariant Markov
measure m such that (r, m) is exact and h(r, m) = logl > (log2)2.
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