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OPTIMUM CHECKING OF REPLACEABLE SYSTEMS
UNDER RESTRICTIONS OF THE LOSS COST PER UNIT TIME

1. Introduction. In this paper we consider a model whose principles
have been already described in [1], [2], [4], [5]: At time ¢ = 0 a system
Starts working. The time to its failure (lifetime) is a random variable X
Wwith the cumulative distribution function (cdf) F(t), F(+0) = 0. System
failures are known only by inspection. Each inspection entails a fixed
cost ¢;, 0 < ¢, < oo, but takes only mnegligible time. On the other hand,
a8 downtime ¢ of the system (i.e., time between system failure and the
Starting point of the new system) gives rise to cost ¢,t, 0 < ¢, < 0.
After detection of a failure the system is immediately replaced by a new
one with the same cdf of lifetime as the former one. The average re-
Placement cost is denoted by ¢, (¢; < ¢; < o) and the average replacement
time by d (0 < d < o). The time between two neighbouring replacements
is called a cycle.

- Let 8 = {t,} be an inspection strategy, i.e., an unbounded increasing
Sequence of nmumbers such that 0 ={,<?, < ... (at time {, the Z%-th
inspection takes place if no failure has been detected before) and let
o be the set of all inspection strategies. Using 8 = {t;}, the expected
length I(8) of a cycle is given by

o lk+1 oo
L) = p+ D [ e —0dFPW)+d = Dt (F(tp) —F (1) +4,
k=0 # k=0

Where ; = E(X) < oo. Consequently, the long-run availability A(8) of
the system is

A8) = — I .
2 798} (F(tk.;.l) '—.F(tk)) +d

k=0

An availability of the system arbitrarily close to its supremum
#/(u+d) can be secured by using strategies S = {t,} such that supd,
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(8 = ti 41 —1;) is sufficiently small. But in this case the expected (total)
loss cost K (S) per unit time would tend to infinity. Then we have

_ C(8)
E(8) =T 5
where
oo tk+l
08) = Y [ [(k+1)e,+ sty —1)]AF (1) + 2d+ e,
k=0 ¢

is the mean total loss cost per cycle. Hence in this paper we consider
the problem of achieving the maximum availability under a restriction
of the expected loss cost per unit time by application of a proper inspec-
tion strategy. We obtain results in the cases of full and partial informa-
tion on the lifetime distribution of the system.

The problem of maximizing the system availability under restrictions
of the expected total loss cost per cycle has been already considered in [6].
System availability without cost restrictions has been investigated in [8].

Throughout Sections 1-3 we assume

0+ C;
)7

(1) < ¢.

Otherwise, the expected loss per unit time by “ideal inspection and
renewal” (i.e. failure of the system is detected immediately, and replace-
ment occurs in negligible time) would be larger than or equal to the
cost per unit downtime of the system. But then inspection and replaces
ment of the system are uneconomical.

The following lemma (Lagrange multiplier method) will be used in
Section 2.

LeEMMA 1. Let M(S) and N(S) be real-valued functions of 8, 8 € o,
and let D(S,A) = M(S)+ AN(S), where A is a real number. For every
A > 0 there exists a strategy S(A) € o such that

D(8(2), 4 = min D(8, 4).
Sea

If there exists a Age A = {A; 8(A) € oo}, 0o = {8; N(S) = 0}, such

that

D (8(4y), A) = min D(8(2), A,
dea

then
M(S(}.o)) = min M (S).

Sea,
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Proof. If S, satisfies M (8S,) = min M (8), then for any 1e 4 we

have Seag
M(8,) = min D(8, 4) > min min D(S, 1) = min D (8(4), 4)
Seay Aed Seco Aed

= D(8(2,), do) = M(S(lo)) .
Thus 8, = S(4,) and the lemma is proved.

2. Exponentially distributed lifetime. Let () = 1—e™ ! ¢t > 0. From
[5] we know that under this assumption the optimum strategy 8* with
Tespect to K(8) is strictly periodic. (A strategy S = {t,} is called strictly
Deriodic with the inspection interval 6 if 6 =¢t,,.,—t, (k =0,1,...). In
this case we write 8§ = §.) In particular, we have

61+ 60— (cp—0c;) (1 —e™"*)

K(89) = TR Tr——

Hence the inspection interval §* of 8* satisfies

6 d } _ Cq
(u+d)e,—e;

0
1—e-9n {_ +1—
B (6s—(u+ad)e)p

In view of (1) there always exists a solution.
Let K, be a fixed boundary for K (8),

(2) K8 < K, < c,.
Next our aim is to find a strategy S = 8, such that
(3) A(S,) = max A(8)
Seag
With ¢, = {8; K(8) = K,}. We write this problem in the form
(4) L(8) > min, C(8)—K,L(S)=0.

Note that with respect to maximization of A(S8) there arises no
additional profit if ¢, is substituted by {§; K(8) < K,}.
According to Lemma 1 let us introduce

D(8, ) = L(8)+4(C(8) —K, L(8)).

Since the functional structure of D (8, 1) is the same as that of C(S)
We know from [5] (where the problem of minimizing € (8) has been solved)
that for every 4> 0 the strategy S(A) is strictly periodic. Hence the
Strategy S, = 8(4,), which is a solution of (3), is also strictly periodic.
MOI‘eover, the inspection interval 8, of S, must satisfy the equation
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C(8®) —E,L(8®) =0 or

¢, —K, e
e~k 4 2 9 =1+ ! .
py — (6, —Ky)d —cq pey —(0; —Ko)d —ec;

By (2) there exist exaetly two positive solutions. Since
é
L(S(")) = T—W +-d

is inereasing in 6, d, is the smallest one.

3. Known expectation of lifetime. We now consider the case where
the probability distribution of the system lifetime X is unknown but
its mathematical expectation is u = E(X), i.e. we know only that the
cdf of X belongs to the set #, of those c¢df’s F which have the properties

F(+0)=0 and pu= [F@)d, 0<p< .
0

Our aim is to make use of this partial information on the lifetime
distribution with respect to proper scheduling of inspections.

Let us now write more exactly A(S,F), C(8,F), L(S,F), and
K(8, F) instead of A(S), C(8), L(8), and K (8), respectively, and let
us put

A,(8) = inf A(S8,F), C,(8) = supC(8,F),
FeZ, FeF,

L,(8) = sup L(8, F), K,(8) = sup K(8, F).
FeF, FeF,

Let o, be the set of all strictly periodic inspection strategies and let
oy ={S €o,; K,(8) = K,}. The problem considered here consists in find-
ing a strategy 8, e o, such that

(5) A,(8,) = max 4,(8).

Seay
Analogously to (4) we write this problem in the equivalent form
L,(8) -»min, K,(8)—K,=0.
K, is assumed to satisfy
(6) E,(8) < Ky < ¢,

where 8}, is the optimum strategy with respect to K, (S). According to [5],
S, is strictly periodic with the inspection interval

& = Veu/(es—K,(8p)
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where

2”01
ptd

Ho1 . 4%
+2]/”+d{czﬂ 51 03+p+d}]'

+

1
7 ") =
@ K8 =g

[cl+02d+03—

For any F e#, we have

oo (k+1)6
C(8®, F) .__2 f [(E+1)e,+ e, ((k+1) 8 —1)] dF (2) + e, d+ c;
k=0 ké
oo (k+1)8
<Zf [(k4+1)e, -+ ¢, ] (£) + ey d +c5

k=0 Kk

— _061_2 (k) [F (% +1) 8) —F (kd)] + 0(8+ d) + o5

k=0

< Lutod+d)+a+a.

This estimation is sharp. Therefore,

(8) 0, (8) =-%16+02(6+d)+o,+03,
9) L,(8) = pu+6+d.
Evidently, the condition K,(S)—K, = 0 is equivalent to
(10) N,(8) = IEu}) (C(8, F) —K,L(8, F)) = 0.
€u

By (6) the functional structure of C(S, F)—K,L(S, F) is the same
as that of C(8, F). Thus, (8) and (10) imply

— M01/6+(6+d)02+01+03
u+o+d

K”(S“s))
The condition K,(8®”) = K, leads to the quadratic equation

= 0.

5 (u+a)Ky,—c, —c,d —cy 54 ue,
62 —Ko 02 _.Ko

By (6) and (7) there exist exactly two positive solutions. Taking

Into account (9) we infer that the inspection interval 6, of the strategy
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8, = 8, being a solution of problem (5), is the smallest one:

) [(p+d)KEy—e,—cod—e;—

# 7 2(0,—K,)

—V (g +d) Ey— 0, —6,d— 0] —dpo, (6, — )|

(using (7) we easily see from (6) that the radicand is positive).

Example 1. Let p =200, ¢, =10, ¢; =5, ¢; =100, and d = 0.
Fig. 1 shows the availabilities A4 (8,), 4,(8,), and A(S,) (dependent on
K, if F({) =1—e¢ ", t>0. It should be noted that K(S*) = 1.154
and K,(8;) = 1.399.
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Fig. 1. Comparison of availability criterions in case of ¢; > 0 (Example 1)

If the underlying lifetime distribution of the system is of the ex-
ponential type and we do not know this fact, then by application of the
inspection interval 8, we would actually get the system availability 4(S,).
Hence in Fig. 1 this function is also plotted.

4. Expected inspection and replacement cost per unit time. In many
cases (e.g. military defensive weapons) the downtime cost per unit time
is negligible small. However, the system has to be available for certain
emergency situations (see [3], [4]). Then one can solve problems (3)
and (5) in case of ¢, = 0 if conditions (2) and (6), respectively, are re-
placed by

(11) < K, < ¢/d.
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As in Section 2 we conclude that §, is a strictly periodic strategy.
However, 4 is now, without loss of generality, restricted by

(12) 0< A< 1/K,.

Otherwise, the case S(4) would be the trivial strategy “no inspection
and replacement at all”. But a solution S, of problem (3) cannot be of
this type, since the only admissible value of K, were then K, = 0, which
contradicts (11).

The inspection interval J, of S, is the unique solution of the equation

K, ¢
-— 6 - 1 Y

6—5/#_}.

It is easy to see that the corresponding A,-value (S, = S(4,)) sat-
isfies (12).

Let us now consider problem (5) for ¢, = 0. Unfortunately, to com-

pute N,(8“) as defined by (10) we cannot directly use the previous

results for C(8, F) and C(8, F)—K,L(8S, F) which have now different

functional structures. In what follows we assume for obvious reasons
that

(13) 0<¢,/d< K,.

LEMMA 2. We have

N, (89) = pey[0+c;—Ko(p+d) if 0< O p,
“ 6+, —Ky (64 d) if 6> u.
Proof. Within a more general model, Hoeffding [7] has shown
that

(14) sup N (89, F) = sup N(89, F),
Fe#, Fefff)

where #{ is the set of all those elements of #, which have exactly two
points of increase. If F e #{), then there exist two numbers u, and u,,
0< uy< p<< ;< oo, such that
Uy — —
PX=u)=—2"% and PX=—u)=2L""0,
Uy — Uy : Uy —Uo

For fixed 8 = {1}, t, = k6, let ¢, <wy<t,,, and ¢, < u, <1,

+1°
Using these F and 8® we have

(15) O(S(é)’ F) "'KOL(S@)7 F) = Q(uy, uy; b1y bogp1) 1€ —K,(p+d),
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where

Uy —p

1— %o

G(tgy Us5 Lpyprs Goy1) = [(r+1)e, =K,y (21 —up) ]+

B U

1— Y%

+ [(s+1)e; —Ky (8541 —%1)]-

Let the integer m for 8 = 8 be defined by t, < g <in;. To
prove the lemma for the case 0 < é < u, we have to consider two pos-
sibilities:

Lo r<m.

In view of (13), by straightforward estimations, we get

-,i'cli

(16) G (s %15 Y1y Tog1) < Fllpry ogas Brpas bs1) = 3

2.0 r =m.
In this case we have

(17) G (s U5 tppry Bap1) S G(@y 815 Ty Tin)
” -
= (r+1)e;—K, (. —p) < ‘6—01-

Inequality (16) is sharp. Combining (14)-(17) we prove the first
part of the lemma. The second part (6 > u) can be proved analogously.

Lemma 2 yields

0
‘u_Ol_/_—*_-_O_a_ if 0 < 6<‘u’
’ Gt if p< o
o+d p=0
Thus we have
¢ +e,—Kyd ) ¢+
—_—_— f o< K, < -
S — Ko ° .“+d,
7]
UCy if 6 +¢ <K,.
(n+d)Ky—cs pt+a

Example 2. As in Example 1 let 4 = 200, ¢, = 10, ¢; = 100, and
4 = 0. Fig. 2 shows the availabilities 4(S§,), 4,(S,), and A(8S,) dependent
on K, (F(t) =1—e¢ ", t>0). In this case there exist no nontrivial
inspection strategies 8* and S;. Indeed, we have ¢* = §, = oo and
K(8*) =K,(S;) =0.
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Fig. 2. Comparison of availability criterions in case of ¢; = 0 (Example 2)
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F. BEICHELT (Drezno)

OPTYMALNA INSPEKCJA SYSTEMOW Z ODNOWA
PRZY OGRANICZENIACH NALOZONYCH NA KOSZT JEDNOSTKOWY

STRESZCZENIE

W pracy rozpatruje si¢ system o znanym razkladzie czasu zycia. Awarie systemu
mozna stwierdzié tylko przez inspekeje i usunaé przez odnowe systemu. Inspekcja
jest natychmiastowa, ale ma ustalony koszt, mniejszy od kosztu odnowy. Z drugiej
strony, koszt awarii systemu jest proporcjonalny do czasu jej trwania. Podane s3
optymalne strategie inspekcji, pozwalajace osiagnaé maksymalng niezawodnosé sy-
stemu. Wyniki otrzymano dla przypadku pelnej i niepelnej informacji o rozkladzie
czasu Zycia systemu. |



