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degrees at most D and heights at most A !, where H’ z 3. Suppose that
4 and u are non-zero algebraic numbers. For m =0,1,2, ..., put

63)] Ty = a A"+ “zﬂ‘mr

Further set

Yo = G A" 4 0™,

7 = max (|||, lixl)
where 4] and |z denote the maximum of the absolute values of the
conjugates of A and u respectively.

TrmorEM 1. Suppese Aju is not @ root of unity end v > 1. For non-
negative integers m and n, the equaiion

(2) ’ By, = Yp
with ‘
(3) ' A AT g AT

implies thai
max{m, n) < C;logH

for some effectively computable number O3 > 0 depending only on D, ) w)@d e

If 2, p ave algebraic integers and Afu is not a root of unity, the as-
gumption v > 1 is satisfied. Further we shall give a quantitative version
of Theorem 1. :

TEEoREM 2. Suppose |A = lu!, A1 >1 and Afp 8 not a root of wnity.
There exist effectively compuiable nwmbers Cy> 0 and O;> 0 depending
only on D, 2 and u such that for all non-negaiive integers m, n with m = n,
mzOdog(HH) and Aa, 2™ 5= Ba,A", we have

|4z, — By, = [Ame™ 0" .

where v = (logmlogH +log H)log(n1-2).

Putting a;, = a3 =@, G =8, =0, A=, p=0, By = U, and.
4, = U, in Theorem 2, we obtain

COROLLARY 1. There ewist effectively computable numbers Cg> 0 and
¢, > 0 depending ouly on D, a and § such that for all pairs of non-negative
integers m and w satisfying m>=n, m>= Clog(RH'). end Ad™ # Bd",
we huave '

| A%, — Bu,| = |af™e~ ™

where », = (logmlogB-log I )log(n--2). -

Rince a/B is not a root of unity and of + 0, the equations Aa™ = Ba®
and Af™ = Bf" with. m % » cannot hold simultaneously. Thus, if |a} = {f],

we can interchange, if necessary, o and g o derive the following result
from Corollary 1. : :
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CoroITARY 2. Suppose that la| = |8). Then
[Au,, —Bu,| > |aj™e~m

whenever m > n and m = Cglog(RH".

For given non-zero algebraic numbers 4, B and a given sequence
{%} whose assoeiated polynomial has non real roots, it follows from Cor-
‘ollary 2 that | A%, — Bu,!— oo whenever max (m, ) tends o infinity through
non-negative integers m and # with m % 5. This need not be the case with
the sequences {u,} whose associated polynomials have real roots. Tor
example, the Fibonacei sequence u#, = 0, u; =1 and wu, = t,_,+ %, .
for m = 2 satizfies

_|'z""7 — k| = Ifglm—l = Ia]wm+1.’ m =1, 2, -

For further results in this direction, see XKiss [4]. Putting A =B =1
in Corollary 1 and observing that {a] > 1, we have

COROLLARY 3. There exist effectively computable numbers Og> 0 and
Oy > 0 depending only on a and B such that for oll pairs of non-neyative
integers m and n with m == n and m 2= Oglog R, we have

[ — 2] = |a|™ 602

where v, = logmlog Rlog(n--2),

In particular, we obtain the following regult from Corollary 3.

COROLLARY 4. For distinct non-negative integers m and n, the equation

Uy = U, A

implies that
(4} max(m, »n) < OglogR.

Corollary 4 includes the result of Parnami and the author [7] already
stated. Compare the corollary with the results of Kubota [5] and Beukers

[3]. Further the estimate (4) is best possible with respect to B. For example,
congider non-degencrate binary recursive sequences

W, n=1,2,..
given by
%s::} m a(n]gm_b(n)gm, m=0,1,2,...
with '
a™ =271 and B =3"-1,

For n=0,1,2,..., we have

w® — 4™ and

0 < max(lul?], W) < 2.3,

This example is due to Tijdeman [12]. If a, b, ¢ and § with (¢, 8) = (b, o)
=1 are rational integers, we shall show that max(m, n), in Corollary 4, -
is bounded by a number depending only on the greatest prime factor
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of ab. For an integer  with lz] > 1, denote by P () the greatest prime
factor of 2. Puti P{1) = P(—1) == 0. For 0 # x € @, write » = a/b where
@ and b are relatively prime integers and define P(z) = I(ab). We shall
prove: '

TeRoREM 3. Suppose that o, b’y m, y with |o| # ly| end (a’, y) = (b', 2)
= 1 are non-zero rational integers and m, n are distinct non-negative rational
integers. Then there ewists am effectively computable number Oy >> 0 de-
pending only on P(a'd’) such that the equation
(5) . a}!m’ﬂl_{_ bf,ym — afwn+blyﬂ
implies that

max(m, n) < Oy

Theoi-em 3 with o', b’ fixed is a particular case of Theorem 1 of [10].
The relation
3-gm-lgn

4 = 3.gmelgmet_ymels g = 1,2, L

~ shows fhaﬁ the restriction (&', ¥) = .(.b’ , @) = 1, in Theorem 3, 18 necessary.
Tor non-negative integers m and n», put
max{m, %) 3
logk ')
Further set d, = [Q(a) : Q). Finally we shall apply Theorem 1 and Theorem
0 (see §2) to strengthen Corollary 4 as follows:
TenorEM 4. Let m and n be distinct non-regotive integers such that

w, and w, are non-zero. Then there ewist effectively compuiable numbers
0> 0 and Oy > 0 depending only on o and f such that the inequality

4@y 41)
P(”) 0(—"1%) *
ivs Tog A,

: Am,ﬂ “{ Glz'

Since a/f is not a root of unity, we find that the equations u, =0
" and w, = 0 with m # » capnot hold simultaneously. Further, by Cor-
ollary 1 with A =1 and B = 0, it follows that the equation 4, = 0 implies
that m < Uyslog R for some effectively computable number (3> @ de-
pending only on « and j.

Applying Theorem 4 with the least infeger » such that Uy, ac’: 0 (nis
either zero or one), we derive

(6) Pltty) 3= Oy (mflogm)Has+D),

Am,n = max

tmplies that

m 2 Oy,

{*) Added in pzobfs.

P(fﬁ’i) by.P( Y ) with m > .
’ Wy, (tton 5 i)

The arguments of Theorem 4 allow to replace

icm
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where €;; > 0 and C,; > 0 are effectively computable numbers depending
only on the sequence {u,,}. Mahler [6] proved, ineffectively, that P (u,,)
tends to infinity with . Schingzel [9] gave an effective and quantitative
vergion of Mahler’s result. Stewart {11] proved (6) with ¢y, and C; de-
pending only on a and . ‘

I am grateful to Professor R. Tijdeman for hiz valuable comments
on an earlier draft of this paper.

2. In this seefion, we state the vesults that we shall require from
other sources. Let ay,...,qa, De non-zero algebraic numbers. Pub
S a,) and [H:Q] =d. Let the heights of ay, ..., a,_; and
a, be at most A’ and A (> 2) respectively. All the results of this paper
depend on the following result of Baker [2] on linear forms in logarithms,

TeEOREM A. There exists an effectively computable number ¢ >0
depending only on n, d and A’ such that, for any & with & < 6 <1/2, the
enequalities

0 < [byloga; + ... +hloga,| < (8/B')7%45F

have no solution in rational integers by, ..., bp_; and b, (5= 0) with absolute
values at most B and B’ respectively. It is assumed that the logarithins have
their principal values. _

Putting 6 = 1/B and B’ = B, Theorem A includes the following
result which is also due to Baker [1].

THEOREM B. There emists an effectively compuiable number €' >0
depending only on n, d and A’ such that the inequalilies

0< l&f... arn—1] < exp(—"logAlog B)
1 r

have wo solution in rational integers by, ...
B (z=2).

TFor the proof of Theorem 4, we shall also require the following p-adic
analogue, due to van der Poorten [8].

TueoREM (. Let p be a prime ideal of K lying above a rational prime p.
Suppose that byy ..., b, and b, = —1 are rational integers of absoluie
values at most B, There ewisis an effectively computable number C'' > 0
depending only on n, 4 and A" such that for every 6 with 0 < 8 <1, the
inequality '

y by, with absolute values ai most

0o > ord,(ojt ... ur—1) > OB

implies that
B <075 p%log(67 p%) log 4.

3. In this section; we shall prove Theorem 1. Let 4, z, &, aq, 4,
and a, be non-zero algebraic numbers. Suppose that ¢,, a,, a; and 4, have
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degrees at most D and heights not exceeding H (= 3). Denote by ¥ the
field generated by 4, p, a4, da, @5 and a, over Q. Let a,, and ¢, be given
by (1). For 1

(M) © max|o(a)} < DH
and
{8) min [o(a;}| = (DH)™

where maximum and minimum are taken over all the embeddings o of F.
Further for every prime ideal p in the ring of integers of ¥, we have

(9) C jerdyla)l < clogH  (1<i<4)

for some effectively compuntable number ¢> 0 depending only on D.
We denote by ¢, €, ... effectively computable positive numbers depending
oniy on D, i and gu. Observe that [F: Q1< ¢;.

e apply Theorem A to obtain the following estimate for |z,,|.

Lranva 1. Suppose Alu is not a root of unity. There ewist ¢, and ¢; such
that for every d with 0 < 8 < 1/2, we have

(10) Il 2= (max (17, 1))} exp | — ealog (1/6)log H — om)
whenever m > elogH. '
Proof of Lemma 1. Suppose 4/u is not a root of wnity. We, first,

prove that the equation z,, = 0 implies that m < ¢;logH. Suppose that
= 0. Then

(11) (&u)™

I# 2/p i3 not 2 unit, there exists a prime ideal p in the ring of integers of I
such that ord,(i/u) is non-zero. Then, by (11),

{12) m < miord, (3/p) < jordy(a,)] + lord, (a,)].

The assertion follows from (9) and (12). Thus we may assume that
Alp 15 2 unit. Since 1/x is not a root of unity, we can find an embedding

o of F such that io(Au)] > 1. Fw:ther, by taking images under ¢ on both
the sides in (11), we have

lo(A/a)[™ = |o{as)fo{a,)i
and the assertion follows from (7) and (8).
e assume that m > ¢;logH, so that ,, % 0. Now we complete the

proof of Lemma 1 by applying (8) and Theorem A with n =— 3, d< ¢y,
logd’ = e, log'A =¢slogH, B=m+2, B =1 to

= —azlai.

tog{—1) —I— mlog (_) +log (Ei)
1 &y

where [ with I} <

m<-2 is an integer and logarithms have their prineipal
values. .

< ¢ < 4, observe that =
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Further we shall prove:

LEMMA 2. Suppose Alp is not a root of unity. For non-negative iniegers
m and n with m = n, the equation (2} with (3) implies that

{13) "< cﬂ((m-—n)—I—IOCfH).

Proof of Lemma 2. Suppose i/u is not & root of wnity. Let m and
% With m 3 » be non-negative integers satisfying (2) and (3). Re-writing (2),

(14) (@A — ) = — (Ao — ).
I follows from (3) and (14) that a, "™" —a, and a, ™" —a, are non-zero.

Tf A/u is not a unit, we can find a prime ideal p in the ring of integers of
F such that ord,{A/u) is non-zero. Then, by (14),

< mlord, (A/m)] < ordy(a A" — ay)| - lordy, (s 7 — a4)]

and (13) follows from (9). Thus we may assume that 2/u is a unit. Since
Alu is not a root of unity, we can find an embedding ¢ of F such that
|le{i/p)| > 1. Further, by tang images under o on both the sides in (14:),
we have

o{@,u™ " — )

]G(}"flju‘)gﬂ_ U(&lﬁm—n—ﬂfg) -

Now inequality (13) follows from (7) and Liouville type argument. This
completes the proof of Lemma 2. ‘

COROLLARY 6. Put ¢, = 2(c;+1). Suppose Ap is not a root of unity.
For non-negative integers m and n with m = n and .

(15) ) m—m < 6Ty
the equation (2) with (3) implies that
m < 2c5log H.
Preof of Corollary 6. By (13) and (15),
% << ortegm+eglogH
which, together with (15), implies that
m < 65 (eg-F1ym--cologH = 2= mL celogH.

Henee m < 20glogH. This completes the proof of Corollary 6.

Proof of Theorem 1. Suppose v > 1 and A/ is not a root of unify.
Tet m and » be non-negative integers satisfying (2) and (3). There is no
loss of generality in assuming that m > n. Further there exists an embed-
ding ¢ of F such that

v = max (o (A)], lo ()
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Thus, by considering the equation o(a,) =o(y,) in place of (2), it
involves no loss of generality in supposing that max(jAl, [u]) > 1. Write
(16) ' logmax(|al, [u]) = -

Weo may assume that m > clogH with ¢, sufficiently large. Letb
¢y > max (g, 2¢4). Then the assertion of Lemma 1 is valid and, by Gor-
ollary 6,

(17) wW—n > 07t m

Further, by (7) and (16), we have

(18) _ [, < 2DHe%",

Now it follows from (2), (10) with & = min(ss/2¢,, 1/4), (16) and (18}
that

(19) m—n (‘?c,) m+elogH.

Combining (17} and (19), we obtain m <
proof of Theorem 1.

2c,alulogﬂ’ This completes the

4. Proof of Theorem 2. Let A, u, ay, @y, &5, @0, D, H, 2, Y,, 4, B
and H' be as in Theorem 2. Suppose that m and » with m > % are non-nega-
tive integers satisfying 4a,i™ £ BagA". Denote by ¢y, €44, ... effectively
computable positive numbers depending only on .D, 4 and u. Put

f = Amm _"Byn .

Weassume that m > ¢y, log (HH') with ¢,, sufficiently large. Liet ¢y > ¢,
go that the assertion of Lemma 1 is valid. For B = 0, observe that

(20) max(l4d], B)<DH' and min(|4], |B|)= (DH)".
It IAa:m| 2By, then
f1 3 148,] — Byl = [Aa,l2

and the theomm follows from (20) and (10} with & = 1 fm. Thus we may
assume that

21y . [da,| < 2 IB?!n[ .
Further, by (7), -
22). [l < 2DH |A".

Now it follows from (21), (10) with 6 = 1/m, (22), (20) and max (]|, lu])
= |4 > 1 that '
(23) m—n<

If 6;; is sufficiently Iarge, it follows from Theorem 1 that f is non-zero.
Further, re-writing f, we obtain

0 # If} = 1A%(40,2"" —Bag) + i (Aag g™ " — Bay)|.

ey (logmlogH -logH').

icm
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Since Aa, ™" —Bag =0, we may wrike

0  |f] = |4*(4ay 2"~" — Bay)| 4
‘where _
Aa, " " — Bua,
A = TRl TTTE
I (A) Aay A" — Bayg 1

and A is non-zero. We apply Theorem B with # = 3, d < 035, B =0+ 2,
log A’ == ¢, and log A < ey5((m —n)+log(HH')} which, together with (23),
implies that logd < ¢ye(logmlogH +1logH’). We obtain

4z 67,
Further, by (23), (20), (7} and a Liouville type argument, we abtain
A (Aa, 7" —Bay)| = 2™ exp (—e5(logmlogH +log H')).
Hence
iz 12" e™",
This completes the proof of Theorem 2.

5. Proof of Theorem 4. For an integer w in @(«), denote by
[#] the ideal generated by =z in the ring of infegers of @(a). We have

(La*1, [8°]) = [K]
where & i3 & positive rational integer. Jn fact &

a = a*fk,

= (#2+28, 5). Pub

= B*/k.

Then ¢; and f, are non-zero algebraic integers such that the ideals [e}
and. [8,] are relatively prime. Further observe that [e;} = |£,], ¢;/f; 18 not
a root of unity and e, B, are roots of a quadratic monie polynomial with

rational integers ag coefficients. Consequently, we find that o> 1.
For m' =0,1,2,... and &' = 0,1, we write

(24) U150 = km‘v2m'+d'

‘where

: Vampas = a0l +BE7AM.

We denote by &y, ks, ..
only on a and 5.

Let n and # be distinct non-negative integers such that w, and =,

are non-zero. There is no loss of generality in agguming that m > n. Write

(25) Uy [, = B[4,

. effectively computa.ble pogitive numbers dependmg

where 4, > 0 and B, are relatively prime non-zero integers. Further write

m o= 2m+ 6y, B =211,
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where &, and &, are cither zero or one. Since m > n, observe that m, = n,.
Turther, by (25) and (24},

A My, = Bo,.

Cancelling the common factors of A;%™1™™ and B,, We can find non-zero
rational integers A,, B, with (4,,B,) =1 and

(26) P(4,By) < P(4,B3h)
such that ‘
(27 Ay, = By,

We apply Theorem 1 with a, = A,a01, a, = 4,061, a5 = Byad®, o,
=Bobf", A =y, p=Pus Oy = AoVps Y, = By, and ‘

log H < T:y (log {4, By + log B).

Since |ay > 1, we ses 7> 1. If ;4™ = ay2™, then we notice, by (27),
a ™ = a, " and consequently we find that '

(afpm™ =1

which is not possible, sinee a/f is not & root of unity and m # n. Further
A/ i not a root of unity. Thus all the assumptions of Theorem 1 are
satisfied. Hence, by Theorem 1, we conclude that

(28) m < Py +1 < ki (log |4, B, +1og R).

We agsume that m > kglog R with &, sufficiently large. Let k; > 2%s.
Then, by (28), '
{29) m < 2k Jog | A, B,

Write P = P(4,B,). By (29), we find that P > 2. For a prime p dividing
A, and for o prime g dividng B, it follows from (27) that

(30) o1, (4;) < o1y (v,), 01y (By) < 0rdy(0),

gince A, and B, are relatively prime, Further it follows from (A4,, B,) =1
and {30) that '

(313 log|4, B, = 3] ord, (4, By)logp

pid; By

< logP 2 max(ordp(Az)., ord,(By)
-5 2 .

<logP ' max(ord,(v,), ord,(v,)).
PP

Thus, by (29) and (31), we can find a prime p, < P such that
mAx (0rdy, (2}, OTdy, (9,)) > (2Eym(P)log P} m.

icm
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Sinee =(P) < 2P flogP, we have
max (ord, (9,}, ord, (9,)) > (4%,P)"m.
Liet p, be a prime ideal in the ring of integers of @{a} lying above ,. Then
(32) max (ord,, (v,,), ovd, (,)) > (4k,P) ' m.
Since the ideals {e,] and [8,] are relatively prime, we see that p, is

prime to at least one of the ideals [a;] and [5,]. For simplicity, we assume
that p, and [o;] are relatively prime. Put

e (3o e8] 1)

12
Fhen
(83) max {ord,, (v,,), ord, (v,)) < max{4;, 4;)+TlogR.
By (33) and (32), we find that _

max(d;, 4,) > (45.P)'m —EJogR.
We may assume that m > 8%k, PlogR, otherwise the theorem follows
from (26). Then _
oo > max{dy, 4;) > (8k.P) " m,
since v, v, 7% 0. Now we apply Theorem C with p = p, < P,n = 3,d =4y,
log A’ = ks, logd = kglogE, B ==m and &= min{(8k,P)~%,27%) to
max (dy, 4p). We obtain
m < b, PA 1 log Plog R

which, together with (26), completes the proof of Theorem 4.

6. In this section, we shall prove Theorem 3. We, thevefore, assume
that the conditions of Theorem 3 are satisfied. The plan for the proof
is similay to that of Theorem 1 of [10]. There is no loss of generality in
assuming that (a',b") =1, m>n and |»| > {y| > 0. Further netice that
(34) a' g™+ Y™ £ 0,

Pubt R, =max(ja’], [¥], 2). Denote by w,, w,, ... efectively computable
positive numbers depending only on P{a’'d’). We can assume that m > w,
with w, sufficiently large. Now we prove:

LeEnmna 3.
(3B) log By < w, (log o] -log(m —n)).

Proof of Lemma 3. Re-writing (5), we have
armn(wm—nml) — blyn(l _ym-—n.)_

"For a prime p dividing o,

ordy, () << ord, (1 —y™") << w4flog [y} - log (m —n)).
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Similarly for a prime g dividing %',
ord,, (b’) < w, (log ] +log {m —n)).
Fow the lemma follows iramediately.
TLEMMA 4.
(36) m—h < welogm.

Proof of Lemma 4. Apply (34), Theorem A with % = e, d=1,
. B =2lgR,, B =m, A" =w;, A=z, d=1/4 and the inequality
{35) to obtain

(37) Ia’m’“—i—b’y’“f ’>/ ]Cl;’[ ]mlm—wBiogm.

Further observe that ‘

(38) ja'a" -+ by < 2max(la’a™, [b'y™) < 2R, ol

Now the lemma follows by combining (5}, (37), (38) and (35).
Lemva 5. If

{39) ly] < &2,

then

m << welog [w].

Proof of Lemma 5. Re-writing the equation (5), we have

n I — AR 23
(40) (_w_) = L}E;u )
Yy @ (@™~ " —1)
By (40) and (39), we obfain _
(41) n < wyylogR,.

Now combine (36), (41) and (35) to complete the proof of Lemma, 5.
Write g = (l#], jy}) and 6 = {logm)—2 Then we have
~ Comorrary 7. If g> la]'—0, then
(42) ' (logm)? < log|x].

Proof of Corollary 7. In view of Lemma 5, we may assume that
1> %iz|. Then
ol =° < g < ol — ly| < el
. whieh implies (42).
LEMMA 8.
- {48) g< |zt
Proof. We agsume that g > {o[*~% Observe that

e (21, 20 = B o
9’9l ¢
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and farther, by (42), [#1° > . Now apply (34) and Theorem A with n = wy,,
d=1,B =2logR,, B’ =m, 4" =wy,, A =2|"and § = 1/m to conclude
that

{44) [’ g™ £ b y™] = max(|a’s™, [B'y™) o]~ uleEm R,

- Further combine (44) and (38) o obtain

max(|a's™, [b'y™])

m—n <
VTS e (@,

<2 [mlwmﬂlangilm

which, together with (35) and (42), gives

Wy, loglx|
logm logly| "

{45) ' 1l<m—n<

If |z| > ly?|, then it follows from (4()) and (35) that

logm

<
log ||

) < wiclogm
and this, in view of (36), implies that m < w,,. Thus we can assume that
o] < [y[® and hence, by (43), we conclude that

1< m—n < 2wy, (logm) 1.

This is not pessible if w, is large enough.arnd hence the proof of Lemma 6 is
finighed.

Proof of Theorem 3. Re-writing equation (5), we have
oo™ @™ 1) = byt (L —y™ "),
ie.
N v A
g g
which, together with (43) and (¥',») =1, gives
fe|

L]
{46) " < (7) <=y <2l

Combining (46) and (36), we obtain

7 < wis(logm):.
Now apply (36) again to conclude the proof of Thearem 3.
7. Remarks. (i) Suppose that the polynomial associated to the se-

quence {u,,} has complex roots. Let f(», y) be a binary form with integer
coetficients of degree h 3> 1. Assume that f(1,0) # 0. Suppose that the

-
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maximoum of the absolute values of the coefficients of f does not exceed
H,, where H;>>3. Then there exist effectively computable numbers
(14> 0 and €y, > 0 depending only on %, ¢ and § such that for all pairs
of non-negative integers m and # with m >n and m 2 CUylog(RH,),
we have .

|f (2o )] 2 ™6™ s

where
v, = (logmlog B+ logH,)log(n+2).
This follows from Corollary 2. '

(if) Let P = 2 and denote by & the set of all non-zero integers composed
of pritnes not exceeding P. Then we can apply Theorem 3 and Theorvem A
to derive the following result: There are only finitely many solutions
of the equation (5} in integers @’ e, b' €5,z €8, y €5, n = 0 and m with
(@, 0)y=(a", ) = (b', ) =1, i@ #iy] and n < m. Further effective
bounds for la’{, b}, i2|, |¥!, m and » can be given in terms of P. If &' and
b’ are fixed, this follows from Theorem 4 of [10].

(iii) Pot A, = A, ,. We can apply Theorem A and Theorem C to
prove: There exist effectively computable numbers ;> 0 and ¢, > 0
depending only on « and § such that

4, \Uerty
) ? Am 2 GIB .

Pti) > Crs (@—

Here d; = [Q{a): Q. We give a sketch of the proof. By congidering the
gubsequence {Us,} and {t,.,} separately and observing that ([«2], [52])
is an ideal generated by & non-zero rational integer, there is no loss of
generality in assuming that the ideals [a] and [3] are relatively prime,
We assume that A, = 0y, with 0, sufficiently large. Then, by Lemma 1,
we obtain '

[} > ™.

Writing P, = P(u,,), we have

m
5 10g|-g[ < loglu,,| = 2 ord,, (#,)logp < log Py Z ord,, (u,,) .
Dty PPy

Consequently there exists a prime p, <{ P; such that
ord,, (4y) > (4P loglaly " m.

Neow we apply Theorem C, asin the proof of Theorem 4, to cormplete the
proof of the assertion,
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(iv) Suppose that the associated polynomial to o recursive sequence
{U,} of order 3 has none of the roots equal to 0, L1 and none of the ratios.
of its roots & root of umity. Mignotte and the aunthor have used Theorem 2
in proving that U, s U, whenever m # n and max(m,n) exceeds a cer-
tain effectively computable number depending only on the sequence {Uy}.

Added in proofs. We can combine Theorem 1 of [10] with the eifective result
on the greatest prime facter of a binary form in place of ineifective theorems of Roth
and Schinzel on the equation f{&, y) = g{#, ). Then we obtain: Let 4, 8,0, DeZ
with AB # 0. The equation

Az™ 4+ By™ = (5" -+ Dy

has only finitely many solutions in integers =, g, m,n with [v = lyl, 0<n<m,
m> 2, (i, n) = (4,2) and Ag™ £ Ox® if the binary forms AXm 4L ATM and OX" +
4 DF¥n are not divisible in Z[X, ¥] by a common linear factor. Furthermore the
result is effective. :
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