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1. Introduction. Covering gystems of congruences in one variable
have been studied £for many years. The aim of the present paper is to extend
the results obtained for such systems to multidimensional systerss intro-
duced recently by A. Schinzel [8]. We begin by defining the prineipal
notions.

DErrnrrroN 1. A system of congruences

(1) b+ Z bye; =0modm;, (AL<i<n)

covers o set 8 ¢ ZF if every vector [#y,...,x,] ¢ 8 satisfies one of the
congruences of the gystem.

DEFIKITION 2. A congruence of the system (1) is called essential
if there exigbs an integral vector [my,.. ,a‘k] e Z¥ which satisfies this
and only this congruence.

DEFINITION 3. A system of the form (1} it called regulas if all congruen-
ces are essential.

DEFINITION 4. A gystem of the form (1) is called covering 1f it covers
the set Z* and disjoint covering if it is regniar and every vector in Z*
satisfies one and only one congruence of this system.

For one dimensional systems (% = 1) it i3 usnal to take by, = 1 which
can be relaxed to (b, m;) = 1. Here are principal results concerning
such systems.

THEOREM A (see [7], Theorems 2~4). For a d@:sjm',nt covering system
@ = gmodm (1 <i<<n),where L <my < My < o0 < My WE have

]
2 jmg =1, My == My,
i=1 )
for every i =1,2,...,n there exisis a t 5 i such that my|my,

if o is the least prime factor of m, then M, = My_y == oo =My _pi1+
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TamorEM B (Zndm [9]). If a system @ = a;mod my I<<i<n)
is covering, the congruence @ = @, mod m, 18 essmtwl, and

E
m, = [ ] 7
Tw=1
then
nzl+ 2 a{p,—1}.
T=1

TarorEM ( [Crittenden, Vanden "Eynden [1]). If « syslten «

icm

= a; mod m, (1 <1< n) covers the segment 1< » << 2% then @t is o covering

one.

In Section & we give analogues of Theorems A, B, C for general cove-
ring systems and in Section 3 their refinements for homogeneous covering
gystems, i.e. systems of the form (1) in which b, = 0for all ¢ < ». The latter
section contains otrr principal results {Theorems 4 and 6). As a tool we
use the Jacobsthal funection and also the following result of Frobenius.

TrumorEM D {[2]). The number of solutions of the congruence

%
,a,o—'r-z o2, = 0 mod m
i1

7—1

equals (M, Gy, ...y @, )M provided (m, &y ..., 6,) .

2. General covering systems. If fhe system (1) is regular wo can
rewrite it in the following form

w0y

{2) @y + 2 aym; =0 mod my, (g, ..., fg,my) =1 (I<<ign)
i= :

where m; are not necessarily the same as before.

- TFor systerns of this form we have the following analognes of Theorems
A, B and C. _ ' ‘

- TeEOREM 1. For & disjoint covering sysiem of the form: (2), where
1< my < Mmy<< .. < my, we have

G Sim =1,
i=1

(11) o1 = Mlys ) . o

(i) for every 1 < n there exisls an 1 % i such thal m;|m,;,

{(iv) if p is the least prime divisor of m, then v, =, | = ... = My_p. ;.
THEOREM 2. If a system of the form (2) 1is ‘covering, the congruence

7

. E
@+ 2 ity = 0 mod o,

=1

Multidimensional coverd
overing systems of congruences 193

is essential and

&
— oz
m, = l 1 Py
=1
then

nzlt 2 e {p,~1).
T=1

TFELEOI-%EM 3. If a system of the form (2) covers a E-dimensional cube
Cr = Z* with the side Length 2%, then if is @ COvEring one,

Theorems 1 and 2 are deduced from Theorems A and B by the same
method, therefore we ghall prove only Theorem 2,

We begin by proving a simple lemma which shows that any covering
system has a shifting property.

. Lsama 1. Suppo.s:e that (2) is a covering system. Then Jor every index b,
<h g w, and every integer v, there ewists o covering system with the same
moduli m,, !

vuny My, with the same congruences essential and with
&y = 75 mod my,.

Proof. Let us consider the GONgruence
k
L3 1 .
P — Gy + Z Gty = 0 mod my .
i=1

SINCe (@ny Gpayo.ny Gy my) = 1 it follows that our congruence is

solvable. Let an integral vector [41; 22y . .5 4] be one of ity solubtions.
The system:

14 E
gy 2 aijwj.—-z agl; =0modm, 1<ign
C =1 j=1

is a covering one. Indeed, if a vector [m,+ 21y ooy 2+ 4] I8 not covered
by the system above, the vector [®1y ..., @] will not be covered by the

system (2), contrary to the assmmption. Now ir the system in {uestion,
the congruence with index % is of the form: _

&
P+ 2 ;% = 0 mod iy,
i=1

Proof of Theorem 2. Let us put in Lemma 1 b =7, 7, =1 and

k
= ] '
X, _{[ml,...,mez , a80—§~2as_,.wj E()modms} for1<s<n.
i=1
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n
Under the assumption there exists a vector [aY, aS, ..., «}] eK,\_Ule
i=

and we have i

: k
(3) D) ayai+1 = 0 mod m,.
=1

Putting in the system (2) z; =t} for 1< j <% we obtain

¥
(4) tZ Q) - g = 0 mod m;, . 1< m.
j=I

Let

4, "*Z“’u iy A ={4ymy, 1<ign,

Fo={i: 1<i<n, d;lay}.

We can rewrite (4) in the form

9t
(5) t = ¢, mod —

4,
for certain integers ¢;. In virtue of (3) 4, =1, thus v ¢ & and the rth
congruence is essential. The system (5) is obviously eovering. Applying
to (5} Theorem B we obtain:

#1214+ Y a(p,~1), vhers |[F|<n
=1

Proof of Theorem 3. Without loss of generality we can assume
that 0, = (1, 2%*(1), Let us suppose that our system is not a covering
one. Let: : .

) %3] € OE;}

i=]1

A =By ey ] € 28 ;> 0,1 i my [B, ...

where & 7= @ and K, has the same meaning as in the proof of Theorem 2.
i

Let the vector ¥ = [{f,...,4]e o be such that 't is minimal. Since

J=1
té UK in virtue of the assumption, there emsts anr, 1< 7 < k such that

i=1
1, >2“ Thus for every 1<

= UK,-.
§=1

< 2% we have [Ty, ...pt gy @ytiyy iy ]

(%) Here and in the ‘sequel the length of a segment i the number of integers
- confained in it.

P
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We can assume that r = 1 and consider the system of congruences
in one variable x:

(6) an o+ ya,_., 4y = 0 mod m,,

Fe==2

I<ign.

Putting w; = a,+ 2 gl Sy = (ag,my), 1<i<n and &F = [i:
I<i<n, 41w}, we cailwi'ewmte {6) in the following form: |
@ =g mod (md,), {e&F.
Since |#| < n and the system above covers the segment 1< e 27,

in virtue of Theorem C it is a covering one. Thus ¢ € UK contrary to the
assumption. =1

3. Homogeneous covering systems

DEFINITION 5. A system of the form (2) is called hiomogeneous if for
every 4, 1<xign, ay =0,

For the systems in question we shall obtain a stronger form of The-
orem 2, namely

TurorEM 4. Let (2) be a homogeneous covering sysiem in which the
r-th congruence is essential. Then we have

nz=l4 Z{a,(p,—l) 41},
=1

L]
where m, = [[ 97", . = 1.
Tl
LEvma 2. Let S bea 'regﬂ.lm covering system of the form (2). For a given

prime number q dividing H m; and a given y > 0, let n, denote the number of

=1
indeges 1< i< n such that ¢"|m; and lel a = miny, f = maxy. Then
7,70 ’W“"G
ety
q g
Remark. By a similar argument one can prove that
R, "
~q—:}+. + qﬁ_f,,_u >1 (e<<o<f)

This improves inequality (51) in [8] which has the same form with

a replaced by 1.
- Proof, Let us number the congrienees in our gystem so that (m;, ¢)
==1 for 1 < ¢ < »’ precisely. Suppose first that o’ > 1. Sinee § iy regular,
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its proper subset § < §:

cannot be & covering one. So let [4,, ..., #,] be a vector that satisfies none
of the congruences of &', Putting in 8: o = Mi,+%;, L <j<Fk where
M = lex.{my, ..., my}, we make all congruences of §' contradictory
and thus get the covering system 8" of the form:

k
a;{;—I-MZ oyt; = 0mod m;, = +1l<i<n,

=1 _
where g|m;. Let us now replace the moduli m, oceoumrring in 8 hy ¢
where ¢*|im;. The system will be still a covering one and since (M, g} =1
it ean be written in the form:

k
ty + Z ayt; = Omod ¢, ¢ |lmy
i=1

for '+1 € i< n Applying Theorem D to any eovering system with
K

moduli my, my, ..., m, We obtain >'1/m;>1. In our cage it means that
: (=31

8
2w, (¢ > 1. Suppose now that #’ = 0. Then for every i, ¢|m, and it
y=a

suffices to replaee the moduli =, in the system 8 by ¢* where ¢”on,. In this
way we obfain a covering system and proceeding as before we easily get
the inequality in question.

Liemma 3. Let py, ..., pg be distinet primes and 4,, B, (L <i<s), 4, B
integers such thai : :

(A,B,ﬁp,) =1.
T=1

Let us asswme that there exists an integral vector [&, §] satisfying the follow-
ing conditions:

(i) Az--Bj = 0mod []p.,
T=F

(i) A;3+B,;§ £ 0mod p,, 1 <4< 8.
Then there ewists a common solution [a, 1 of the congruences

A,2-+-By=0modp;,, 1<i<s
such that

(Aa+B,8,ﬁp,) =1
T 1
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Proof. Let us suppose that every solution [a, 8] of the congruenee
Ao+ By = 0mod p; satisfics da+Bg = 0 mod p;. Sinee (4, B,p,) =1
the ahove congruences would have the same selutions, eontrary te (i)
and (ii}. Thus there exists a vector {a;, 8,1 such that

Aiai—[Biﬁi =0 m(ld])i,
Ao+ B; & 0 mod p,.

In virtue ¢f the Chinese Remainder Theorem one can find a veetor
la; #] such that e« = a;modp;, £ = f,modp; for 1<i<s satisfying
the assertion.

Proof of Theorem 4. Let us denote by K, (1 <4< n) the set of
solutions of the {th congruence of our system and let

T
[, ...,z ] e ENUE,.
t2r
We can agsume that (z}, ..., 2) = 1. Suppose otherwise that (a?, ...
co @) =d>1 and that no vector [zy,...,#] With {&,...,5,) =1
has the desived property, i.e. if [, ..., 4] € K, thereexists and, 1 <1 < 0,
i %7 such that [#,...,2]eH,;. We have
(

a0 m ) @
[wga---sm.%]=d[_dl“r-“7_d&]: Whe're ("'11':“-;7)=1’
a ol )
thus there exists an 4 5= # guch that [f’ ,?] e K,. Since the system
is homogeneous, we have [}, ..., 73] € K, contrary to the choice of z?, ..
..oy @3l In order to prove the theorem we proeeed by induction with
reapect to k.

Assume that b = 2. Let us consider » homogeneous covering system:
(7 Ag-+-By =0modm, 1<Ki<n,

where 1 <y << mg <.y, (4, B,m) =1, Ix<{i<n and the
congruence A5+ B,y = ¢ mod m, is essential. Omitting if need be not
essential congruences we ean assume that our system is regular.

Let » be a prime number, plm, and Z, = {Z #r,1<i< 2, plmd,
Zy ={i #r,1<i<<n, pfm}. In virtue of Lemma 2 |2, = 9 —L

Rince (7) is & covering rystem, the following one has the same property :

Aw+By =0modm, ieZ,
(8) Ax+4Byy =0medp, - t1eZ,
A5+ B,y = 0 mod m,.
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Let I, denote the set of solutions of the ith ecngruence of the system

(7), and let [a°,9%]e EN|JH;. We shall prove that for every p|m,
i=1

i
there exists an i € Z, such that d,2°+B;y° =0 mod p. For this purpose,
suppose that there exists a p|m, such that for every i e Z,, A,2°+ Byy°
= 0 mod p. Tet

B, ={lz,y]eZ A;z+By =0modp} for 1eZ,u{r}.
Obviously X, = K,, so [2°,y°]e K,. The congruences
A4+ By=0modp for ieZ,vir}
have the commen solution [0, ¥°] and since (x°, ", p} = 1,
B = (00, 90+ 0 0p, A = 0,1, .0, 91, [5, ] € 27}
for ieZ,uir}.
Thus we infer that the system:
() A;3+ By =0mod my, ey,
A,z-+ By = 0mod p

is & covering one. Now we can omit not essential congruences in {9}, obbai-
ning g regular system and applying Lemma 2 with ¢ = p we have 2 contra-
diction.

Let now m, = Hp:‘, P < Ps <. <Py =1, Let us consider
Tl

first the prime p;. There exists an index i(py) e Z, such that A, ,s°+
+ By y® 2 0 mod p,y. Sjnce (7) is a covering system, so is the following
gne:

ApLt By =0modm;, 1<ign, i #i(p), ¢ E7,
(10) A’iﬁjl}m-%B?(ﬂl)y =0 1110(1 Py

Ap4-By =0 mod M.

The argument above shows that in the latter system the rth con-
gruence is essential, Let us consider now the prime p,, and put:
ZD: ={:iFniFip)l<isn pzimi}ﬁ
=

Z;g ={ivt £y i E ?:(Pl)y 14 <n, pAmd,
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where Z, 7 @ in virtue of Lemma 2. Preceeding with (10) as we
did with (7) we shall get a covering system of the form:

Az By =0mod m;, i eZp2UZ;9\{.@' (P2},
(11) Ai(pl)m'!‘Bi(pl)y = 0 mod P1s
Ai(pﬂ)m_i—Bi(pﬂ)y = 0 mod Dy
A,z+ B,y = 0mod m,
with the rth congruence essential.

Repeating this proceeding s times we ghall obtain the following
covering system.:

Ayp iyt By, =0modp,, I1<1<s,
i2) A.w By = 0mod m,,
A,p-+ By = 0 mod iy,
. .
where i e (L, s3\|J {{{p)}\{r}, with the #th congruence essential.
T=1

Let us now apply Lemma 3 to the system (12). In virtue of the lemma
there exists a veetor [a, 5] such that:

Ayp o+ By b =0modp,, 1<71<s,
(A,a+Bb,m,) =1.
Putting in (12) » =at+2°% y = bt+y°, where
Ay @ By yy® # 0mod p,, 1<7<8,

we get a covering system in one variable ¢, in which the first s congruences
are eontradictory. In virtue of Theorem B we cbtain:

(13) n—s =1+ Y a(p.—1).
F=1

Let now k> 3 and let in the covering homogeneous system (2) the

#
rth congruence be essential. Let [23, ..., 23] € K, J K, and let us choose
=]
’ iFr
arbitrary integers A, (1<j<%) such that:

k .
(14) Yay4; = 1modm,,

=1

e

Let us now make in our system the substitution #; = Ao+ B;ys
where B, (1 <j < k) are defined so that [#], ..., #;] corresponds to the
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vector [#%, #°] = [1,1]. In this way we obtain the system:

k &k
{15) @ Z aijAj+y ya B, =0moedm;, 1Iign.

i
=1

It is easy to see that the system is a covering one with the rth congruens
essential and by {14) we have

Taf A, a,, , A1) = 1.
2 i = d

Applying (13) to the qyﬁtem (lo) we get the asserfion of the theorem,

Remark. The estimate ocourring in Theovem 4 is the best possible
a3 the following example shows:

¥y = 0 mod p,, I1<rgs,
a—1pP" 1y = 0 mod p¥’, 1wy, Lt<sp, —1,
@ —tp'py 'y = 0 mod p;'pY, I€Sw<a, I<i<p,—1,
o—tp' Py . P§g1lps y =0 mod p; Hi’rr lswga, 1i<p,—1,

x= Gmodf] por.
=1

Now we shall return to the problem considered in Theorem 3, but
for homogeneous covering systems, We ghall prove the main theorem
of thig paper, Theorem 6, formiulated below. We have been unable to prove
that a homogencous system of the form (2) which covers a i-dimensional
cube (), = Z* with the side length 2" *+2, and such that 0. = [0, 0, ..., 0]
€ Cy, is & covering one. In this connection we shall show that the length
2*"*+1 of the side of our cube is not sufficient for the assertion and we
shall prove the latter for the cube with the side length 277 (» > 2).

Let us consider the system of w congruences:

¥ = 0mod 2,
5 = 0 mod 2,
(2 1)y = 0mod 271, Lg<ig<n—~3,
#—y =0 mod p, where p is an arbitrary odd
prime.

There is no difficalty in showing that this system covers the square
{0,277 and the veetor [1,2%7%+1] satisfies none of these CORZTUCNCeSs.
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. TeroREM 5. If w2 and a homogencous system of the farm (2) covers
a cube Oy < Z2° with the side Tength 2~ and 0 = [¢,0,...,0]eC,, it isa
covering system.

Proof. From the assumption we infer that the system in question
covers all the veetors e; = [0,0,...,0,1,0,...,0] for 1< “j<k Let
7

A =@y, o wy] € B oz 4,41, 1 <5<k, and [m’l,...,afk]éuzrf}
i=1

where O = I ... xI,, I, =<4, + 1,4;,+2"% 1<j<k and K
has the gome meaning as in the proof of Theorem 2.

Let us assume that & = O and choose a vector # e o with minimal
k

2,%;. By the assumption there exists an » such that o, > 4, +2""L We can
el

assume, as we did before, that v = 1. Let us consider the following system
of congruences in one variable @, ;
E
(16) apdy+ O ad = 0modm,, 1<i<n,
:r=2 :
By the choice of the vector & this system covers the segment 4,1
<oy < A +2%" and since the veetor e; satisfies ome of the econgruences
of the system (16), there exigts an index 4, sueh that 45,1 = 0 mod my .
Therefore the 4,-th congruence of the system (16) iz contradictory. Thus
we have got a noncovering system of n--1 congruences, which covers
o gegment of 2*~! congecutive numbers, contrary to Theorem C.
THEOREM 6. If 5 = 5 and o homogenecus system of the form (2) covers
o k-dimensional cube €y < Z* with the side length 2"~ il is a covering system.
Remark, The following example shows that 2" cannot be replaced
by 2% —1:
¥ =0mad 2,

@+ 2y = 0 mod 27, Ogi<u——2

Moreover, for » < 4 the asserfion of the theorem does not hold., The
Fystems

r=0mod 2; »==0mod2, s=0modd; »=0mod?2,
s=0mod3, w=0moedd; =z=0mod2, w = ('mod 3,
@ == 0 mod 5, .’JJEOde'f; .

cover the segments (23, (2, 4),' {2, 65, <2, 10> of length: 1, 3, 5, 9, respect-
ively. 4

Before proceeding to the proof of Theorem 6 we shall remind the
definition of the Jacobsthal function infroduced in [4].
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DEFINITION 6. The Jacobsthal function g{m) is the least positive

integer M guch that every sequence of M consecutive integers containg

a number prime to m.
LEvra 4. Suppose that Sy, Sgy ..., 8 are sols of integers such thai

8, consists exactly of k; residue classes modulo by, ¢ =1,2,...,1, and that

(By, b;) = 1if i # j. Let N be the number of integers @ in o segment of M con-

i1 ]
seeutive integers such that & is in none of the 8's. Then if 1 < s <t we have

T i )]Y(l—l‘i«)w(w _)j k,.)H(lwi).

f==g--1 i=1

N> l-HlI(

Proof. See [1] for M = 2”. The general case does not differ in any-
thing.

Levaa 5. If the ammbea w{m) of clzstwct prime foctors of m s greater
then 4, then

17) g(m) < 2e0m-1,
Proof. It hag been shown by Jacobsthal [5] that

max ¢{m) = 14,  max g(m) = 22,
o{m}=5 w(m)=6

and by Kanold [6] that

glm) < o(m) i
Since 14 <2, 22 < 2° and

w(m) < 12.

o(m)* <8*™-1 i em)zT

inequality (17) is true for .o{m) < 12. Furfher proof will be performed
first for = odd. Let

Mo PPy By 2P <Py < <Py
Take in Lemma 4

by =p;,, S;={@=0modp}, k=101<Kig1,
1

Then
3R [Jasm <o
fem s-,-l i=1

Moreover, it is easy to verify that for every ¢

1
1— ‘ﬁ;},l__ t_S;}i’
b; Porr 23

i=541
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thus it suffices to show that

Zi—-l.E EE-E}E 12 " >Et,2i/3+2
12335 711 13 3 ’
48\ 1 |
i.[‘;., (Tg‘) ‘“{; 19.34 ...

This inequality holds for ¢ 2= 13.
Agsume now that m is even, w(m)> 12, m = 2"m,, m, odd. Then
w(m;) = 12 and by what has just been proved

g(i‘?‘b) e :)g(:ml) < 2:3(-}11.1) . Em[m)—l.

Remark. An estimate for g(m) much stronger than (17) for w(m)
large has been given by H. Iwaniec [3], however it cannot be uged for
our purposes since it Invelves an unspecified constant.

Proof of Theorem 6. Let us assume contrary to the assertion that
for an » > 5 there exist homogeneous systems of the form (2) covering
a k-dimensional cube (', < Z* which are not covering.

. b1
Let us congider that system # for which 3w, is the least and let
for a given prime p i=l

= {i 1 Lign, plmg, by, =20, B,= mﬁ‘xord g

1sisn
We shall prove five lemmata about the system #.

Let one of the cnbes covered by # be €, =I;x ... x1, where

I, =4y, 4,421, 4jeZ (1<j< k). Bince % is nob covering,

there exist vectors [@y,...,x,] not covered by % and satisfying =, > A;
(1= j < k). From among t]le veetms with this property we choose a vector

& =[&, ..., &] for which ZE is the least.

Lenvva 6. Hovery modulus m; in ¥ is a prime power.
Proof. Suppose that for a cerbain ¢

]
me =[],
Since p.° < m, the system obtained from % on, replacing m, by p,
covering. Howevel

a. =1, S>1.

2 oy, % 0modm; (I #1),
=1

hence
& . .
Dog&=0modp” (L<r<s).
f==1
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It follows that

k g
Zaﬂ g = omod [ [ o7,
F=1 Tl

contrary to the choice of &
Lemnia 7. Theve exists an dndoz s<k such that ay 5% 0 mod m,
for all i < n, the system

Oy - 2 ;6 =0modm;, (1<i<n)
i#s _ :
covers the segment 4., 4,+2"' 1) but net £, and no pmibeﬂ-' subsystem
hus the same property.
Proof. Since £ ¢ C,, there exists an index s such that

A +27

Kow % covers all the veotors [&, ..., §_,, @, Sapry vees & ]y Where z g (4,

Ag+2"71 —1%. Otherwise there would be.a noncovered vector with the

Jth component > A, (1<j< %) and the sum of components less than
it .

2‘&, contrary to the choice of &,
J=1

If for an i we had a, = 0 mod m,, the congruence

a2 - 2 &g & = 0 mod
j#s
not satisfied by @ = &, would be contradictory, Omitting it we would
geb a system of % —1 congruences

Oy - Z’ opé; =0modm,  (1<I<n, ! #1{)

j#8
covering the segment I, of length 2"~!, but not covering £,. Thoe same
would follow from the existence of a subsystem considered in the lemma.
This would contradict Theorem C.
Leamma 8. If k,, B, have the meaning as above and ﬁ), = 2 then

(18) ' o =13 (g, —1)(p—1)+1.

, Prooﬁf. ?y the choice of the system %, changing in it the modulus

p'? for p'¥ " we obtain a covering system %', Lebt ¢ = lo.am. {mi}/jpﬂ""’
. legistn

and let us make in %’ the substitution @ = ot + &, 1<j < k. So all the

congruences which have the moduli indivisible by P become contradictory.

Let us multiply both sides of our congruences by ¢ and put s; = ¢, 8&,

1<j <k, where ¢z = 1 mod pﬁﬁ. In this way we obtain the following cover-

Multidimensional. covering systems of eongruenses

[ ]
=}
4.4

ing homogeneous system:

fc ’
Vags; =0mod p¥, 1<i<h,—1,
=1

LA

81
= b
PrpiSi = 0mod p 2.
is

The last congruence of this system is essential since only this one is
satisfied by the vector [2&y, 4,, ..., 58] Now, applying to this system
Theorem 4, we get the asgertion of the lemma.

Lmyya 9. For primes p, for which Z, + @ we have By = 1.

Proof. (i) Let first p = 2 and assume that 8,> 2. Putting in #
@; = 252253.—}—53- we obtain k, contradictory congrnences. [z, ...,a,]1e 0,
holds if and cnly if for every 1<<j < k: :

2 i
thus certainly if for suitable % e Z:
li" Sh< A‘j a1y

Therefore the new gystem of congruences in the variables ¢, 1 <5 <%
covers a k-dimensional eube with the side length 2"~%-1, In virtue of (18)

-2n~fa1 5 gm~k2 50 by Theorem 3 this system is a.covering one, confrary

to the assumption following which the vector 0 it not covered.

(i) Tet p = 3 and f, >2. If we substitute o, = 3¢+ &, 1<j<¥
in %, we shall obtain %, contradictory congruences and a new system of
7 —ky congruences in the variables ?,, 4y, ..., %, which covers a cube with_
the gide length [2%1 /3'53]. Since by (18), &, = 2, it suffices to prove that:

27;—1/3133 = 2n-2,33.
This inequality is equivalent to the following one:
log3 1
0g 9

log2 < -ﬁ:

It holds for B, 3> 3. The case of f; = 2, &, 3.5 is obvious sinee 2219 > 273,
Let now fi; = 2, ks = 4. Let us firgt consider the case where there is

exactly one modulus of % which is divisible by 9. Changing, if need be,

the numeration of congruences and variables and putting s, = &,2 <j< %,

we obtain a system of the following form: =~ :

k ) ‘
“i1m1+2ﬂ.,rj5j50mod3,, 1{7;@3
j=2 o

8 -~ Acta Arithmetica XLIII, 2
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k
Gy 3y 2 ;& = 0mod 9,
i=2
&
an o+ 2 ayf; =0modm;, S<i<n,
i==2
where by Lemmsa 5 allowing for permutation of variables a, % 0 mod m,
(I<gi<<n). .
Our system contains three congruences with modulns 3, and s not
a covering one. Hence two of them are equivalent. 8o, if we omit not
essential congruences, we shall obtain at most »n —1 congruences covering
2%-1 congeeutive numbers, but not all, which eonfradicts Theorem C,
Let now, among the moduli m, for ¢ e Z;, at least two he divisible
by 9. Changing one of those for 3 we obtain a covering gystem. None of the
remaining congruences with modunlus 9 can be essential, otherwise we should
have by (18) k; = 6. On the other hand, by Theorem 4 there is no homo-
geneous covering system of at most three congruences with modulng
3 each.

(iii) Tt remains to consider the case p > b, 8, = 2. As in (ii) it suffices
to prove thab:

Ep—1

222«—~1/‘pﬁp > 2nw—kp or 2 0 > Pﬂ;u‘

In virtue of Lemma 8:

L, —2
19 < 2
(19) fo<
as well as
(20) : P<k,—1.

Moreover, for m > 5 we have
(21) L 9m s w4,
Applying (19), (20}, and (21) suecessively Wé obtain:

o+3 fp—2 1, s
Ly e R B -
p'ﬂzﬂ<22 =1 )ézmﬂ § < ol
Lemma 10. For every prime p we have 272"
even kb, < 1.

. _IProof. Let us asswne that there exists a prime p that satisfies
2777 = p. Let us put in the system % #; = ph+ &, L <j < k. According
to Lemma 9 we obtain k, contradictory congruences. The remaining #—k,
congruences cover & k-dimensional eube and form a noncovering systen.

<p and for p <27}

Multidimensional covering systemas of congruences

o
=]
-1

Using Theorem 3 we infer that [2°77/p] < 2" %, Ko, we have:
212—1 <:p_2n—kp < 21"_11—1,2n—-kp — gaLml,

i.e. a contradiction.

Let us now assume that there exists a prime p with p < 27 and
k,> 2. Sinee p << 2", there exists a vector [2],al,...,27] such that
@, € Iy and 4} == 0 mod p for 1 < j < k. Putting now in our system % ¥; = 2]
for j # s, where s has the meaning of Lemma 7, we obtain a system that
covers 2"7! consecutive numbers with af least two congruences equivalent
to #, = 0 mod p. Removing not essential congruences, we get a regular
system of at most m—1 congruences, i.e. by Theorem C a covering one.
It iy clear that every covering gystem of dimension one with all meduli
greater than 1 has the property that a certain prime g divides at least ¢ of
them. Hence %, > q confrary to the first assertion of the lemma.

Completion of the proof of Theorem 6. By Lemmas 6 and 9 the
m, ave primes. Without loss of generality we may assume that m, < 2°—*
for 4 < n, precisely. Let s have the meaning of Lemma 7. By that lemma
for every ¢ > n, there exists an integer » e I, such that

(22) i D) o & = 0 mod m;,
j#s
begides a;, 2 0 mod m;. The congruence a, o = a,y modm; implies
o =y modm,; and @ =y sinee m; > 2" = |I |, Thus » is determined
uniquely and we can denote it by =,
Let us take distinct primes p, .., ..., 7, different from my, ..., m,
and consider the gystem of congruences

Gy & - E a6 = 0mod m, (i< ny),
78
g=g,modp;, [{1>%).

Since by Lemma 7 ¢, = 0 mod m, this sjrstem iz solvable in virtue
of the Chinese remainder theorem; let %, be o solution. We agsert that

© every inbeger ¢ in the segment (A, —x,, 4, 2,+2"""—1) has a common

factor with
L] fn
H my H Pi-
i=1 i=ng1
Indeed, t-+u, € (A,, 4, 2*"1 —1) hence i+, satisfies a congruence (22)
for a suitable ¢ < n. If i < ny, we have

Byl = ais(t+$0)+2 Gy Ej«—al-smo%z @ & = 0 mod my,

FE §¥8
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thus
t = 0 mod m;.

If ¢ > n,, we have t+o, = #,, hence
t = u;—e, = 0 mod p,.

It follows that

g n
9(” L H 171') > 2m,
i=1 t=np+1

contrary to Lemma 5.

Remark. Tt is clear from the"above proof that for # < 4 the numl
2"~* ghould be replaced in Theorem 6 by max g(m), i.e. by 2,4, 6 or
a(m)=n
for m =1, 2, 3, 4 respectively.
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