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ACTA ARITHMETICA
XLIIT (1084)

Pairs of additive equations IV. Sextic equations
by

E. J. Coox (Sheffield)

1. Introduction. H. Davenport and D. J. Lewis [10] remarked that
it should be possible in principle to show that the eguations, with integer
coefficients,

(1}

have & non-trivial solution in integers provided that
(i) ¥ =2k 41,
{ii}) they have a non-singnlar real solution,
{iii) for each prime p they have a non-singular p-adic solution,
{iv) if the degree % iz even then each form AF +af, (4, u) = {0, 0),
containg a reasonable number of variables explicitly.
The condition & = 2k2--1 is similar to Artin’s conjecture for two addi-

" tive forms. Results of this strength have been established when & = 2 ([2]),

=3 (4], 9 and [131), h=4 ([41), £ =5 ({6 and k> 18 ({5] and [11])

gince the analytic methods of [5] will also work for even values % > 13.

The snalytic methods used for quintic equations were based on a method

of Davenport [7] for iterating admissible exponents and unfortunately

the method just fails to work when & = 6. However H. Davenport and

P. Brdés {[8], Theorem 2) ebtained admissible exponents for 3 rixth powers -
that improved on the. estimates ohtainable by Davenport’s methods.

The basis of the present paper is to establish an analogue for two additive

equations of this resuls of Davenport and Erdés and then o use iferative

methods to obtain a sequence of 14 exponents for sixth powers.

THEOREM 1. Let the equations
F(x) = a05+ ... +ayay =0,

2y !
Gy =bal+ ... +bhyaly =0
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have inleger coefficients. Then they have a non-frivial solution in integers
provided that

(i) ¥ > 73,

(ii) they hawve non-smyulm real, 2-adic and 3-adic solutions, and

(iil) the ratios ayfb; take at least 17 different values with no value
occurring moere than 18 ¥mes.

In proving the theorem we may make the addltmnal assumptions
that N = 78 and that for each suffix ¢ either 4, or b; is non-zero.

2. Exponents for sixth powers. In [6] the s real numbexrs 1, ..., 4,
gatisfying
(3) Ak
were called admissible exponernts (for B additive equations of degree &) if:
For any R x sR integer matrix A, whose colimns form ¢ consecutive
nop-singular B x B matrices, the number of solutions of

=>4>0

(4) AX =AY,

(where '

(5) X =}, .2l ¥ =, s tenl”
are integer vectors satisfying

(6) 0P’ <y, y; < CiPY,  j=1,..., sk,
with » = 14 [(j~1)/R] and 0 < ¢ < Cj), is

(7) O(PRUrt- 248 a5 Posoo

for any ¢ > 0.

If 2, ...y A, ave admissible exponents and 6 > ¢ then 84, ...
alzo admlsmbie exponents When B =1 and s = 3 the methods of Daven-
port [7] show that for any 1< (k+1)/(k+2) the exponents 1, A; 1 are

~admisgible exponents. For k> 6 this was improved on by Theorem 2 of
Davenport and Erdds [8], which states that

(8) 1, 1—7%, 1kt
H ’

are admissible exponents. Recently B, €. Vanghan [14] has extended this
result to 2 sequence of s >3 exponents. Naturally, one might hope to
prove that the exponents (8) are admissible exponents for £ > 1 additive
equations, but there appear to be technical difficultiés in this. These dif-
ficuities might be overcome by altering the definition to require that the
columns of A are in general position, but this places severe restrictions
on the application of the results,

y 04, are
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THEOREM 2. Let

(9) A=1—F?, a=1—-kT—k"

Suppose that of the ratios ¢;]d; (¢ =1,
distinct and c,/d, and c4fd; are distinet.
Then the number of solutions of the equations

viey B) eyfdy, Cafdy, e5/ds and ogldy are

(10) oyt . Tegrt = eyt . ok,
Ayt .. +dat = - ... TS

in integers m1 s veny @gy Y1y oy Yo SebisSTying

{(131) rP<e,y<OP, i=1,2;

(12) ‘ TP <o,y < 0P, & =3,4,

ond _

(13) LP* <y < OF", i =15,6

where 0 < I < C; s

(14) g(pUHTaTsn gz Psoo

for any £> 0.

Sinee ¢,/d; # 6,/d, Wwe can take suitable linear eombinations of the
equations (10) to diagonalize the first two columns, Thus we may suppose
that '

(18) =0y =0
in (10). '

By ‘a solution of {10y we shall mean a solution which also satisfies
(11), (12) and (13). It will be convenient to express the number of such
solutions, »(P) say, in terms of exponential sums so let

(16) ,&mﬁg?mmm Aﬂ=§d@mh
(17) Tia, B) = UE) e((c;a+dB)at), & =3,4,
and _

(18) | Ts(a, f) = %’ el(c;a+dif)a"), i=5,6.
Then

19)  #(P) = [ [ 18:(a)Balf)Lsla; YTs(a, B) Usla, p) Usla, B’ dadf.
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LA 1. The number of solutions of (10) with x,
{20) _ O (PHTA+tatey
Proof. This confribution to »(F) iz

=1 and &y =y, 18

1

1
< P a{ S 1Ts(a, B) ... Us(a, )P dadp

o
<P2{afﬂfll’ a(as B B da dﬁ}”‘{jfl[zfs

and the lemma now follows from our verzion of Hua'’s lemma [31.
Lievata 3. The number of solutions of (10} w
ith @
or By =1 tmd Ty 7 Yg, 48 PR 8 =y

(21) (PR

B) Udla, B)*dadp] "

Proof. The number of solutions with
: _ fith 23 # v, and 2, = vy, is O
‘where »; is the number of solutions of the equa.-tion; o T e

{Qr)) 01$§:+63$r;+ e _i_cﬁmig = Glyf_}_cfiyé:_i_ . +Gﬁy§!

&0+ ... +deak = dyyi -+ oo - dgys
with 2, 7 y,. The restrictions on the ratios ¢/d, imply that d, and d; are
non-zero and that at most one of d; and d, ecan be zero. If neither d; nor

45 15 -zero then we can estimate ‘the
. he numb i -
equation in (22) as er of solutions of the second

s 100, B0, H 0, 0 70, pra

1

<5 i

7=

0, B (] 100, rag)® < prvines

by Hua’s Lemma (121 Each such
solution ﬁxes the value of .¢, (@

50 that the number of possibilities for z,, ¥, mth By F y is O(Ps)l(Tllmsyl)
this case the comtribution to »(P) is ' "
O(Pl—i-a(l—r#)’-lﬂde) < Prtitu)re

sines (A+u) < 2
Suppose now that one of d, and d, is zer '
cquation o (om) becomes - 4 18 zero. If 4, = O then the second
9
(24) i + dyaf + dot = 4?!4+d3/5‘l'd6y5-
Now.- i o '
(25) 1=F2, 1k ) Lk 1
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are admissible exponents for a single equation of degree k sﬁwe
(1=~ =k L —F2) < (R+1)/(k+2).

Therefore the number of solutions of (25) is O (P, For each such
solubion we then solve the first equation which now has the form

{26} ek F oyl = oy eyt C
for some constant ¢, The number of solutions of (26) is at most

i

27) f 18 () Ta(a, O)Pda< | [ 18 a)g*da}”z { [ iTsta, 0)it da}
' QP ‘

Tn this case the contribution to »{P) i3
< _P‘.PZ+1F+.E'PI+A+8 - P2{1+1+p)+‘zs

. and &> 0 is arbifrary.

We are now left with the solutlonn of (10) fol Which Ty F and

2 7= Yo
Levma 3. The numbef of solutions of (10) with &5 = Y5 aml Tg = Yg 18

{28) O (pratataEe),
Thig is proved in the same way a8 Lemma 1.

. Tvaa 4. The number of solutions of (10} for whieh . 7= Y19 Ta ;é Ya
and either m5 = Y5 and ¥g = e 07 &5 =Us and g # Yg 18

{29) O (prititaesy

Proof. The number of solutions with &, 7% ¥ and @, = Y 18 O(
where v, is the number of solutions of the eqnatmns .
P R SR R Y RN R X/ 8
At = Ayt Ay e T dsYS
= 0. Then the second

.PF'VQ)

{30}
dyit 4 d 5 Th

Suppose first that either d; or ch is zero, say ds
equation becomes
(31) Btk + g+ da = dayi+duyi+ A0S
and since 1, A and p are admissible exponents for a single equation the
pumber of solutions of (31) is _ '
- {32) O (PrHiTetey,
For each such solution the first equation becomes

{33) Cedhbeid = ayitoyi 0



o)
(¥
L

R. J. Cook

for some constant €. Since ¢; and ¢, are non-zero the number of solutions
of (33) is at most

1 3
[ 18:(0) T(a, 0)Fde < { [ 18:(adal™ { [ (e, 0 da }* < preaee
¢ 0 ) ]

50 in this case the mumber of solutions is

< P.pltitets, plidts P2(1+l+#)+28

and > 0 is arbitrary.
If neither dy nor d is zero then all the coefficients in the second equation
are non-zero. Thus the number of solutions of the second eguation is at most

34 [ 18.(BTH0, L0, B T(0, H)dp
0

<

.

[ 1808130, £y U0, pyPas

1

i
w

5

D

L[ 1880 ag™ | [ irsco, prrag)™ | f Ts(0, p)ag )™

i=3 0

< P2ttt

by Hua’s Lemma [12]. Each such solution fixes the value of e (af —y¥)
g0 the number of possibilities for ®yy Yy With o I8 O(P*), Thus the
Jumber of solutions in this case is

(85) & P#.P5(1+22+#)14+s_13a & PULHtE+s
gince 21-- u < 8.

The final step in the proof of Theorem 2 is to estimate the number -

of solutions of (10) for which x, F Y1y By F Yoy T 7 Y a0 g £ Ys

Levma B, The number of solutions of (10) with @, % ¥y, @, # y,,
Zs FYs and @g 7 Y, 15

(36) 0(P2(1+)’.+;;)+8)'
Proof. Let 4{f(z)) = f(#)—fle—1) and _
i=1,2.

¥, = &;—1(1) for
Now :
57) & dyy () = oy (yf —ok) + ... +ee(ye — k),
Ay () = dy(gE ) (g —a)
and so _ -
(38) O<It(d) <P for i=1,2
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where 6 =1-k7%. For fixed values of #(1), £(2), @y, 2, ¥5 and v, the
equations {(37) become
’ . ST R §

o dyy (@) = O+ O(PF1F7),
0 Ay (1) = Dy 4+ O(PF1-57),

(39)

For @, and #, in the range {11)

(40) () »aPEE

and so the number of values of o, satisfying (30) is
pr-1-k—1 P

w <mET Ty

since (from (38)) [¢{1)] <P’ and similarly for #,. Thus the number of

possible values of zy, ..., @4, 45, Y., 1(1) and £(2} satistying the equations ig
G2

(42) o <w< 2 i) & PHte  prlirtate

0t p?
For fixed values of these wvariables we have

) coleh —) ot —1t) = 0,
ds (2f —y¥)+ d, (m;‘f-—y!g} =D,

for some constants ¢, and D,. This determines the values «%—y% and
«¥ —y¥ s0 the number of possible values with @5 5 ¥, %6 7= ¥ is O(P%)
which completes the proof of the lemma. and Pheorem 2.

Theorem 2 does not quite prove that 1, 1 and g are admissible ex-
povents, as defined in [6], however the proof of Theorem 3 of [6]
implies the following resulf.

LExaa 6. Let A be an R xsE integer matriz whose columms form
s conseculive non-singuler RXE mairices. Suppose that the number of
solutions of

(44) AX = AT,
where '
(45) X =(af,...,algl" and Y =y}, ..., 051"

are tnteger vectors salisfying

(46) : le’l'<wj, yj< Gj.Pl

withy =1+[(j-1)/RL, 0< ;< C;and 4, = ... 22 1, > 0, is '
(47) ' O(.PH('1 +"'+AB)+‘) a¢ P-=oo v
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for any e> 0. Let

{48) 6=yt e +h and 8 =FkA—(E-1).
Suppose that § > 0 and that there exisis an integer 1 satisfying
(49) 1€1<k-2,

(50) e

{51) (2 -1)d+ o< T+,

Then for any non-singular B x R integer matriz A, the number of solutions of
{(52) 4, Xp+ AX = 4, T, + 47,

where . '

{53) X, = [k, ey )", Yo=[of, o, 05T
are integer vectors salisfying '

(54) PP <uy,n<CP, §=1,..,E,
and X, T satisfy (46) is .

(55) O(PR(1+41+...+45)+e) as P—>oo

Jor any &> 0.
Xow let 2;,..., 4, be cxponents with
(586) =1 and

We apply Lemma 6 with & = 6. For 6> 5/6 and eithier

g=ogls) =1+2:4 ... +4-

®7):  1=1, 6=min(7j6+e),11/12),  or
(58) " 1=2, 6=min({18/(1840),21/24), "or
(59) 1=3, 0=min(39/(4240),41/48), or
{60) 1=4, 0= mn(80/(90+c),5L/96),

we ean' take 1, 8, 64,, ..., 04, ag the exponents at the next stagé of the
iteration and have

(61) a(s-+1) = 10(s)a(s).
Beginning with the exponents )
(62) 1, 2 = 35/36, u = 29/36,

so that o(3) = 25/9, we obtain the numerical results in Table 1. The es-
sential feature of these results is that ¢ = o{14) satisfies

. {83) 25 4+17/32 = 12.019845... > 12,

icm
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Table 1
s o (5) z 9 ols+1)
3 25/8 | 2 866310 3.408417
41 3.406417 | 3 41/48 3.909647
8| 3.909647 | 3 849404 4.321224
6| 4.321224 | 4 81/96 | 4.646033
7| 4£.646033 | 4 31/96 4.920000
S| 4.920090 | 4 842814 5.146722
0| 5.146722 | 4 .840806 5.327398
10 5.327398 | 4 .839213 5470822
11 5.470822 | 4 887052 5.584288
12| 5.584288 | 4. .B3GOST 5.673813
13| 5.673813 | 4 836174 5744287

3. Allocation of variables, Our hypothesis that the equations (2)
have a non-singular real solution implies that the linear equations

(64) : 0+ - Faxyy =0,

b1y1+ . _:_b.NyN = 0

have a solution with each ¥, 0 and that y, > 0 for at least 2 values of
¢ for which the corresponding columns of coefficients have rank 2..

Lmna 7. Suppose that the equations (64) have « real solution with ail
9,20 and with y;, > 0 for some 2 values !of i.for which the corresponding
columns of coefficients have rank 2. Then there exist 2 columns of rank 2,
and o further 8 <2 columns of rank 8 such that the equations (64) have
a redl solution with the wnknowns corresponding fo these colwmns positive
and the other unknowns zero. o .

This is Lemma 13 of Davenport and Lewis [11].

TmMMA 8. Assuming hypothesis (iii) of Theorem 1, the 73 suffices
can bz partitioned inio two sets & and I such that

(i) 1&°} = 21 and |7| = B2; :

(ii) the 2 -+ 8 suffices corresponding to the columns oocurring in Lemma 7
are all in ;3 ‘

(iii) mo valué a,/b; occurs for more than 2 suffices i€ F; and

(iv) no value a;/b; ocours for more than 16 suffices fed, )

Proof. We collect the ratios a;b; into blocks of equal ratios and
put the 2 -+ § suffices arising from Lemma 7 into . We fake the largest

_ block of equal ratios and allocate suffices to & no that, together with any

suffices from that block already allocated to &, two suffices from that
block are placed in &. The remaining vatios of that block, at most 16,
are placed in 7. We repeat this for the second largest-bleek, thern the
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third and 30 on. We continue until either we have allocated 21 suffices
to & or we have reached ratios that oecur only once.

In the former case we have reached the ninth largest block of equal
ratios, 50 that subsequent ratios can oceur at most 8 times. Thus all the
Temaining suffices can be allocated to . In the latter case let + denote
the number of blocks containing more than one ratio and let s denote
the number of blocls consisting of a single ratio. For each repeated ratic
we can put fwo suffices into & so altogether we can allocate 2r - s suffices
to & If r =4 then gince v-+53 17 we have 2r4+s= 21 If £ 3 then,
gince no ratio can occur mors than 18 times

¢T3 18y =22 —¢.

and so 2r-+s8> 21, Thus we can continue to allocate the suffices so that
< is filled and any remaining suffices can then be allocated to Z.

We now renumber the variables so that
& =1{1,2,...,21} and 7 ={22,...,73}.

LEMuA 9. The vartables in & can be renumbered so that

) dpo ” Taz  Qog oy 227 Qzg |
"y PICETY ) )
oy bag' by byg [ bas
Ggy Gy Ogg  Oye
¥

b’ Dy’ bas' bag

(ii) the ratios are distinot; and

. Qg Ggy By O oL
(iti) the ratios —, —2, ==, 2 are distinet.
bsa bﬁD b72 b73 ’

Proof. Since no ratic cccurs more than 16 times in & there are at

least 4 different ratios in . We take one of each of the 4 most common
ratios as

s - gz gy

Ay
_— —— and —.
] H
b42 b43 648 . bﬂ.'?

Since the fifth most comimon ratio in ¥ occurs at most 10 times we now
haive a set 7, of 48 guffices in which no ratio oceurs more than 15 times.
Therefore there are at least 4 different ratios in &7, and we can take one
of each of the 4 most common ratios as

gy Ugy Qg qg
s s and —.
bes ' bga b . by

Amongst the remaining 44 ratios no value oceurs more than 14 times so
the remaining ratios can be arranged into 22 pairs of wnequal ratios.

{11 NEy =[]
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4. Preliminaries to the analytical method. The linear equations
(63) Oylfat ees Yy = 9.7
bigit oo FlnYn =0
have a solution of rank 2 with each y, > 0. By making a small perturbation
of this solution we obtain a solution with y; > 0 for 1421
Let P Dbe large and positive. For 1< §< 21 we choose constants

i and 7; so that, taking 2 = 5,

{66) 0 < p; <l <7y

and r;—p; 8 suitably small. Let N (P) denote the number of solutions
of (2) such that the variables x; satisfy

{67) PP <w<rP for j=1,..,2L
(68) P <com< 2Py for §=22,..,73

where v = [(§—18)/2] for 22<j<C 47, »(j) = »(j—26) for 48 s_j§73
and 1, Asy ..., Ay are the exponents determined by the process deseribed
in Section 2. : '

Let .
(69) 4, .—_aja—l—bjﬁ, 1<€j< 73,
and
(70) Ty(4;) = D, e(4,2%)

where o ranges over an interval of the form (67) or (68) depending on the
suffix j. The number ¥(P) is then given by

ki
[] T4 dedg,

=1

- and in order to evaluate this integral by the Hardy-Littlewood method

we shall need information about the golutions of (2) in p-adie fields.
LEmva 10, If p+k and N > 2k +1 then the equations
(12) Floe) = ayaf+ ... Fayah =0,
- g(@) = bat 4 ... bhyay =0
have a mon-frivial p-adic solution.

Proof. When k is odd this follows from the stronger result of Daven-
port and Lewis [10]. If & is even we deduce the result from the methods
of [10], so we only sketch the argument. Let

6 = ” (@:b5 —aybs),y
eh)
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then by p-adic compactness it is sufficient to prove the lemma when
@ =£ 0. If the equations (72) have © = 0 then they are equivalent to
a p-pormalized pair of equations

fiw)y=0, g@=0

and by Hensel’s Lemma, these equations have a non-trivial p-adie solution
if the congruences ' ‘

fay =0, g@ =0 mod p

have 2 solution of rank 2. The forms f'{x) and ¢'(2) contain sections

Folw®) = @k + ... +apak,

gol®*) = biat L ... +b,aF

{after 1enumbe1‘mg the varl&bles) where n > 2k-+1 and for ¢ =1, ..., n
- does not divide hoth a; and ;. By Chevalley’s Theorem [1] the congru—
ences’

ol =0, gol2*) =0modyp
have a non-trivial solution mod p and it follows from FLemmas 3 and 9 of
[10} that these congruences have a solution of rank 2 (med p), which
completes the proof of the lemma. :

Leamsa 11, If overy y form A -+ug (4, u #0,0) in ike pencil of f and
g has at least k* -1 variables with non-zere cocfficients and the equations (72)
have a non-triviel p-adic solution, then they have a non-singular p-adic
solution.

This is Theorem 2 of Davenport and Lewis [10].

Returning now to the equations (2), the eonditions of Theorem 1

ensuwre that the equations have a non-singular p-adic solution for every
prime p.

5. The minor arcs. The unit square is divided up into majdr arcs
M, where o and g both have good rational approximations, and the minor
arcs m which consist of the rest of the unit square. The major are

M(A, B, ) consists of those (e, g) which have simultancous approxi-
mations A /@, Bi@ satisfying

(73) le—AQI< Q7P B—BJQ| <

where (‘fi » B; @) =1 and & is a small positive number, independent of P.
The major aves M are the union of those M(4, B, @) for which

(74) 19 P,

Q-——I P 5—8

\<\A,B<Q, (A}B;Q):I..

icm
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TEadA 12, Suppose that {a, p) e m. Let ¢ and j be two of the suffices
1,2,...,21 for which a;b;—a;b; # 0. Then

(75) either {T,(A,)| < PPB20 op |Ty(d;)] < POATR,

This may be proved in the same way as Lemms 6 of 6%
Now let ¥(a, 8) be the product of four sums T;(A), § & %, with no
ratio a;/b; occm'ring more than twice.

Liexnis. 13. For any s> 0
72

(76) [ [1vies ] Tid) dadp < P,

j=22
where o = o{14) = 5.744207.,
This follows from the Cauchy-Schwarz inequality and our choice

of Ag, .eey Arg-
Leamis 14, For any &> 0

(77) | JfH [Tj(./l “dadﬂ<P17—1;j32+:a-,a4a-l-s_

m =1

Proof. The 21 suffices in & are partitioned into Dblocks of egnal
ratios, no block containing more than two suffices. For each suffix j let
m; denote the subseb of m for which

(78) max Tl = 1Ty (A

ief
Then for all suffices 4 € & except possibly for at most two suffices § we have
(79 1T:(4 s B) emy

Let V(a, ) denote & product of four exponential sums, including alt
those i‘rom the block of a;/b;, then

’ i1 %3
{f U‘[T (4 dad,8<P(3”3’*2" b1t oj ﬁ[ LACY N Ty(A)|dadp

)l < PZ%US 2424 for (

i=1 i=22
an =

< P17—17f32+26+346+8
and the lemmsa now follows on summing over j.

6. The major ares. For {a, f) e M{A, B, @) let

(80) o=a—A4[Q, vp=p—Bf
and - _ _ : ‘
(81) LG ='(a'j-f1+bjB)/Q: (Cj7 gy == 1.
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Then

(82) Ay = aya-+b;8 = 6/ +v;
where

Lewnta 18, We have
{81) P, Py dpdy < P
and for any >0

2
ff ﬁ min(P, P~% |y, N dpdy < PP

{85}
Ifz) j=1
where
(86) D(z) = {(p, 9): Ip} > P75, [yl > Poo+)

This may be proved in the same way as Lemma 22 of Davenport and
Lewis [11], since 20 of the ratios a,/b; can be arranged into 10 unequal
pairs. :

LEvmas 16, For any e >0

2 ﬁ g}—I/ﬁ < Qw-.;l,'z-;-s

A,B j=1

{87)

where the summation is over
(88) <4,B<q,
and gq; is defined Dy (82).

This may be proved in the same way as Lemma 35 of Davenport and
Lewis [9] since, in their notation, we have -

>11, 6 =1/6or 13

(4,B,9) =1

and 8,4 .

The importance of Lemma 16 is that since the exponent of ¢ is less than
—1 the singular series will converge. However, before passing to the
singular series we prune the major arcs. The first step is to take an arbi-
trary small positive number o and to estimate the contribution of those
major ares with-@ > P,

Lzwya 17. The contribution made to the integral by all those major
ares M{4, B, Q) mth Q>P" is

{89) < _P5+4d—mlz

This my be proved in the same way a8 Lemma 24 of Davenport and
Lewis [11], using Lemmas 15 and 16 in place of their Lemmas 22 and 23.

L6 =T

icm

- (98)
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The next step is to replace the remaining major ares M(4, B, Q) by
truneated major ares M(4, B, ) defined by
(90) la—A[Q| < P~%%,  |p-B[Q| < Pt
where 7 is a small positive consfant.

LeammA 18. The total difference between the contributions of the major
ares M{A, B, @) and the iruncated major arcs My(4, B, Q) with Q < P* s
(91) & Pl _

This may be proved in the same way as Lemma 25 of Davenport and
Tewis [11], with our Lemma 15 replacing their Lemma 22,
Thus

) = 22 ﬁfj(zlj_)dadﬁﬂ(pﬂw),

ompe 4,8 MyaBm 11

02)

7. Proof of Theorem 1. On the truncated major ares M,(4, B, @)
there is a good approximation to the exponential sums I(4,).

LEMMA 19. Tet (a, f) e My(4, B, Q). For 1<j <21

(93) T;(45) = g7 8 ey, 4) Li(ys) -+ O(PY)
where '
(94) (c,9) = D elea®),
”P
(95) Iily) = [ elyet)de
P

and 1 18 small.if o and T are small. If 22 < j < 73 then

Tilyy) = Q_?TIS (7 Q’;)Pi"l‘ O(P")

where » = [(j—18) /2] for 22<§< 47, »(j) = »(§—26) for 48.<j<Ts.

This is essentially Lemma 27 of Davenport and Lewis [11].
Substituting these approximations into (92) we obtain, as in {11},
Lemma 28 :

(97)

{96)

N(P) = 8(P)I(P~%7) + o (P*T*)

where

3
SEey= 3 N[ 68w
X QgP® A,B j=1 :

3 — Acta Arithmetica XLI1I,3
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and

(99 1E=47y = 024 [[ T] L)ty

where (¢ is a positive constant and the infegral is taken over the region
[q,)] <Pmﬁ+f’ WJ] <P—‘5+1.

Leamid 20. If the eguations (2) have o non-singular p-adie solution
for every wrime p then

(100) 8(P") = 8 +o(l)

where S ds @ positive constant,

a8 P—oco ’

This is essentially a combination of Lemmas 28 fuld 31 of Davenport
and Lewis [11],

Ly 21, We have
{101) T{(P-5T) = GOP”?“ (l+o(1))

where €y s positive and independent of P.

as P=oo

~ This is essentially Temma 30 of Davenport and Lewis [11], we have

€y > 0 since the box defined by (67) contains a non-gingnlar real solution

of the equations. '
" Thus

(102) N(P) = Cy8P* (1 4-0(1))

where (48 > 0, and this completes the proof of Theorem 1.

28 P—co
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