On Dirichlet characters of polynomials*

b;

A. M. NARANJANI (Teheran)

In this paper our objective is to investigate the distribution of x such that $\chi(f(x)) \neq 1$, where f is a fixed polynomial belonging to $\mathbf{Z}[x]$ and χ is a Dirichlet character of order $q \mod p$.

1. Let q be a fixed integer, and let f be a fixed non-linear polynomial that is a product of rational linear factors and is not a perfect qth power. It was proved by D. A. Burgess [1] that if e is any fixed positive number, if $p \equiv 1 \pmod{q}$ is a sufficiently large prime number and χ is a qth order character (mod p), we have for all positive integers H and M satisfying

$$p^{1/4+s} \leqslant H \leqslant p^{1/2}$$

that

$$H - \Big| \sum_{x=M+1}^{M+H} \chi \big(f(x) \big) \Big| \geqslant H^2 p^{-1/2}$$

the constant implied in the notation depending on ε , q, and f. It follows that $\chi(f(x)) \neq 1$ for some x satisfying

$$0 < x < p^{1/4+s}$$
.

We extend this result as follows:

2. THEOREM. Let g(x) belong to Z[x] and g be invariant under the map

$$\sigma: x \mapsto -x-a,$$

where a is a fixed integer. Let $a_1, ..., a_k, b_1, ..., b_i$ be integers satisfying

$$0 = b_1 < b_2 < \ldots < b_i = b,$$

$$a_1 < a_2 < \ldots < a_k \quad (k \geqslant 1)$$

and either $a_1 + a_k < a$ or $a_1 + a_k - 2b > a$.

^{*} The results in this paper formed a part of the author's Ph. D. thesis, Not-tingham 1980.

Let q be a fixed integer and let \varepsilon be any fixed positive number. Let

$$f(x) = \prod_{i=1}^{k} (x + a_i)^{a_i} \prod_{i=1}^{t} g(x + b_i)^{\beta_i},$$

where

$$(a_1, q) = (a_k, q) = (\beta_1, q) = (\beta_t, q) = 1.$$

Then if $p \equiv 1 \pmod{q}$ is a sufficiently large prime number and χ is a q-th order character (mod p), for all integers H satisfying

$$p^{1/4+s} \leqslant H \leqslant p^{1/2}$$

we have

$$2H - \Big|\sum_{x=-H}^{H} \chi(f(x))\Big| \gg H^2 p^{-1/2},$$

the constant implied in the notation depending on ε , q, and f.

2.1. EXAMPLE $f(x) = x(x-1)(x^2+k)$, $f(x) = x(x+1)(x^2+2x-1)$, and $f(x) = x(x+1)(x^2+2x-1)(x^2-2)$ satisfy the hypothesis of the above theorem.

It is implicit in [1] that the conclusion of Theorem 2 holds for any polynomial with integral coefficients and having the following property.

3. PROPERTY. There exist a constant A and positive constants B, C and a prime number q_1 , depending on f and q, and a q_1 -th order character $\chi_1 \pmod{p}$ such that if

$$\chi(f(\pm x+y))=\zeta, \quad |y|\leqslant nB+C,$$

where ζ is a q-th root of unity, then

$$\chi_1\{(x+A)^{q_1-1}(x+A+rB)\}=1 \quad (1\leqslant r\leqslant n).$$

Now, for the proof of Theorem 2 it is sufficient to show that the polynomial f described there has Property 3. The rest of the proof can then be completed as in [1].

4. For the moment let q be a prime number and

$$F(x) = g(x)^{\beta_1}g(x+b_2)^{\beta_2}\dots g(x+b_t)^{\beta_t}.$$

We define an operator T on the finite set S of polynomials of the form

$$G(x) = g(x)^{\gamma_0}g(x+1)^{\gamma_1} \dots g(x+b-1)^{\gamma_{b-1}(1)}$$

where each γ_i satisfies $0 \le \gamma_i < q$, $\gamma_0 \ne 0$ and $b = b_i$. To define TG(x) we choose h so that

$$h\beta_1 + \gamma_0 \equiv 0 \pmod{q}, \quad 0 < h < q,$$

and write

$$G(x)F(x)^h = g(x)^{\delta_0} \dots g(x+b-1)^{\delta_{b-1}}g(x+b)^{\delta_b}$$

where

$$\delta_0 = h\beta_1 + \gamma_0 \equiv 0 \pmod{q}$$
 and $\delta_b = h\beta_t \not\equiv 0 \pmod{q}$.

Next we write

$$H(x) = \prod_{i=0}^{b} g(x+i)^{[b_i/q]}$$

and choose K(x) so that

$$(1) G(x)F(x)^h = K(x)H(x)^q.$$

Thus, we have

$$K(x) = \prod_{i=0}^{b} g(x+i)^{e_i},$$

where each ε_i satisfies $0 \leqslant \varepsilon_i < q$, $\varepsilon_0 = 0$, $\varepsilon_b \neq 0$. Let ε_c be the first non-zero ε_i . We define

(2)
$$TG(x) = K(x-c) = g(x)^{e_c}g(x+1)^{e_{c+1}} \dots g(x+b-c)^{e_b} \in S$$
.

4.1. LEMMA. T is a bijective operator on S.

Proof. Since S is a finite set it suffices to show T is injective. Suppose that G'(x) and G''(x) are elements of S for which

$$TG'(x) = TG''(x) = G(x).$$

Then we may write

(3)
$$G'(x)F(x)^{h'} = H'(x)^{q}K'(x),$$

(4)
$$G''(x)F(x)^{h''}=H''(x)^{q}K''(x),$$

where

(5)
$$K'(x-c') = K''(x-c'') = G(x) = g(x)^{\gamma_0} \dots g(x+b-1)^{\gamma_{b-1}}.$$

We must deduce that G'(x) = G''(x).

Let γ_d be the last non-zero γ_i . Since

$$K'(x) = \prod_{i=0}^{b} g(x+i)^{s_i'}, \quad \varepsilon_b' \neq 0$$

⁽¹⁾ Any G(x) has at most one such representation as is seen by considering the factorization of g over G.

and by (5) we have

$$K'(x) = G(x+c') = g(x+c')^{\gamma_0} \dots g(x+d+c')^{\gamma_d},$$

it follows that d+c'=b. Similarly, we have d+c''=b. It follows immediately that c'=c''. Moreover, we have

(6)
$$K'(x) = G(x+c') = G(x+c'') = K''(x).$$

Next, by considering the exponents of g(x+b) on both sides of (3), we see that

(7)
$$h'\beta_i \equiv \gamma_d \pmod{q}, \quad 0 < h' < q.$$

By (4) h'' also satisfies these uniquely soluble conditions. Thus we have h' = h''.

Now, using (3), (4), (6) and (7), we obtain

$$\frac{G'(x)}{G''(x)} = \left(\frac{H'(x)}{H''(x)}\right)^{\mathbf{q}}.$$

But from their definitions

$$\frac{G'(x)}{G''(x)} = \prod_{i=0}^{b-1} g(x+i)^{\gamma_i' - \gamma_i''}$$

where $-q < \gamma'_i - \gamma''_i < q$. Hence we must have G'(x) = G''(x).

4.2. COROLLARY. There exists a positive integer m such that

$$T^m g(x) = g(x)$$
.

Proof. T is a permutation on the finite set S. Hence T has finite order.

For every F as in Section 4, where g and the b_j satisfy the hypotheses of Theorem 2, we have

5. LEMMA. There exist positive integers $c_1, c_2, ..., c_m$ and $h_1, h_2, ..., h_m$ such that $0 < h_i < q$ for each i and

$$\prod_{n=1}^{m} \left\{ F(x+c_1+\ldots+c_{n-1}) F(-x-a-c_n-\ldots-c_m) \right\}^{h_n}$$

is a perfect q-th power, where m is as in the above corollary.

Proof. By (2) we have

$$(TG)(x+c) = K(x).$$

We choose $G(x) = (T^{n-1}g)(x)$. It follows from (1) that

$$(T^{n-1}g)(x)\{F(x)\}^{h_n}=(T^ng)(x+c_n)\{H_n(x)\}^q$$

holds identically. Next, we replace x by $x+c_1+\ldots+c_{n-1}$ so that

$$\begin{split} (T^{n-1}g)(x+c_1+\ldots+c_{n-1})\{F(x+c_1+\ldots+c_{n-1})\}^{h_n} \\ &= (T^ng)(x+c_1+\ldots+c_n)\{H_n(x+c_1+\ldots+c_{n-1})\}^q. \end{split}$$

Choose m as in Corollary 4.2. We have

$$\prod_{n=1}^{m} (T^{n-1}g)(x+c_1+\ldots+c_{n-1}) \prod_{n=1}^{m} \{F(x+c_1+\ldots+c_{n-1})\}^{h_n}$$

$$= \prod_{n=1}^{m} (T^ng)(x+c_1+\ldots+c_n) \{\prod_{n=1}^{m} H_n(x+c_1+\ldots+c_{n-1})\}^q$$

$$= \prod_{n=1}^{m} (T^{n-1}g)(x+c_1+\ldots+c_{n-1}) \frac{(T^mg)(x+c_1+\ldots+c_m)}{(T^0g)(x)} \{K'(x)\}^q,$$

where $K'(x) = \prod_{n=1}^{m} H_n(x + c_1 + ... + c_{n-1})$. Since $T^m g = g$, we get

(8)
$$\prod_{n=1}^m \left\{ F(x+c_1+\ldots+c_{n-1}) \right\}^{h_n} = \frac{g(x+c_1+\ldots+c_m)}{g(x)} \left\{ K'(x) \right\}^q.$$

Next, we replace x by $-x-a-(c_1+\ldots+c_m)$. It follows that

(9)
$$\prod_{n=1}^{m} \left\{ F(-x-a-c_1-\ldots-c_m) \right\}^{h_n}$$

$$= \frac{g(-x-a)}{g(-x-a-c_1-\ldots-c_m)} \left\{ K'(-x-a-c_1-\ldots-c_m) \right\}^{q}.$$

On multiplying (8) and (9), and considering g(x) = g(-x-a) identically, we obtain the result.

Proof of Theorem 2. It is enough to show that f satisfies Property 3. We do this in several steps.

Step 1. t = 0. This was proved by D. A. Burgess in [1].

Step 2. $t \ge 1$ and $a > a_1 + a_k$. Let q_1 be a prime divisor of q and

$$f_1(x) = \prod_{j=1}^k (x+a_j)^{[a_j/q_1]} \prod_{i=1}^t g(x+b_i)^{[\beta_i/q_1]}.$$

We write $f(x) = \{f_1(x)\}^q f_2(x)$, where

$$f_2(x) = \prod_{j=1}^k (x+a_j)^{\gamma_j} \prod_{i=1}^t g(x+b_i)^{\delta_i}, \quad 0 \leqslant \gamma_j, \ \delta_i < q_1, \ \gamma_1 \gamma_k \delta_1 \delta_i \neq 0.$$

 Let

$$\chi_1=\chi^{q/q_1}.$$

So that χ_1 is a q_1 -th order character (mod p). Then, if in Lemma 5, F(x) is chosen to be

$$F(x) = \frac{f_2(x)}{\prod\limits_{j=1}^{k} (x+a_j)^{\gamma_j}} = g(x)^{\delta_1} \dots g(x+b_t)^{\delta_t},$$

it follows that there exist positive integers $c_1, c_2, ..., c_m$ and $h_1, ..., h_m$ such that

$$\prod_{n=1}^{m} \left(\frac{f_2(x+c_1+\ldots+c_{n-1})f_2(-x-a-c_n-\ldots-c_m)}{\prod\limits_{j=1}^{k} (x+c_1+\ldots+c_{n-1}+a_j)^{\gamma_j}(-x-a-c_n-\ldots-c_m+a_j)^{\gamma_j}} \right)^{h_n}$$

is a perfect q_1 -th power, say $\{L(x)\}^{q_1}$. Write

$$h(x) = \prod_{n=1}^{m} \prod_{j=1}^{k} \left[(x + c_1 + \ldots + c_{n-1} + a_j)(x + a + c_n + \ldots + c_m - a_j) \right]^{\nu_j h_n}.$$

Since $a > a_1 + a_k$, we have

$$a_1 < a_j + c_1 + \dots + c_{n-1}$$
 $(jn > 1),$
 $a_1 < a - a_k \le a + c_n + \dots + c_m - a_j.$

Therefore the factor $(x+a_1)$ occurs to the power $\gamma_1 h_1 \not\equiv 0 \pmod{q}$. Thus h(x) is not a perfect q-th power mod p.

By the case t=0, we have constants A, B>0, C>0 such that

$$\chi_1(h(\pm x+y)) = \zeta \qquad (|y| \leqslant nB + C),$$

then

$$\chi_1((x+A)^{q_1-1}(x+A+rB))=1 \qquad (1\leqslant r\leqslant n).$$

Now it

$$\chi(f(\pm x + y)) = \zeta \quad (|y| \leqslant nB + C + |a| + c_1 + \ldots + c_m),$$

then, since

$$\chi_1(f_2(\pm x + y)) = \chi_1(f_1(\pm x + y)^{a_1}\chi_1(f_2(\pm x + y)) = \chi_1(f(\pm x + y)) = \chi(f(\pm x + y))^{a/a_1} = \zeta^{a/a_1},$$

we have

$$\chi_1(h(\pm x+y)) = (\chi_1(-1))^{\sum \sum i_j h_n} \times$$

whence the result follows immediately.

Step 3. $t \ge 1$, and $a_1 + a_k - 2b > a$. We write

$$\begin{split} f_1(x) &= f(-x-a-b)(-1)^{\sum a_j} \\ &= \prod_{i=1}^k \left((-x-a-b+a_j)(-1) \right)^{a_j} \prod_{i=1}^t g(-x-a-b+b_i)^{\beta_i}. \end{split}$$

Then if

$$f_1(x) = \prod_{j=1}^k (x + a'_j)^{\sigma_j} \prod_{i=1}^t g(x + b'_i)^{\beta_i},$$

where $a'_{i} = a + b - a_{k-(i-1)}$, $b'_{i} = b - b_{t-(i-1)}$ and

$$a_1' + a_k' = a - (a_1 + a_k - 2b - a) < a,$$
 $0 = b_1' < b_2' < \ldots < b_t',$ $a_1' < a_2' < \ldots < a_k',$

then by step 2, $f_1(x)$ satisfies Property 3. That is, there exist constants A, and B, C > 0 such that if

$$\chi(f_1(\pm x+y))=\zeta \quad (|y|\leqslant nB+C),$$

then

$$\chi_1\{(x+A)^{q_1-1}(x+A+rB)\}=1 \quad (1 \leqslant r \leqslant n).$$

Now, if

$$\chi(f(\pm x + y)) = \zeta \quad (|y| \leqslant nB + C + |a| + b),$$

then

$$\chi(f_1(x)) = \zeta \chi(-1)^{\sum \alpha_j} \quad (|y| \leqslant \overline{n}B + C).$$

Hence the result follows.

Reference

[1] D. A. Burgess, On Dirichlet characters of polynomials, Proc. London Math. Soc. (3) 13 (1963), pp. 537-548.

DEPARTMENT OF MATHEMATICS UNIVERSITY FOR TEACHER EDUCATION 49 Mobarezan Ave., Teheran, Iran