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1. Introduction. Let %" be the r-dimensional unit ecube 0 <z <1,
0w, <1,...,0<e, <1. The elements of the oc-algebra generated
by the open sets in 47 are called the Borel sets in %", Let x be & nonnegative
normed Borel meagure in %", that is, a nonnegative measure u defined
on the clags of Borel sets with u{#") = 1. A set B< %" will be ealled
a box if it is a Cartesian produet I, x I, ... x I, ofintervals I, Is, ...

., I,. By definition the sides of B are parallel to the coordinate axes.

Lt &, ®,, ... be an infinite sequenee of points in #7. Given a box B,
write Z{n,B) = Z(n, B; ®,, %, ...} for the number of i,i<i<n
for which @, € B. The sequende &, &,, ... is ealled p-uniformly distributed
if for every box B we have the asymptotie relation Z(n, B)/n—u(B).

Now we introduce a quantity that measures the deviation of the
digtribution of w,, &, ... from the measure p.

Set

D(g, n, B) = Z(n, B)—n-a(B)},
and
A(p, n) = Sng(Mr, #, B),

where the supremum is taken over all the boxes in %7. Here Afp, »}
= A (,u, 7 a:l, %,, ...) is called the p-discrepancy function of the sequence
XoyyLgy-ve

We are interested in sequences which are very well g-uniformly
distributed, i.e., which have A(u,n) < f{n) where f(n}/n tends to zero
very rapidly.

I p coincides with the r-dimensicnal normed Lebesgue measure
2., the problem ahove is classical. Tet py, Po, .., P, be the fivgt » primes.
Write # in the scale of p;,

£ .
n= )Y ag(py, where 0<a;<p;

j=b
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Then we seb
H
e =1 _
21'm‘ = 2 afj(pf) i &nd mﬂ, - (mm; mﬂﬂ! bR § mnr)'
i=u

The sequence @, &,, ... 80 constructed is called van der Corput-—Ham-
mersley-Halton sequence (C-H-H sequence). It is known (J. Halton [4],
see also W, M. Schmidt [87) :

THEOREM A, The C(—H-H seguence has

A%y, ) < (logm)”

where the implicii constant depends only on r.

It is & well-known conjecture that no infinite sequence can have
a J,-diserepaney funetion of smaller order of magnitude than the O-H-H
sequence. For » = 1 this conjecture have bheen proved by W.M. Schmidt
[7]

Our firgt aim is to prove a general resulis

THEOREM 1. Givenn any nonnegative novmed Rorel measure y 10 %"
one oan find an infinite sequence @y, ®y,... in U hfwmg

Ap, ) < (logn)r+*

where the implicit constant is independent of n and p.

The proof will be based on the following “integer—making-” lerama.
{see Beck-Fiala [37]).

Lewwa 1. Let the real numbers ay, ..., o, be given and a family F of
subsets of the indexr set {1,2,...,sh Assume that each ze{l 2,00y 8}
belongs 1o at most ¢ elements of F. Then there exist integers a,, ..., a, 50 ﬁmt

o —a;] <1 and _
S S

el el

<t—1 for all Ec#F

Secondly we shall investigate the p-diserepancy of finite sequences
with respect to tilted boxes and bally, Let ®,,..., xy be N points in 9.
Given a measurable gubset A of Fuclidean r- space R, write Z(4) =

Z(4; @1, ..., xy) for the number of points By, @y in A, Seb

Dip, A) = Dlps A5 @y, .oy y) = |Z{A) =N pld o).

The following beautiful results are due to W. M. Schmidt [6].
TaEOREM B. Let N points in %" be given and let 0 < ¢, § < 1.

(i) Detr =2 and N&* > &, Then there exists a tilted reclangle B with
diameter <6 and with D(i., ) » (Na yHa—e,
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(i) Suppose N&" > . ,Then there exists o ball B with diameter < &
1

and with DA, B) & (1\76’)2 7 The implicit constants depend only on
7 and s

Note that the tilted rectangle and the ball in Theorem B are not
necessarily contained in the unit ¢ube, but should be interpreted as subsets
of the torus.

We say that T is a tilted box if it can be obtained from a box parallel
to the ceordinate axes by an orthogonal transformation. The theorem
below shows that the exponents in Theorem B are the hest possible.

THEOREM 2. Let p be a nonnegative normed- Borel measure in %" such
that p is totolly continwous with respect to 4, (i.e. p(4) # 0 implies 1,.(4) # 0)

1
and the Radon—-Nikodym derivative df satisfies the inegqualify §Ta
r
)
= d;‘ (@) < M for almost all & € 4",
.Then

(1) there exists an N-element set in %" such thal, for every tilied box
Tc R,

I 1
Diu, Ty < (N6 T (log )™,

where 0 denotes the diameter of T;
(ii} there exists an N-element set in %" such that, for every ball B <« R,

1

N 1
D{u, B) € (N&) *(logNy*”,

where & denotes the diameier of B. The implieil constants in <€ depend only
on v and M.

A particular ease ¢f Theorem 2 wag treated in [2]. Though the proof
of Theorem 2 goes on the same line ag that of this partieular case, for
the sake of completeness we include here the simple proof. Almost certainty
the theorem remains true without any additional condition on p, but in
the general ease our method does not work. In the proof we shall apply
probabilistic arguments, namely the so-called Bernstein~Chernoff ine-
quality of large deviation type.

Finally we mention a result on irregularities of integer sequences
with respect to arithmetic progressions. Our starting points is the following
remarkable theorem of K. F. Roth [5].

First some notation. Let

APG, ¢, m)={I<<agm: o = li,'(mod 0},
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that is, AP(h,q, m) dcnotes the intersection of the comgruence class
B (mod g) with the interval [1, m’. Denote by |8] the cardinality of the
set 8. Given § < [1, N} and positive integers &, g and m, let D%, g, m; §)
denote the “discrepancy?” of § with respect to AP (k, g, m), L.e,

|
Db, g,m; 8) = i ISAAP (L, ¢, m)!w— i—] iAP(h, g, m)[]

TrroreM C (K. F. Roth). Let N be any natural number, 8 a subsef
of [1,N]. Set

. .
Vig, m; 8) = ZDE(h,g, m; S).

h=1

Then for any positive integer Q,

@ ﬁ Q ]S -
2-{1_12 Vig, m; S)‘}“QZ_V(Q,I\T; 8) & >--—( i )Qzl\;—’
= m=1 7=1 ;

awhere the dmplicit constant is absolute.

Perhaps the most interesting consequence of Theoren: C is as follows:
Coloring the integers fromy 1 to N red and blue in any fashion, there
always exists an arithmetic progression such that the difference of the
numbers of red and blue terms in it has absolute value » N Here the
exponent 1/4 of N iz begh possible, see [1].

Let § = 1, N] and introduee

A(8) = maL_D(h,g,m 8)

where the maxinmum is taken over all positive triplets , g, m for which
APk, g, m) € [1, ¥)]. Further interesting consequence of Theorem O can
be obtained by choosing min {[8], ¥ — |8]}/¥**—oc. In this case Theorem O
yields 4(8)->do, Now we shall pregent a result in the other direction.

THEOREM 3. Given ¢ > 0 and a natural ﬂumbe; N, there exists S <= 11, ¥]
such thot

min{l8], N —[8]} > JogN)'™° and 4(8) €1

whera the implicit constant depends only on e.

Similarly as in the proof of Theorem 2 here we shall alsc use proba-
bilistic arguments. There iz & huge gap between the upper and lower
bounds. It would be worth improving both of them,

2. Proof of Theorem 1. Thronghout this section the implieit constants
in € depend only on the dimensgion. In the first step we shall reduee
Theorem 1 to the following assertion concerning finite sequences.

icm
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Prorosrrrox 1. Given any positive integer N ond an arbifrary non-
negative normed Borvel weasure » in %%, ihere exists an N-element set in
%" such that, for every box B < %% D(»v, B) < (log¥N)™.

The reduction goes asg follows. Let d =r-+1 and » = px 2, where
4 = 2, denotes the one-dimensional normed Lebesgue measure in [0, 1].
Furthermore, let N = N; = 92t F_odt . Proposition 1 yields the existence
of an N-element set 8; = %% such thas, for every box B = %%,

(1) D(r, B) = D(r, B; 8,) < (log¥,)*% < 24,
Rearrange the elements of 8, in increasing order by their last eoordinates,
8; = {yiﬂsl --(li}r .- m}a
where
u =@, 0wl s <afli<. <ol

Rimple approximation procedure shows that we can assume y{ < g <.

< yﬁ@ Now here ig the definition of the desu'ec’i very well ,u-umformlv
distlibuted Sequence &y, Xy, ... i ¥ If 5 = of 15 with 1< j< 2
— 9% let
?

— (J;ll), y;‘;.), nvey y};‘f)i'—l)) © _,?[ﬁz—i — W,

that is, @, can be obtained from y(" by omitting its last coordinabe. X ow
letB <= 52!” be any -dimensional box and let n = 2% +j with1 < j < 2 st
—2® — N,. We have

(2)  Dp, 0y By 201, ®,...) = [Z{n, B; By, @4, ...) =0 p(B)]
1

=| S ZBx[0,1); S ~Nyv(Bx[0, 1)+

+Z(B X0, 31; §)—n—2")u(B)]

< Pl B0, 1); S:)ﬂZ(BX{O:Jfa’.%-, B = Nyo(B [0,y +

+ T2 (B0, 49T — n—2") u(B)1.
By definition,
(3) 1Z(Bx[0,¥0]; S)—
On the other hand,
(1) ¥ o(B %[0, g0 —(n—2%) u(B)]

= u(B) N yB—il < N 4B -7

= N {27 x [0, y8) —Z (%" = [0, y§3l; &)
= Dy, %" %[0, y9]; 8).

Nyw(Bx [0, 730} = D(», Bx [0, 9{01; 8.
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Thus, by (1), (2), (3) and (4)
Dip,n, B; @, %3y ...)

i1
<> D(x, Bx[0,1); 8)+D(v, Bx[0,5]; 8
=0
i-1
< Z 2"1&+22:d+ o2id <2 o2id (logn)ﬂd

i=0

+D(ﬂ’ U %[0, 21&%]: h

= (IOg”)2r+2 E]

which completes the deduction of Theorem 1 from Proposition 1.
- To verify Propoesition 1 we obgerve that » can be approximated by
digcrete measures. Hence Proposition 1 is essentially equivalent with

Prorosrrion 2. Given ony (not necessarily distinet) K -poinis z,, ...

2z in U% and o natural number N < VE there ewists an N-olement
subset {915 ey Ynt Of {24, ov.y 25} Such that for every boz B = %%,

333

y;cB

< (log )™,

For convenience in the proof of Proposition 2 we shall restrict ourselves
to the case d = 2, Rearrange the points 2,,..., 2z € %® in two ways as

follows:
2o ge) = {2], ..., 8%} = {2;17 vy Bt
where
r F R ! .l !
2= (2, %), < <. K2

and

1 r rr 17 rr
2y =¥y %m); <% ... <.

i X N. Set

K
Let %; -«-]_1 ?J (integral part), 0<

Fz“"‘"{z;: kg <ji<h}, Gi={z:;":]1~—1<9 AN

i . '
Hy=Fo6 ad fy=-—"— M1, 1<i,j<¥.
T sy
Clearly, 0 < f;; < 1. In order to complete the proof of Proposition 2 we

need the following purely combinatorial statement,

PrOPOSITION 3. Let be given an N by N matriz [a;] with 0 < ay <1.
Then there existe an N by N 01 matrio [a] so that a; = 0 whmefuer ay = O

fZZ 4 “ffl

{=1 §==1 -

(logNy*  for all 1< r,s< N.
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By Proposition 3 there exists an N by N Ol-matrix [b;] so thatb

M .

3 .
E(Z’”_ﬁﬁ)l < {logN)* forall 1<r, sV,

=

We can assume by = 0 if §; = 0. Now select from each Hy; a point y;
arbitrarily whenever ?; =1, and set ¥ = {yy: by =1}. Let B,,

T 8
= |J {J Hj;. The point-set ¥ has the property

2

I
~

=1 §=1
N
1-= Na
2 I e
#e¥ By g #EBy 5
| ¥ o,y ¥ )
< - +il7=— 1
<| 2 K+N,Zl & K+NZ
'#E¥ B g =1=8r,g #1585

+0(1)

SPIPXCETS

i=1 j=1

= 0(log¥))+0 ®=0 (Qog ¥}

for all 1<r,s <N since ¥N< VK. Choosing » =s =N we conclude
that the cardinality of ¥ differs from N by < (log¥)%
Let A denote the symmetric difference, i.e., A A B = (ANB)U(B\4).
It follows that there exists an N—element subget ¥, of {z, ..., 2%}
guch that ]Y1A Y| < (log¥)* and

2 1——21‘

2EY1NB, z;EBr's

{5) for all lgr,sgi\f.

We claim thab ZY]l is the desired N-element sef. Forlet B = [0, 2} x [0, j]
Clearly one can find indices r and 8, 0K 1, § < ¥ —1 such that

B’.‘a < {z;: € B} = B’,+1’3+1-

Sinee B,y 01 Bl < 2K/[N, we conclude that

'(6.) E{zl: e B}\Br,s] < 2-KJ’N7
and by (5), :
o | S 3
#EeF nB #EF By , ) . .
N
A3 SuleE 3 ook Salvoluen
#EY 108,041 ﬂlEY 1" Br,s By 1041 #1=Br,g

= 0(1)+0|(logN)y}) = O((logN)¥).
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by 1-£>_‘

=J Lod K
ze¥ nE #ED #EY (N By g .-;eB,. s
N _
b S SalsgYi-g S
#EFinB #HsY ) nBp g =B zzeB,. £

= 0 {{log X)) + 0 {(log N')*) - % 2 1 = 0{(log ¥)"},

REBN\Bp s

which completes the proof of Proposition 2.

The proof of Proposition 3 will be based on Lemma 1 (see Section 1).
We may assume ¥ == 2L For 0 < p, ¢! we partition the matrix [ay]
into 27P+¢ gubmatrices, splitting the horizontal side of the matrix into 2%
equal pieces and the vertical side of the matrix into 2¢ equal pieces. There
are (1+1)% ~ (log¥N}* such submatrices. Let us call a submatrix special
if it ocenrs in one of these partitions. Lemma 1 yields the existence of an
N by N 0l-matrix [a;] so that the absolute value of the sum 3 (a;—ay)
in each of the speelal submatrices iz at most (I-+1)2 Bubt any submatrix
. eontaining the lower left corner is the nnion of at most i2 special submatrices.
Formally,

[1,r}xf1,s] = Lk) 6[1+ 2 gﬁh’ 22%])( [1+ Z 2_"%}221%]’

=1 f=1 heie1 i : h<i-1 3
where
" g U
P=20 427 L 2% gm0
and
a1 ;1 9% , 1 o' ~ 0
$ =23 +..' T Ty ’Ll/ Dy > >’D,n7

Proposition. 3 follows.

Finally, for the sake of completeness we include the proof of Lemma 1.
The consfroction of the integers a,, ..., o, Will be based on a repeated
application of the following almost trivial fact from linear algebra: If a line-
ar system of equations has more variables than equations, then there
exists a nontrivial solution. We can assume 0 < ¢; << 1. 'We shall define
a sequence o°,al,..., a” of s-dimengional vectors o = (af, o, ..., of)
and a sequence X’ of subsets of {1, 2, ..., s} with the following properties:

?

(8) Tl =0, for 1<i<s;
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(9 0<alCt  for 1<ig<p, 1<i<5s;
{10) X7 is the set of indices i for which «f is not 0 or 1;

(11) Xo2X12 X22...2 X% =0
(12) & =df for %k =j4+1,j+2,...,p whenever of is 0 or 1
(13) 2 ol = 2 ot for all E e & with |EnX7] >

B €l ek

(14) i [End| =tand Yo = 3 " then

=l ek

DT
ieE

=R

BEnXitt =@ and

Aceording to (10} these geqnences termi_nate,' if the final veetor ¢f has
only 0,1 coordinates. Choosing a; = of, 1 <i <5 it follows from (14},
(8) and (13) that for all B ¢ &

. ; I :
either ’2@,— Eaiis;tj‘_’- or ‘l.—}?ai—_zail<t_l’
ek = fepl ieE
and this is a bit more than Lemma 1. _
TVe construct the sequence o’ of vectors by induction. Lef of = (ay, ...
t,). Now guppose that & is defined and X’ is non-empty. Introduce

F, ={BeF:  EnX|=1}.

If &, is empty, then set p =1, af! = of for i ¢ X7 and of** =0 or1
a.rbltra:nly for ¢ € X4, Xf #; is not empty, then by the hypothesis of the
lemma there are only two possﬁa]htles

Case 1. |F = X

Case 2. |7, < | XL :

Again by the hypothesis of the lemma in Case 1 every intersection
T X has exacily ¢ elements whenever EnX! £ @, Set p =j+1, leb

ai*! be the integer closest to o; for all i ¢ X. Hence |ai*'—a,{ < 1/2 and

EnX1
S JHL_ 5’ =
‘ ! 2 for each E e #.

In the second case leb us associate a real variable m; with each i,
1 < i< s and consider the following linear system of equations:

> @, =0 for ecach FeF;, onda;=0 for each i¢ X’
ez

A nontrivial solution {23, exists, beeause there are more variables

than equations. Now let g, be fhe greatest positive value for which the
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0< ag-'—l—y.bmi <1, i e X hold, and set

AT =y, 1<I<s.,

inequalities

By the maximality of y,, X't S X%, It is easily seen that

E ot = Za{: for all E e &
el el
One can easily verify that in each case the relations (8)-(14) hold,
and this completes the proof of Lemma 1.

3. Proof of Theorem 2. We gay that E ig an r-dimensional generalized
polytope if it ig representable as the intersection of r-dimensional halfspaces
and balls. Theorem 2 easily fcllows from the following resulb.

THEOREM 2* Under the hypothesis of Theorem 2 there exists an N-ele-
ment set in U such that for every r-dimensional generalized polyfope B < 47,

1

1
D(p, B) < (N3] F(log¥)”,

where & denctes the diameter of B end the implivit constant in <€ depend
only on v, M and on the number of sides of B.

For the proof of Theorem 2% we note that there is a measurable parti-
tion of %" into disjoint subsets @y, ..., @y, each with x(@;) = 1/¥ and
with diameter §; where ¢,(r, M)N V< §; < op(r, M)N -, 1< i N.
Let us associate with each @; a “random point” & =¢); as follows:

Prob(£; e A) = L‘EQAi

where 4 is a measurable subset of §;. Furthermore, agsume that the random
variables &;,..., &y are independent of each other (the existence of
&340y Ex 18 guaranteed by a basic theorem of Kolmogorov, see any text-
book on probability theory).

Yet 3(R) denofe the number of sides (faces) of the generalized poly—
tope R. Our goal is to prove that the random N-element set {&, ..
defined above has

— Nu(4),

i N}

1 1

Dip, B; &, ..., &x) < alr, M, s(B)(NF) " (log Ny

for every generalized polytope B with diameter 4,0 < 4 <1 with pro-
bability > 1/2. Clearly this will complete the proof. /
Now consider an arbitrary generalized polytope B < %" with diameter
4 and with s{(R)< 8. It iz easily seen that the sides of R intersect
< (N &)@ s, Here and in what follows the implicit constant in
% depends only on r, M and 8. Therefore, B is representable as the disjoint

icm
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union of §'s entirely contained by R and the union of < (N&)'
87 which are the intersections of some §,'s and R, i.e.,

“pieces
E=1)9wJ(@nR),

el jeg
where the index-set J has cardinality e[ (¥ ") |. Since for every @, #(Q,)
= 1/¥ and §; contains exactly one elcment of {&, ..., 5y}, the p-discre-
pancy of HQ’ is zevo. Therefore, it remains to investigate the p-discre-
pancy of {J(Q;nR).
feJ
For notational eonvenience let

T ={J{nE) and

= I B
_ J=1{1,2,...,0.
Jed

Let us define the random variables y;, 1+ j« 1 as follows: Leb y; =1
i & e@;nE, otherwise let y; = 0. By definition

‘(15) Dipy B &ypooy b)) = D, T5 &1y -0y Ex)

' 1 4

= 2 =¥ 3 s@nm).
ji=1 j=1
8inee Prob(y; =1) = p(@;nE}/p(Q;) = X p(@;nE), we have
{16) ' By = XN-u(@;nR),
where E(-) denotes the expected value.
By (15} and {16)
1

7) Dy By &1y ey £2) =!_2(xjm—Exj)|.

Sinee the random variables 7, 1<j<1 are independent of each other,
in order to estimate the sum > (z;—Ey;) we are able to apply the cla.s-
sical Bernstein—-Chernoff inequality of large deviation type.

LEpmis 2 (Bernstein-Chernoff). Let 5y, ..., #; be ﬂulepende:zt random
variables with E(n;) = 0 au.d <1, 1gig l Denote by oF the variance of

0} = B, Set f = (va:)v« Then

H[‘

Prob (J )% 771

f==1

) [36—?.’4 ‘if ¥ = ﬁz,

=114 if v

Unfortunately there ig no any wide-spread textbook containing this
form of Bernstein—Chernoff’s inequality, henee we shall present a proof
at the end of this secti.n. :

3 — Acta Arithmetical X, 2



126 J. Beek

icm

Now let us return to (17). Let o; = E(y;—Ey;)? and set § = (ZUJ) .

Choose y = &, {log N')** where the constant ¢, = ¢(r, M, 8) wﬂl be
specified later, Since 82 (_E = J| = el[{N&1 ], by Lemma we obtain
1 1

S Ex) B (WY “(loo*N)”ﬂ)

= wa(iz

where ¢; = ¢;{r, M, 8}—=o0 a5 ¢,—cc,
Though the elass of generalized polytopes is uncountable, it sutfices
to consider a ®smail” subelags. A gimple argument shows that there i3
a subelass # of cardinality < No6"205) guch that given any generalized
polytope R, with s(R,) < &, there exist £, B, e Z having the propertles
E, g By R, and p(B,NR) < 1/N. From this it follows

DHpy By &1y vy b)) s max {1, max D(u, By; &y ...y Ex)}

T=1,2

{18y Prob(D(s, R; &1, ..

E)Ij)|> y) < N5,

This means that we ean restriet ourselves to the elements of 2. Let (R}
denote the diameter of E. By (18)

1 1
Prob{D(u, B; &, ..., £x) » (N8 (R) **(logN)* for some Eeg}
BN S NHLL2 B oelr, M, 8 > ¢lr, M, 8.
Thus the proof of Theorem 2* is complete.
1
As we promised, now we shall give a proof of Lemma 2. Set §; = 3 ;.

Clearly

EetS
61/?

(19) Prob(5; =

y) = Prob(é" 2 ¢¥") < ;

where the parameter y will be fixed later. Since §; is the sum of independent:
random wvariables, we have

1
Bt = [] B,

2 o n! we get after some

We give an upper bound on Ee?, Using ¢* =
: ==}

easy calculation

- . > E(n? 2.2 = Bl
(20) E () = § yn_(’ll»l —140+ 2% Ny (7
. : Fi=i) i il s K
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P°5 N7, Bl G, ol 4"
Y, i g, Oy
SEETgT A LV ST T_ﬁ“_>_: P
n=3 =3
_— Y25} +E‘;L Yy?
2 e T—(y3)
If we substitute (20) inte (19) we obtain
32 B2 2

(1) Prob (8> ) < exp [ (1#1,,—1-?7) -

We distinguish two cases. If y > %, let y = 1. Then by (21),
| Prob (S, = y) < e
I oy 2 leb oy =p/f% Again by (21),
Prob (8,3 y) < e 7R,

Repeating the same calenlation for Prob{S;< —y) we obtain the desired
wpper bounds. Lemma 2 follows.

4. Proof of Theorem 3. Let K = |{logN)'""] (integral part) and

'\,
1 -—[A—E—J,O<z

I, =, L1, 1< i< H. We shall select from each interval J; exacily '
one integer «,; such that for each positive triplet 2, ¢ and k< K,

< H. We i)amtition 1, N] into K almost egual segments

22) e 1<i<k, a; =k (mod )} —k/g| < e (e}

Then we will be ready to finish the proof. Indeed, choosing § = {a;:
1< i< A} we oblain

18]
N |AT (hy g, m)]

(23) Dk, q,m; 8) =!]SnAP(h,g,m)}—

<lta

where % is the greatest index 4 such that ;=< m. Clearly

E OIS
+IE— ]N] (AP (B, q, m)l|»

k
i e <m, a; =h(mod Q’)}J—E

18 i
(24 S ar, g mi = (5 +om)
and '
(25) =" om
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Thus, by (22), (23), (24) and (25)

D, g, m; 8) < e {e)+-0(1)

for all h,q,m with 1< m<¥, 1<¢<¥, 1< h<q, and Theorem 3

follows,

In order to construct the desired sequenece a;, 1<{i<< I lef f(i)
= [i**®| and consider the set B; of all integers b; = j- (f(z )+ with
b eJ;. Simple caleulation shows that K- (f(K ) < N/K, thus [Bjz K
for each 1 < ¢ K. Let & be a “random element” of B, ie.,

Prob(& =by) =1/1B,| for all 1<j<|Byl.

Moreover, assume that the random variables &, 1 <4< K are inde-
pendent of each other. We claim that the random K-element subset
{&, ..., &g} < [1, ¥] satisfies the property (22) with probability >1/2,
that is, the probability of the event “for all b, ¢, E with I S E S K, L ¢
<E, 1< h<g the difference of {{§: 1<i<k, & =k (mod g)}| and
klg has absolute value less than e;(s)” is ab least 172, Cléarly this will
complete the proof of Theorem 3.

Now fix a positive triplet A, g, k<

<k, & =k (mod g)}i —k/g| > ¢}

K. We shall estimate
Prob{|i{£: 1<

from above. Let i, = i,(q) be the smallest integer ¢ such that f(i+1) > ¢.
From the definition of the numbers b;; it follows that £, =i (mod ¢)
whenever i > 4,, hence

(26) £t < i<k, & =h(mod ¢} —(k—ig)/g| <1

Therefore it remains to investigate £, 1<1i<14,. Denote by (a, b) the
largest common divigsor of the natural numbers a4 and . Now let j, denote
the smallest integer such that (f{(f,)!,q) =4, >1 and j, = h (mod d,).
Fixing any integer @, among the numbers .

LG, Te [m :ﬁw%_l]

there exists exactly one which is = % (mod ¢). From this it follows that

the probability of the event “f =k (modg)” equals %3- ~:~O(| ! |)

4 /1
-H*—ql-+0 (E), where the implicit constant is absolute (We recall that

for each ¢, |B;| = K > ¢). Since g iz divisible by d,, & = ¢ (mod d,) for all
¢ 2> };. Hence in the interval [, 41, j, - d, —1] there is no integer 4 such
that & =k(modg). Let 5, =1 if & =h(modg), 0 otherwise. Using

icm
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this notation we hawve obtained
f13dy-1
D) Prob(y; =1) = dyjg+0(1)g).
i=5
Xow Iet jo be the second integer such that
(f4)ly @) =ds>1 and j, = h(mod dy).

Obviously j, 2= j, +d,. Repeating the previous argument we get
Jatda—1
D) Prob(n =1) = dajg+0(1/g),
i=7a
and go on. Summarizing, we conelnde that
£g

(27) D Prob(n; = 1) < ¢gio/t,

i=1
where ¢, is & universal constant. We need the following simple probabi-
listic lemma.

Levua 3. Let 1y, ...
values only 0 and 1. Set

;e be independent vandom vaviables having

&
= Z Prob (o =
i=1
Ij p <1, then
. g
Prob {2 N = t} <9l —2p).
=1
Its proof is a direct ealeulation. Set p; = Prob(yn, =1). We have
Prob {Z >t = 2 D Dy By (1—p)

1=]1, s]\(i1 ..... i}

2911,&2(51?,)

j=t =1

F==i Iy <oyl

8

<> D e

Je=t 1<, <i<s

= Y‘;n’ 21}’ =2'il—p),

;r=t Fusi

and Lemmsa 3 is verified.

By {(27) and Lemma 3 we obtain

(28)  Prob{i{f: 1<i<io, & = (mod g} =1]

i
< Prob {E g =
=1

1} << ey do/ @)L — a4/ D)
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icm

We recall that f(i) = (i'***] and that 4, = i,(g) Is the smallest integer
for whieh f{i;~1)>g¢. A simple caleulation shows cg-iyjg< g™ for

12 :
g > ¢, Choosing { = max {Gg, E+1}’ by (26) and (28) we have

Prob {l|{&: 1<i< R, & = h (mod ¢)}|—k/g| > ¢ for some h, g, k}

gg j,A.Y.r: Prob{|{&;: 1< i< iy(Q), & = h(mod 9)}f > 1}
=0y o=

4
<> Mat=Yar<ap.

P

s

"
v

&
el

azcy

Thus the proof of Theorem 3 is complete.
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ACOTA ARITHMETICA
XLIIT (1954)

Polynémes de F,[X] ayant un diviseor
de degré donné
par

Mmpemis Car (Marseille)

1. Introduction. Soit F, le corps fini & ¢ éléments et F [X'] Pannean
des polyndmes & nne mdetermmée sur ls corps F,.

8i —1 n’est pas carré dans le corps F,, il ¥ & une similitude parfalte
entre Pétude des sommes de deux carrés dans F,[X]et I"étude des sommes
de deux carrds dans l'annean Z, comme le montrent la caractérisation
des sommes de demx carrés donnde dans [7] ou Pestimation du nombre
A(n) de polynémes unitaires de degré » qui sont sommes de deux carrés
obtenue dans {171

8i —1 est carré dans le corps F,, cette similitude disparait, et, le cas
de la caractéristique 2 excepté, le probleme des sommes de deux carrés
devient trivial puisque tout polyndme de F,[X] est alors somme de deux
carrés. On rend ce probléme moins frivial en exigeant dans les sommes
de deux carrés les eonditions de degré les plus restrictives possibles, con-
ditions qui sont automatiquement réalisées dans le cas ol —1 n’est pas
carré dams le corps F,. Les polynomes de degré 2n ou Zn—1 sommes
de deux earrés . ‘

A4 B

ot A et B sont des polvmémes de degré au plus égal & » sont les poly-
némes de degré 2n ou 2n—1 admettant un diviseur de degré n.

Par tne méthode semblable & celle quont utilisée Erdss [4] et Tenen-
baum [9], on obtient dans [2] une estimation asymptotique du nombre
A{N) de polynémes unitaires de degré N de F [X]ayant un facteur de
degré égal & la partie entitre de N /2, estimation donnée par le théoréme
snivant:

THEOREME. Pour foutl réel & > 0, il existe un entier N (g, &) ne dependant
que de g ef de ¢, tel que, pour tout entier Nz=N(q,«) onait

&
L i) < = (log M)~

Y“Te



