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Abstract. For piecewisc linear approximation of variational inequalities associated with the
mildly non-linear elliptic boundary value problems having auxiliary constraint conditions, we
prove that the error estimate for u—u, in the W'2-norm is of order h, ie, |lu—uy| = O(h).

In this paper, we derive the finite element error estimates for the
approximate solution of mildly non-linear elliptic boundary value problems
having auxiliary constraint conditions. A much used approach with any
elliptic is to reformulate it in a weak or variational forms. It has been shown
by Noor and Whiteman (7] that in the presence of a constraint, such
approach leads to a variational inequality which is the weak formulation. An
approximate formulation of the variational inequality is then defined, and the
error estimates involving the difference between the solution of the exact and
approximate formulation in the W,'-norm is obtained, which is in fact of
order h. This result is an extension of that obtained by Falk [2] and Mosco
and Strang [4] for the constrained linear problems.

For simplicity, we consider the problem of the following type:

—du(x) = f(x,u), xef2,

(1) u(x) = 0, xe o,

where £ is a simply connected open domain in R” with boundary 02 and its
closure Q = QU Q. It is assumed that the boundary 4Q and f are smooth
enough to ensure the existence and uniqueness of the solution u of (1). We
study this problem in the usual Sobolev space W,!'(2) = H!, the space of
functions which together with their generalized derivatives of order one are
in L,(Q). The subspace of functions from H!, which in a generalized sense
satisfy the homogeneous boundary conditions on 4Q is W3 (Q) = H).

It has been shown by Tonti [9] that in its direct variational formulation,
(1) is equivalent to finding ue H{ such that

I[u] < I[v] for all ve H},



112 M. A. Noor and K. I. Noor

where
' 2 v
(2) I[v] = _[(—f—ti) dQ -2 I j f(x, n)dndQ = a(v, v)—2F(v),
o \(X 20

is the energy functional associated with (1).

We here consider the case, when the solution u of (1) is required to
satisfy the condition u > ¢, where ¥ is a given function on €. In this
situation, our problem is to find

defl
uekK € {v;veH}), v > ¢ on Q},

a closed convex subset of H}, see Mosco [3], such that 4 minimizes I [v] on
K. It has been shown by Noor and Whiteman [7] that the minimum of I [v]
on K can be characterized by a class of variational inequalities

(3) a(u, v—u) = {F'(u), v—u) for all veKk,

where F’(u) is the Fréchet differential of F(u) and is, in fact,

4 (F'(w),v) = [ [w)odQ.
2

The finite dimensional form of (3) is to find u,e K, such that
(5) a(uy, vp—uy) = (F'(u,), v,—u,y for all v,eK,.

Here K, is a finite dimensional convex subset of H} for the construction
of K,, see Mosco [3]. Let Q be the convex polygon. We partition it into
triangles of side less than h. We consider §, = H}, the subspace of con-
tinuous piecewise linear functions on the triangulation of 2, vanishing on its
boundary Q2. Let y, be the interpolant of y such that y, agrees with y at
all the vertices of the triangulation. For our purposes, it is enough to choose
the finite dimensional convex subset K, = §,{v, > ¥, on Q}. For oiher
choices of convex subsets K, see Natterer [5] and Nitsche [6], where they
have choosen K, = Kn§,.

We also want to know the regularity of the solution ue K satisfying (3).
In this case Brezis and Stampacchia [1] have shown that if y lies in both H}
and H? then the solution ue K satisfying (3) also lies in H2. Its norm can be
estimated from the data:

[ulla < el

Moreover, il # is the interpolant of u, which agrees with u at every
vertex of ~, then & lies in K,. It is well known from the approximation
theory, see Strang and Fix [8] that

(6) lu—al| < Chllull,.
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We also note that in certain cases, the equality holds instead of
inequality in (3). This happens, when v, together with 2u—v also lies in K. In
this case, we get

(7 a(u, v—u) = {F'(u), v—u).

Finally let C and C, be the cones composed of non-negative functions
on H} and its subspace S,. Thus it is clear that

U=u—y is in C,
Uh = u,,—l,l/,, is in C],.

From these relations it follows that
(8) u—u,, = U_Uh"'w_lph

DerFINITION. An operator T on Hy is said to be quasi-monotone, if for all
u, v, w, -eHj,

(%) (lu—To,w—=z) = 0.

We also need the following result of Mosco and Strang [4].

THEOREM 1. Suppose that U > 0 in the plane polygon ©Q and rhat U lies
in both HY and H?. Then there exists a V, in S, such rthat

OV, U inQ
arnd
(10) IU=V,l < Ch|U|,.

Now we state and prove the main result.
THEOREM 2. Ler a(u, v) he a continuous coercive bilinear form and F’(u)
be a quasi-monotone operator on Hy. If V,eC, and 2U—V,eC, then °
”u-uh“ = O(h),

where u and u, are the solutions of (3) and (5) respectively.

Prool. Since both v = Y+ V¥, and 2u—v = Y+ (2U - V,) are in K, we
have from (3) and (7) that

(11) a(u, V,—U) = (F'(u), V,—U).
Letting v, = ¢, +V, and u, = y,+U, in (5), we have
(12) a(llh, l/h_tjh) Z <F’(uh)a I/h—Uh>a

and taking v = Y+ U, in (3), we get

(13) a(u, U,—U) = (F'(u), U,—U>.



114 M. A. Noor and K. I. Noor

From (11) and (13), we obtain
(14) a(u, Uy—W) 2 (F'(w), Uy— V.
and from (12) and (14), we get
a(u—uy, Uy~V) 2 (F'(u)—F'(uy), Up—Vo>.
Thus using the quasi-monotonicity of F'(u), we have
a(u—uy, Uy—Vy) 2 0,
which can be written as
(15) a(u—u,, U-U,) < a(u—u,, U-V,).

Now by the, coercivity of a(u, v), it follows that there exists a constant
o > 0 such that

ellu~wll* < a(u—uy, u—u,)
= a(u—u,, Y —y)+au—u, U-U,) from (8)
< alu—up, Y-y — +au—u, U-V)
< pllu—ull {lly =y ll + 11U = Vill},

where u is a continuity constant of the bilinear form a(u, v).
Hence it follows that

le—ul < £l — vl +1U~ V)

<

nIT

eh{IWll+1IU1l,}, by (6) and (10)

from which the required estimate follows.

Remark. The problem of deriving the L*-norm for the mildly non-
linear problems having constraint conditions is still open.
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