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On the density of some sets of primes, IV
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1. If a denotes an integer and 9 a prime number not dividing @
then there exists a positive 4 such that a” = 1 (mod p). The least of those
1’8 we shall denote by ord,a.

If o is fixed and p is allowed to vary, then surprisingly little is known
about the set of values of ord,a. In 1927, Emil Artin enunciated the
celebrated hypothesis, now usually known as Arkin’s conjecture, that
for any given mon-zero integer ¢ other than 1, —1 or a perfeet square
there exist infinitely many primes p for which ord,a= p—1. In [7] C. Ho-
oley proved Artin’s eonjecture subject to the assumption that the natural
extension of the Riemann hypothesis to the Dedekind zeta-function over
certain Galois fields is true. For some other results connected with this
problem e refer to the papers by J. Goldstein [43, P. J. Stephens [13],
[14] and R. Warlimont {151 '

The problem of the density of the sets of primes for which ord, s is
divisible or not divisible by a fixed prime ¢ Wwas investigated for an arbi-
trary integer & = 0 by H. Hasse [5], [6], who determined the Dirichlet
density of such sets. ’

We proved in [16] some asympiotic formulae for the nnmber of
primes p for which ¢ |ord, s, where ¢ is a fixed prime andr =0,1,2,...

In [18] we improved the results of [16] by getting smaller remainders
of the order 1/logx — however, for odd ¢ only.

Tn the present paper we solve fully the above problem by determining
the asymptoetic formulde for the number of primes p for which ord,a

" is divisible by an arbitrary integer n > 2. We also derive an asymptotic

formula for the number of primes p for which the congruence o«
= o (mod p) has a solution. This is the special case of the problem con-
cerning the existence of the positive density of a set of primes for which
the congruence «¥ = ¢ (mod p) has no solution if ¢ is not a power of a
(see [11]). '
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Let ns observe that the solvability of the congruence ™ = a (mod p)
ig equivalent to the condition that ord,e is not divigible by any prime
divisor of » (see Lemma 4.1},

The remainders in the asymptotic formulae are of the size 1/log?x
and the dependence on the numbers a and z is in the remainders explicitly
counted. Our basie results are obtained by the use of the estimates of the
sum of characters over prime ideals of the ring of algebraie integers of the
#i61d @ ( V1), given in Lemma 3.6 (compare Lemmas 3 and 4 in [18]). The esti-
mate obtained is more precize than the estimate following from the ef-
feotive version of the Chehotarev demsity theorem, proved by J. Lagarias
and A. Odlyzko in [8].

2, Tn the following we denote by & and n integers greater thin 1.
Let us write
(21) n =g gl g(g) =1 for i=1,2,...1,
_ G <y <o L Gy
“where g, are primes, and let- ‘
(2.2) [Ta=% [Ja=1,
: aln . gla
where g runs over different prlme divisors of n and a respectively.
Let { = 1 be the largest natural number such that & is the #th power
in Z. _
. Denote further
(2.3) : H= H gv(ﬂ)
g”(g)nf
We shall denote by b a positive integer S&tleY]Ilg the condition
2.4) a =08

In our investigation fwo more parameters W]]l be used, namely
¢ and s determined as follows:

(2 5) b = 2"8’33',

.where 613 equal to 0 or 1, s denotes the product of different odd primes
and » is a positive integer.

In the following # > 3, ¢ denotes an mteger,
‘a2 natural number,

Write further

# 0, 41, and m denotes

Ny(zymye) = Y 1, N(z,m,e = 2‘ 1
B, (D,e)el D, (p,0)=1
&= (modp) miordye

is. solvable
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and

={r) = 21.

L
The symbols u(f}, ¢(f) and (e, f) denote as usual the Mobing funetion,
the Euler function and the greatest common divisor of «, f respectively.
We denote by C;, ¢ =1,2, ..., the numerical constants and by [4]
the number of element of the finite set A.
3. In the present paper we prove the following theorems:
TeEEOREM 1. If
logx
(loglogm)ﬂ'/
where Oy 48 a sufficiently large numerical constant, then
Hvi? {logloga)"+? )
p(hlog g logie

3
vy

x> expi,

{3.1)

where

3.2) ok, d,s, H)
{3.3) A, 1,H) ‘ |
F()] 1 I 1 792 l_g—v@ . g_.v—v(q) ))

_ ali E i
= ﬁlz “'!zfz

= ﬁ(ka 6: 8, 7(2))A(k:287 H)_!‘A(?G) l? H):

for Uk,
A0 for Uk

and for integer y

{3.4) Bk, 65'5‘: )

____;_ for &6=0,8>1, 2k, s=1(mod4d),
47
(iyé) fo*."‘ 6=0?s->17 BSEk, s%l(m0d4),
2(47, 4)— (47, 16) for 6=1,s>1,2]k,
16 '
0 ofherwise.

The parameters p(q) are determined as in (2.3), the parameters 8 and

s 08 in (2.5).
The constant smplied by the symbol O is numerical; however, in the case
of an even &, the constant under consideraiion is 1ot effective.
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TrEOREM 1/, If

b— logw — 1 72
> €E]pexp l/llI, (lozloga)® = 0. %%,
then
1 ‘ H2'k* (logloga)**
(3.5) prpe [z, 1, @) = alk, 6,8, H)—i—O.( Tloa1q, Toaa )

where the eonstant in O is numerical and effective end a(k, 8, 8, H) is determ¢~
ned by (3.2)-(3.4} and C, is the same as in Theorem 1.

Remark 1. From Theorems 1 and 1’ we can immediately deduce
gimilar theorems for ¢ < 0. This follows from the fact that for & odd we
have N, (@, k, a) = N(z, &, ); on. the other hand, for k even,
N(e, %k, —a) = Ny (2, k, a) N, (@, &, ). Moreover, we have the equality
Ni(w,n, a) = Ny(», &, a} (seo Lemmw 4.1 and Coro]la.ry 4.1).

TaroREM 2. If
logz

v>explly  oplogay

%,

t

then

(3.6)

z'm) Nz, n,bd)

1-+p(k, 8,8, a(2)—1) o w2k (logloga)’
= - + O —1 )
n H (1—1/¢% p{k)log™ ¢ log*z

where a(2) is determined by (2.1) and the constant in O 18 numerical but not
effective in the case of an even k.

The parameters § and s are determined in (2.5), ,B(?c, 8,8, a(2)—1}
is determined in (3.4) and (| is as in Theorem 1. -

THzoREM 2. If

S P 1
z 3> expexp VM, 8%

loglogaz)2 = 7
then
(3.7) L N{z,n, b)
w(#) y Ty
_ 14+8(%, 8,5, a(2)—1) N nd'k (loglogz)™**
YU (w(k)logf*lql' logw )

where the consiant implied by the symbol O is 'rz,umemcal and effective and

Bk, d, 8, a(2)—1) s determined in (3.4).
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Remark 2. From Theorems 2 and 2’ we can immediately dervive
the respective theorems for an arbltrary integer a, @ = 0, 1. This follows.

. from the fact that

(a) N(z,n, a) = N{x, %H b,
(b)lf'n=2a (2,9 =1, a =1, then

N{z,n, —a) = N{z,n, a),
(e} if m =2¢, (2,1 =1, then
N(w,n, —a) = Nz, n/2, a)-+N{(z, 20, a)—N{z, n, a)
(see CoroHary 4.2).

4. The proofs of the theorems will rest on the fsllowing lemmas.

Lmvmia 4.1, If pte, then the congruence ¢ = ¢ (mod p) is solvable
if and only if (n,ordye) =1.

Clear.
COROLLARY 4.1. If pto, then the congruence ¢ = ¢ (mmod p) is solvable
if and only if the congruence ¢ = ¢ (mod p) is solvable.

OOROLLARY 4.2. If pte, q denotes o prime, a ¢ natural number, then
¢ = @ (mod p) és solvable iff ¢°F ord,e.

LEMMA 4.2, If pte, then the congruence ¢ = c(mod p) s solvable
if and only if ¢ is the N-th power residue (mod p), N being the mazimal
divisor of p—1 awhose prime factors all divide n.

The Iemma follows from the definition of the power residue.
LEMMA 4.3. Suppose 1< £ (2—1)/q,. If My(8) denotes the set

Mo(&) = {Nq: Ny = !Izll.‘lio' -er:li>07 f<No<o—1, Ny it

for each ;| No}y .
then

lOgS -)r—l
Mo (8) < 1} .
Mo(£)| T(Iogql +

L 1
If N is an orbitrary notural number of the form N = gllqlf O
&< N, then there emist a number Noe M (£ and o nunber m
52 Ay . > -
=gl ... ¢ B=0,1=1,2, wony # such thal N = mN,.
The ﬁrst part of the lemma. follows by.induction. The proof of the

gecond part is obvious.
Let m be a2 natural number. We denofe

Mz, m, c)= E 1.
pT,ple
p=1(modm
¢is amth residue modp
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Limarsta 4.4, Suppose k < E< (w—1)/q,. Thm there exists a numerica
coistant Oy such thai

> uhM (2,1, )|

_N<= llR

{4.1) “N-l(mﬁ ky €)—

Lol ozl
Ne= ql qn . q l<-——N
1122050000 Lz0

1o r—1 '
5202?( gE) -max Mw, N, ¢},
loggy/  wpenn®

where My(&) denotes the set of Lemma 4.3 and Gy oy o vey & are determined
én (2.1).
Proof. We denote for the number N = g?gi” . q, L 0,41,
2,.,1
H 4

Ay ={p<a: pfe, p—1 =N, (k,1) =1, ¢ is a Nth residue mod p}.

Since Ayndy =@ for ¥ #* N', owing fo Lemma 4.2, we have

(43) Nylo,kya) = D Myl+ Y Myl = S8
A M
N=gllc122.,.q: N-=q11q,,z... a;
120,000,020 11320,000, 020

From the second part of Lemmsa 4.3 we get

S.< D M@, Ny, o).

NoEMylE)

Hence from the first part of Lemma 4.3 and owing to the inequality £ << &

we have

max Mz, Ny, c).

: r—1
(43) 8o czr( logt )
' NyeMo(9)

logg,
On the other hand, using the well-known Legendre principle we geb

{4.4) B= ) 2 p MM (m, IV, .
{\"{lf [ ’
:vqul Qf,,,qIT 1<Z<f—\—!
=0, 0

Finally from (4.2)~(4.4) Lemma 4.4 follows.
Levwa 4.5. We hove the equality

{4.5) Nizyn,0) = D (b)) Voo, b, ™),

Nk

where k 45 defined bg) {2.2),
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The equality (4. a) fo]Iows from Coro]larv 4.2 and the principle of
Y.egendre.

5. In thig section we state some lemmasg from the theory of the
Hecke-Landan {-functions.

Denote by K a field of algebraic numbers, by » and 4, respectively,
the degree and the diseriminant of K, by K the ring of algebraic integers
of K, by § a given ideal of X, by Na the norm of an ideal a of K, and by
p a prime ideal of K. Let y be a character of the group of ideal-elasses
mod §, £(s, ) the Hecke-Landau Zeta-function (see [9]), and {g(s) the
Dedekind Zeta-funetion.

The principal character of the group of ideal-classes mod { will be
denoted by y,, the exceptional real character by x (see [8] and [18])
and the hypothetical real simple zero of &{s, y,) by $;- We denote the
product |4|Nf by D. '

Denote further

1 for =
(51) By = By m[ 3} P
0 for g == 20y 0 for x & x4

© LEMmA 5.1. There evists a numerical constant Oy such that

1 for y=1y
‘ “’E=Em=\

: - ' rlog2D
5.9 = B iz—E limﬁl—:—O( exp(—Cyw(x, D )
(5.2) N;@x(p) = Bplie 2, Jioge ©2(~Ceale: Do)
where
‘_ _ logx
o)(a’F:D: 7) = max ((wlog.m)”z, log_D)

and the constant implied by the symbol O is numerical.

This lemma follows from Lemma 1 of [18]. The proof is similar fo
the proof of Lemma 9 in [17].

LEvMA 5.2. Let us denote by K a normal extension of the field Q. Then
for any s> 0 there ewists a numerical constant C(z) such that

(5.3)  fu<mex(l—(32log| AVFD, 1 (0 (AVFTH 7).

. For e3z 1 the constant C () is effective and for & < 1 il i3 not.

The lemma follows from Theorem 1' of paper {12] and the theorem

of Siegel on the exceptional zero.
Tn the following we denote by 7 a natural number of the form

m = H gl(q}
aik

‘where 1{q) == 0 for every prime divisor q of k. We will denote by K the field
m

Q(I/I) and by R its ring of integers.
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For a & B and a prime ideal p of R, pt imua], we denote by (%-) the

mth power residue symbol.
For the ideal a of R, (a, [ma]} =1 we put

(e~ LG,
G/m i Pla
Let ay, @y, ..., @, denote arbitrary rational integers and 3 the product
of different prime divisors of the product a,a, ... #,. For given integers
Fisday eoryliey 1 g;Sm, 1 =1,2, ..., 7 we define
ala? ... a
Ligpamnrin () == a

0 otherwise.

) for  (a, MM =1,

From Lemmsa 27 of [3] it follows that y; ;, ., is & character of tho
group of ideal-clagsses mod [m2M] of the ring R.
For + mth roots of unity e, &, ..., Wwe put

m m
= i Jn—
(5.4) N, @1y 89y .00y ;) = 2 - 2 (e &),
' J1=1 Jr=1
Ao
where § e k.

- If there exist integers j7, 1 < 5% < m, 1 < i < v such that o
i

0 = X1y
.v--uj.r

where x, is the exceptional character of the group of ideal-classes mod [m?2M ]
of the xing R, 7, = %,, then we define

m . om R .
AT 7 Try =
Nolm, @y, Gy nry ) = E E (el ven )70,
ey S e

0 0.
G T
a.ll Lase

wa =g

where 8’ & R. :
If such & j; do not exist then we put Ny(m, ay, 5, ..., a) = 0.

Remark 3. If m is odd then y; ; . cannot be a rea,l non-prineipal
character. This results from the fo]lowmg lemma of [2]:

Levwa 5.3. Let m be a positive rational integer, and et ¢ be a further
rational integer which is @ m-th- -power residue (mod p) for all but finitely
many rational primes p = 1( mod m); then ¢ is of the form p™, 8 e R.

Note that, if a® = ™, 4, f e B and m is odd, then

a — (ﬁ(l—m)lﬂ a)m‘
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We define further

u
Slw,m,ayy..., 0, el,,..,sf): 2 1,

where p are prime-ideals of the ring R.
Lewia 5.4. If ©=expm, o=

log M then there exists a numerical
constant C, such that :

(3.8) Sla,m, e, ... vy &) = mN(m, ay, ..., 6,)7w(z) —

y Oy 3y
alog2D)

- . 8
— TN (B @y, ey e Ha 0 | —2—
l/logm

xp(—04w(w,ﬂ,v))),

and the consiont implied by the symbol O is numerical. (We resall that

according to the notation introduced above, in this lemma the letter D deno-

tes the product of the norm of the ideal [m2 M7 of the ring B and the abgo-
e

Tute value of the diseriminant of the field Q(¥1). Moreover, p, denotes
the exceptional zero of {(s, %, 0. 0).)

Proof. From the deﬁmtloﬁ of S(@, M, tyyovy g 81p0nny
Nim, @1, ..., a;) it follows that

z) and

!

(5.8) S(z,m,a, i) —m T N(m, aq, ..., a) 21

ceay Boy E1y es

Np<z
" ; ,
- 1 #1 Ty —1
=m B C R Y )
31:1 11_1 Ny<z
11 iz I
Gy ety =

where 3 denotes that the summation runs over such prime-ideals p of the
ring B which are not divisors of the product ma,a, ... ¢,. Since in the

sum 3" 1, the ideals p are not ramified, it follows under the assumption
Np<z
of the lemma

Y 1+ 0(x ”-1ogm)

n=1 (modm)

31 = glm)

NPl

Applying the Siegel-Walfisz theorem on primes in arithmetical
progressions (see [107], Satz 8.3, p. 144} we have

(8.7) 371 = n()+ 0 feexp(— OV loga)).

Np<z
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The characters /JP‘__ 5, in (5.6) are not prineipal because of fthe condi-
tion a7 ... & s 7 (see Tremma 5.3). Hence applying Lemma 5.1 to the

sum 2' le,j.q“__!,- (p) and using the estimate (5.7), we get (5.5).

Np<e - ¥

In the following we consider the sum S(&, M, @1y -vy Gy 815 0oy £}
in the particular case v =1, a; = @, & = 1. We Shall denote this stm by

S{z, m, a). The sum (5.4) will be denoted in this cage by N(m, a).
TEMMA 5.5. Suppose m = [] 9, Ug) = 0. Under (2.4) and (2.5}
we have 7
Nim,a) =2(H,m)
in the following three cases:
(i) 6 =0, s|m, s>1, 2(H, m)|m, 2|m, s = 1 (mod 4),
(ii) § =0, d8jm, s =1, 2(H, m)im,
(i} 8 =1, 8s|m, 2(H,m) 5.
In the remaining cases
Nim,a) = (H, m).

The proof of the lemma follows from Lemma 2 of [1].

LExca 5.6. With the notation of Section 2, let m = [] 49, 1(g) =0,
2?“”": & = bH: 2|1 H, _ ain
0 for 1<,

E(l’?):‘l for 1>y,

where T is determined by (2.3).
Suppose fur thevﬂ that1=1,0 < e <1 and C; = 0 is an arbitrary numeri-

cal constant.

If
(5.8) (mP Y0 < exp ((

C, )2 log“x )

Cs-+1] log'loge

and B, is the exceptional zero of the function [ (s, z,), where y; is the exceptional
charvacter of the growp of ideal-classes mod[m2M] of the ring R, then

(5.9) S(wsm,a) =m " N(m, a)n(@)+E({, 7)0; (m "(H m)lie 1)+
+0, [wexp (— (170, +1.2) Valogh 2 logt " log a))

where the constant in O, depends only on Cy, Cs, a, t and the constant in
0, i absolute << 2. In this lemma, the constant C, s from Lemma 5.4.

Proof. From Lemmas 5.3 and 5.5 it follows that there exist ati
most 2{H, m) values forj in the interval 1 < j < m for which the character

.

o
2{e) = (—) is real and non-principal. Moreover, in the case 1<y,
a/m :
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each charaeter y; (1< j<m) is principal or non-real. Hence, owing to
(5.8) and using the formula for the degree and the diseriminant of the
field K and the norm of the ideal [m237], we get in view of Lemma 5.4
the estimate (5.9).

COROLIARY 5.1. If the conditions of Lemma 5.6 are fulfilled then for
any &> 0 there exist eonstants C,(z) and C; such that
(5.10)

" Nim, a) | (H,mV P
Mz, m, a)— Wﬂ(m) ! < Cr{e} B, y) TG —1/p) (oga) ™
whn

+ Cymexp( — (170, +1.2) Valog~25log 1" loga) .
For ez 1 the eonstant C, 18 explicitly caleulable and for =<1, 4l 45 not.

The constant Cy can be counted explicitly depending on Oy, Gy, o L.

The corollary follows from the formula

1 —
Mz, m, o) =———»~8 (@, m,a)+0Vz)
_ @(m) _

and Lemma 5.2.

6. Proof of Theorem 1. We use Lemma 4.4 with
= logz
"~ C,klogloga

For the sake of brevity we shall denote by & any number of the
form g0l ... g[%, where I(g) > 05eee g} = 0.
For ¥, M,(&) we have

k
MEARS fi

From Corollary 5.1 for 0; =2,1 =1, ¢ =1 and from Lemma 5.5, we get:

(6.1) max M{w, Ny, a)
NeMy(8)
HE | nlw) HYME @

&
<ew & O ) T e T Y Togi?

provided _
‘ {CN\ logz
3 =< j— -
02 ptogitn < () oo
where, in (6.1), I, = max L

sl
N8
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However, with the value for £ chosen above, condition (6.2) is fultillea.
if we suppose # to be greater than a numerical congtant and €y o be
sufficiently large. Hence, if the conditions of Theorem 1 are fullilled,
we have from (6.1)

BPH azlog'loge
max M(x, Ny, a) <0 .
) ( 0 @) < oo o (%) log*x

- wwhere the constant €, is eﬂfectwe for # odd. From this estimate and
Lemma 4.4 we geb

6.3) Ni(w, k,q)

3 7+3 .
_ 51 v (I (@, I¥ a)+O(Hkr_log logﬁl 7 {x) ’
gy log"'q; logiw

\r<£ IIL

R

N

where the congtant in O is numerical but not effective in the cage of an
even k.

Intheeasem =1V, 1|k, a=1,t =1, (5 = 2 we apply Corollary 5.1.
Moreover, in this corollary we replace the number o by o

If the conditions of Theorem 1 are fulfilled, for N < £ and sufficiently
large €y we have

(6.4) Mz, 1IN, d) =

N(ON,d) () (f[_k_z () )
W (LX) o(k) logiz)’

where for odd % the congtant in O is effective.
From (6.4) and (6.3) we get

1
(6.5} 2(2) 1{@y &, @)
NV, N, NN, d) -
Lol FO i +é‘n2k””) Weum)

T ( Hrk? log"*logz
gk)log™q ~ log’w

) =8+ 8+ BlayH, 7, k1)
On the other hand, from Lemma 5.5, for 4 = 0 it follows that
Naw, a) o N H) uil
2 ot Wq:(ZN) 2 y Z ZN)

Nen 1k
(x, k[d]=1 e

where ¢ = 2 if one of the three eondltmns (1), (if), (iii) of Lemma 5.5 is
satistied and ¢ =1 ofherwise. :
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It & is fixed, for such ¥ that d| ¥, (¥, k/d) = 1 we have the equality

21\ (ZN} - _lllz(i:f)'

. q ‘_1
Hence
' NN, dy g (N, H) g—2
©6) > Mug ALY J ( )
ﬁ o INgo(ll\ £ ; N Il g—1
(7, kfd)=1 : ﬂlg
ajN
From (6.6), for # — & we get
’ v 2H N } 2H -
< e — -2
'ga“; Nt 24 (Nﬂm)2§012H§. 2.4 1
>E NyeMyl§) m—gdl gﬁr NoeMglf)
=gyt g,

3;20
Hrk:  (logloga)™?
? (logg,)™"  logiz

On. the other hand, owing to (6.5) and (6.6) for n = 0, and owing fo the
lagt estimate, we have

Ny, Fy )

©n —
' w (&}
_ e (N, H)
MZIG E, e (g 1) + EB(x, H,J, ,qlh).
W) =1 . g a
ajn

Congidering in turn , _
(a) § =0, s>1, 28]k, s = 1 (mod 4),
by § =0, s>1, 25|k, s 5= 1 (mod 4},
() =1, sx1, 28]k

and the remaining cases, we can reduce the estimate {6.7) to the form (3.1),
Similarly, aipplying Lemma 5.2 for s = 1 we get Theorem 1,
Theorem 2 follows from Theorem: 1 and Lemma 4.5.
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Multidimensional covering systems of congruences
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J. FABRYEGWSEI (Warszawa)

1. Introduction. Covering gystems of congruences in one variable
have been studied £for many years. The aim of the present paper is to extend
the results obtained for such systems to multidimensional systerss intro-
duced recently by A. Schinzel [8]. We begin by defining the prineipal
notions.

DErrnrrroN 1. A system of congruences

(1) b+ Z bye; =0modm;, (AL<i<n)

covers o set 8 ¢ ZF if every vector [#y,...,x,] ¢ 8 satisfies one of the
congruences of the gystem.

DEFIKITION 2. A congruence of the system (1) is called essential
if there exigbs an integral vector [my,.. ,a‘k] e Z¥ which satisfies this
and only this congruence.

DEFINITION 3. A system of the form (1} it called regulas if all congruen-
ces are essential.

DEFINITION 4. A gystem of the form (1) is called covering 1f it covers
the set Z* and disjoint covering if it is regniar and every vector in Z*
satisfies one and only one congruence of this system.

For one dimensional systems (% = 1) it i3 usnal to take by, = 1 which
can be relaxed to (b, m;) = 1. Here are principal results concerning
such systems.

THEOREM A (see [7], Theorems 2~4). For a d@:sjm',nt covering system
@ = gmodm (1 <i<<n),where L <my < My < o0 < My WE have

]
2 jmg =1, My == My,
i=1 )
for every i =1,2,...,n there exisis a t 5 i such that my|my,

if o is the least prime factor of m, then M, = My_y == oo =My _pi1+



