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The joint distribution of the binary digits of
integer multiples

by

JomANNES Scpmm (Ulm)

1. Problem and results. Xach number » e N, hag a umque binary

expansion
0o
n= a2,

»==0

d, e{o,1}.

We consider the “digital sum?”, i.e. the total

Bn): 2 d,

y=={
of digits 1 in this expansion.
Elementarily, B(#) is binomially distributed and henee its approxi-
mate distribution iz given by the central limit theorems, e.g. in the
simplest form:

1 f o Bi{n}—mf2 }
—gloga< o <
G R

Tt iy not difficult to show (elementarily) that the right hand term
deseribes the limiting digtribution of B(kn), k e N, too.

Thence, it should be interesting to know the joint digtribution of
(B(kn), B{ksn), ..., B(kn)} (,where, w.lo.g, the %, are different and
odd). '

A special question of this type was asked by Stolarsky and Muskat
[9] who obtained the upper estimate:

&
f ¢ Pd;  for £eR.

{rri—00) ]/...J T

1< n < 2; Blkn)—B(n) = a} < o (k —_+z()

1/ log 1ogm

with explicit but rather large ¢,(%), ¢,(%). Further, they conjectured tha
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the left side is

2

@
___exp —&4(k)
Vlogs ( : logw

~ B, (1) ) for suitable &, (k), & (%),
at least for “small” o
Fork = 3,8 theorem of the latter type was obtained by Stolarsky [8].
The creneral case was treated by W. Schmidt [77, who showed that
(B(Fn)y B{kam), .. B(km)) in a global sense have a limiting distribution
of Gauss type. ’
In our main theorem we shall prove that the same i frue in the local
senge and moreover shall give an error term instead of a mere asymptotic.
Kitai [4] proved a global theorem of W. Schmidt’s type for fhe
differences B(3n)—B(n).

Marw TueoreM 11. Let 8§ e Ny Joy, By ...y kg different odd e N. Then,

for weR, 2>1, and a: (a)ulr_:.Zs _
:ﬁ:{'m 0g<n<s; ¥y =1,2,...,8: B(kn) = a,}
LR - S L U - 0(“*5U ) |
— 8 —_— Bl e §
V2zlde VetV Vidz Vids

with the positive-definite (in particular: regular) s X s-matriz V with eniries

1 gcd‘ () 2:,,)

Yy ptm= Y Lk (p,v=1,2,...,8).

Herein, the O-constant does not depend on a (but may depend on 85 %y, Koy -
k.
Vs
Note. ldx means logarithm of 2 to base 2. All vectors are row vecbors,
* denotes the transpose of a vector or matrix.

m
Remarks. 1. For z = 2™ a second term — of order — can he
' m Vm
¥
made explieit and the error term reduced to 0 (—s—) by our Main
m

Temma 4.4.

2. Let

. ldz
= ——
2

Then, for sufficiently small €, (> 0)

[6] < €, V1da loglds
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implies that ezﬁ ( 1 ﬁV“‘&*) = o{¥1d®), and hence for those @ the main

21dx
theorem gives a waiform asymptotic as w—>o0.
On the other hand, for sufficiently large C,

14] 3= ¢, V1dzloglds

implies that the “main term” is only of the order of the remainder term.

" 3. For sufficiently large ¢ = (g}, ¢ > 0, it can even be proved el-
ementarily from the properties of the binomial distribution that

Bk, ﬂ)—»«———‘ Cl/idwloglc'im} = o(

@
:ﬁ:{0<fn,<m du: v/ldm)

Just observe that the left hand term is

B ldz
-5
Vidz

With our means we can improve the ¢; (k) of Stolarsky and Muska?’s
theorem to its optimal value at the expense of being not able to specify

¢, (k) explicitly. Namely, as cne mlght guspect by heuristically summing
up the terms of Theorem 1.1 withs = 2 2 over those (@, 4,) with @y —a, = a:

TrEoREM 1.2, Let ki, ks be different odd € N. Then, for 2 e R, 2> 1,

0 (:{:l: {0 < n < { max k,)o; = Gl/logldm})-

y=1,.y8

and aeZ
_ra .
. o . _ - 2ld= § o
4 {n: 0 < < @3 B(kyn) — B (k) a3 1/;5"7?15:51/1"73 +O(ldm)
apith

7::}—(1—

- ged® (ky, 7“2)) - 0.

Feylos

Herein, the O-constant does not depend on a (but may depend on Ky, k).
We can also sharpen W. Schmidt’s result by giving an error term.

Heuristically, this is done by summing up the terms of Theorem 1.1 over

thoge e with _

ldz

{1, ~— ——

o2

— < £, for all ».
_v’ldm'
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TueoREM 1.3. Let 8, k,, V be as in Theorem 1.1. Then, for weR, > 1,
and &= (£,);_, e R*

ldz

B(lm)— o
#H/D ‘n:<{Z' V‘V———I.J S'—-—_—u"(Ev
T Vide b

B ]‘ —Lip—1g ( @ )
= e “ae é = dr3- 0 —]. -
Vax'Viet v J -t T Wida

Herein, the O-constant does not depend on & (but may depend on s; ky, ks,
ceny gl

Aetually, in W. Schmidt’s version the 1d # on the left side has to be
replaced by ldn. We omit the straightforward proof that this does not
change the right side.

Tor some interesting corollaries to this theorem the reader iz re-
ferred to W. Schmidt’s paper.

Ii desired, one could obtain by our means a global theorem for the
differences . B{kn) — B(kn) related to Theorem 1.2 as Theorem 1.3 is
related to Theorem 1.1 and thus generalize Kéatai’s result,

Starting peint for our proof is the recursion formula in Lemma 2.1,
which is analogous to the one used by Stolarsky and Muskat [9], (1.7)
& (1.8). .

By introducing Fourier-transforms the problem is essentially trans-
lated to the estimation of the mth power of a matrix valued function
@1}, t e[ —=x, =]°, for large m. '

D™(1) is estimated by employing the maximum modulus eigenvalue
A{t) of @(t) and the corresponding projection operator. Hereby we follow
the main lines of Héglund’s treatment. of Markov chains [3], especially
Theorem 3.1, while most details are specific to our problem.

The notion of a set like .o (Lemma 2.3) and the properties of T (Lem-
ma 4.3) are contained in W. Schmidt’s paper [7]; for Lemma 4.3(b) we can
also use the more general resul‘b in J. Sehmid [67.

2. A recursion and an equ.walent matrix problem. Remember that
throughout this paper %, ks, ..., k, are different odd eXN.

We are interested in the number of mel0,r) with B(Eka) = q,
In order to obtain a one-step recursion, however, it is necessary to consider
also nonzero residue classes mod¥,, that is to count the n with B(kn+h,)
= &, Furthermore, since the recursion works only for intervals of length
a power of 2, we decompose [0, #) into intervals of the form [i2™, {I--1)2™),
This will motivate the parameters I and % in the following definition:
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The joint distribution of the binary digits 395

For a:=(a)_, cZh:i=0) 0 eZ50<h, <k —1; and LmeN,
et
21y 8k, a; 2™ n< (I+1)2%Vy=1,2,.

ieey 81 B(k,ﬂ+izv) = q,}.

= #{I"<

Then the recursion is given by
LA 2.1, For m> 0

Sy, a; 2™ = 80, a—1'; om—hy L §(k", a—r"; 277,

where :
S R
and
P o= (B i=(p (i, ¢ =1 (B = (PR
with '
1, u odd,
pluye= {0, % evet .

{Of course, p(h.+ k) = 1—p(ﬁ ), because k, s odd.)
Proof. Let
2R n < (i def{0,1}.

+1)2m, =20+ d,

Then, for all v =1, 2,..., s, the following are equivalent:

Bkxn+h) = a,

h,+kd
B (275,-7&’—{-2 [———t———] +p{h,+% d)) = a,,

R,k o
Bt [ 2 TE]) = ).
d = 0 yields the first, d = 1 the second right hand term.

Tn the nexgt step, to make the recursion more manageable, we eom-~
Dine the infinitely many a’s into Fourier-transforms
DX AT

neZ®

(2.2a) _ (‘Pz,m (f))n s=

where 1 = (8,){_,, 1, € [ —=, =], 82y, at the same time interpreting these.
functions as components of a (kk, ... k)-dimensional vector ¢, ,, () indexed.
by the set of s-tuples {h; 0 <k, < k,—1].



 (9.4a)
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The recursion takes the form

(@l,m(t))h = Z[’S’I(h’: a_,..'; 2m—1)+sl(hrf, G_TH; 27‘.-:—1))61'::1«
acZs ’
— Z(Sl(h’S b; 2m-—1) eir't"‘+Sl{hu, b; zm--l) e{r"t*) e-ibt'

beZ?
= (Pt O™+ (P mor (O™ s
which can, obviously, be written as
(2.3) Prn(t) = Q- (1) D (1),
where @(f) 18 the (kk.... %) < {kk,y ... b matrix with the entries
[e""’* it g =4,

(2.2D) (@), =1 it g=1n",

0 otherwise.

Apart from the case ¢ = 1, k, = 1 we always have &' # A", so that
each column of @(t) contains exactly two nonzero entries. In the excep-
tional cage the two terms must be added. Since this exception is just
the wel-known binomial distribution case, we shall not bother about
the evident changes necessary in the following to prove it along the pres-
ent lines.

By iterating (2.3) we find

P () = @10 (D P™(B),-
where ¢,,(f) i8 easily determined from (2.2a) and (2.1):

(2.4b) (20} = exp(i(B(RI+ Rt

Finaily, the 8;(h, a; 2™) can be obtained explicitly from the @, () by the
Fourier inversion formula. For convenience, we shall state this with a
matrix ¥(1) instead of P(f), where ¥™(t) is obtained from &™(f) by ex-
tracting the factor which eorresponds to the approximate mean value
(2 of the desired distribution. Namely, let

i
— 5ty gt ot

(2.5) W(t) = e B(1).

¥(3) now fulfills & symmetry property whick we shall gtate in Lerama 3.4.
The Fourier inversion formula is:

Lpaora 2.2 '
- 1 —ifa-Z g,
@8) Bha;2m= > @—_)—ffe (= Z =20 o),
r=~lo,)y_4 [-mnl® .
U<k, —1 : ' '
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where
bi{g) 1= Bk} +g.))i:.

Proof. The proof is obvious by (2.4a), (2.4b), and (2.5) above.

Our problem is thus reduced to estimating ¥™(t). Beeause this depends
largely on the maximum modulng eigenvalne(s) of W(t), classieal results
due to Perron, Frobenins, and Wielandt (see our Temma 3.1) make it
desirable that ¥(t) is irreducible.

Hereby, 2 matrix ¥ is called {rreducibie if it does not have the form

o Y

1o Fon
with quadratic submatrices Wiy, ¥as, and cannot be bronght into this form -
by a consistent relabelling of the rows and columng (otherwise: reducible).

An interpretation in Markov chain terminology (see Chung [1]) may
be illuminating: Call the transpoze of ¥(0}/2 the transition matrix of
& Markov chain with states k, the transition probabilities being 1/2 for
both the trangition A—A&" and A—#"' {and 0 otherwise). As is well-known,
a limiting distribution of (¥(0)/2)™ is obtained most easily for an irreduc-
ible chain or, eguivalently, an irreducible tramsition matrix.

For the relation of (¢(2)/2)™ to Markov chain problems the reader
may consult Hoglund [31, introduction.

In general, our matrix ¥ iz reducible. Namely, note fhat all
9. < (k—1/2 if ¢ =4/, and all g, = (k,—1)/2 it g = ", Tf therefore
some g, << {&—1}/2 and some g, > (k,—1)/2, then neither g = &' nor
g = »”, and hence the gth row consists of 0°s only.

In view of this, let o denote the subset of the index seb {#; 0 <<H,
<k, —1} belonging to ¥y;. 1 & contains & = 0, the only value of % even-
tually interesting us, we can reformulate Lemma 2.2 with ¥, instead of
¥ and ¢ and b resivicted to < accordingly. Again it is desirable that
W, is Irreducible.

In the nexfi lemma we shall give a set o of this kind. It can be deseri-
bed by the linearly ordered sebt [0, 1), which facilitates the computations
involving A’ and 2" in the following. (Cf. the notion of “admissible vector”
in 'W. Behmidt [7], formula (5.1}.) The proof of the irreducibility of ¥y,
will then be given in the next section after stating the eigenvalue theorermts
for irreducible matrices.

- Lmmma 2.3, Let
Ai=1{h = (b)Y, €230 el0,1): Vv =1,2,...,8: h, = [k2]};

Jurther let I, be the set of all # €10, 1) representing h € o by b = ([kx])=1
and let Ly be iis measure (lengih). '

- 6 — Acta Arithmetica XLII, 4
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Then:
(a) (i) 0es,
(iiy For all b = ([ka])_, € &7

'y
(2.72) B o= ([k%]) € ot
< A v=1

+17):
(2.7h) B = ([L -m—g—]) €.
-t =1

(b) For ol b e of Iy is a loft closed, righi open subinierval of [0, 1)
The endpoints of such iniervals are exactly those rationals in [0,1) that
can be written with one of the ky, ks, ..., b, as denominator.

P}

Proof. ® =[[ "’b]] = [ ;m ],hence (2.7a). (2.7h) analogously. The

rest of the proof is obvious.

Now, we restrict all indices b, g to the set 7, but, for convenience,
continue to write ¥ instead of ¥,:

Reread the definitions of ¢ D, and ¥ and Lemma 2.2 with the ad-
ditional restriction % e &, g € &, (g, ,, becomes a (HFo/)-vector and @, ¥
a {3#) x (I )-mafrix. The som in Lemma 2.2 is over g e &7.)

3. Spectral properties of ¥ (). An estimate of ¥™(f) ig closely related
to the speetral propertieg of LF’(t) These shall be treated in the present
- section. :

The classical eigenvalue theorems about mon-negative matrices

— like ¥(0) — due to Perron and Frobenius arve (quoted here from Wie-
landt [10], for an Engligsh reference see, e.g., Gantmacher [2], vol. II,
chapter XTTT):

Lewns 3.1 Let 4 be a & X k-matriz with non-negative entries and lel
A be irredueible. Then:

(a) A Las o simple, positive mazimum modulus eigenvalue L. The eigen-
vector corresponding 10 A ean be chosen to be pasitive (componeniwise), and A
48 the only eigenvalue with this property. 1 is the only mazimum modulus
eigenvalue if A™ > 0 for some m € N.

(b) et B be a comples k x k-matriz with
bl <o, Vo, v I<p, o<k

(@0 B, Deing the entries of 4, B, respectively), and lot B be ¢ mawimum
modulus eigenvalye of B, Then

. _ P14, |
and equality, .e. § = €74 for an 7 € R, holds if and only if there is o diag-
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onal matriz D whose diagonal elements all have modulus 1 such thdt
B = ¢"DAD™.

Patt (b) —uszeful for us in relating the spectrum of ¥(i) fo thav of
P(0)—is Wieland$’s contribution,
~ We still have to prove the irreducibility of ¥(0) and then can apply
Perron [Frobhenius:

Lenmra 3.2, {(a) For meN; g, hes, b = ([a]i, ze]0,1),

Fra (¢ 1 e %
_(-_.;m—))ﬂ:h :Eﬁ#{ogu<2 P +§%~EID}(m:?>)Ly.

(b) Consequently: P™(0) > 0 for all sufficiently large m; in particular,
Y{0) is irreducible.

MHO0):= 2 is a simple, posilive eigenvalue of ¥(0), exceeding all other
eigenvalues in modulus. (1,1, ...,) s a left, (L) @ vight eigenvector of
w{0) o A(0).

Proef. {a} The Markov chain interpretation of Section 2 simplifies
the formulation of the proof:

For a Markov chain with states in &/ and transposed transition
w(0) (PO

gm

mairx

is the probability of reaching state g from

state h after m steps. Leb us write, for short, “parameter o7 instead of
“gtate ([La]}..”. Then, starting with parameter o, in one step exactly
the parameters /2 and (r--1)/2 are reached each with probability 1/2;
in two steps /4, (x+-1)M4, (x3-2)/4, (#--3)/4 each with probability 1]4
and so on. Finally, in m steps exactly the parameters (o -+ ) /2%, 0 << 0 < 2™,
are reached each with probability 1/2™. The probabilities belonging io
the same state g add up to 2/2™, where # ig the number of w’s such thab

(z+u)/2™ e 1, that is v = 2™L,40(1); whence w,iz"‘(m L.

{b) Each columm of ¥(0) contains exactly two entries egqual to 1,
all other entries being eqnal to 0; hence (1, 1,...,1) is a left eigenvector
and A(0) : = 2 is an eigenvalue. The other properties of 1(0) follow by Lem-
ma 3.1(a). (I )gw ig seen to be a right eigenvector by letting mi—co in

(m})mﬂ _ () (Hfm) )’“;

2 2 2

&

Now, we shall use Wielandt's theorem (Lemma 3.1(b)) to show that
the eigenvalues of ¥(1), ¢ 5= 0, are smaller in modulus than (0} Ohvi-
ously, ¥(0), ¥ (i) are in the relation of A4, B in Lemma 3.1. ‘Bo we are lef
with showing that ¥(f)} does not have the exceptional structure of Lemma
3.1(b) in relation to ¥(0). Lemma 3.3(2) will also be used in the following
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soction to show that the maximum modulus eigenvalue of ¥(#) decreages
quadratically as ¢ moves away from 0 (see Lemma 4.3(b)).

Leuwva 3.3. (a) For fe{—w, »T, t =0, ¥(t}) does not have the form
¥(t) = DY) D,

with 5 e B and D a diagonal matriz all of whose diagonal elements have
modulus 1.

(b Consequently: Hach eigenvalue of P(t), te[—~wwl% 0, {5
smaller én modulus than A(0).

Proof. (a) Suppose that for some ¢t = (4)_;e[—m =}
Y(t) = é"D¥(0) DL,
We want to show that then ¢ = 0.

(i) The relation between D and ¥(#): It is advantageous to use
the = e [0, 1) ingtead of the & o here. Therefore, we define p,(z) and
f(x) by

and .
¢ = (D), —m< O(r) < m,

where b = ([k,2]);.;. (p like in Lemma 2.1.) Then, by the definition of
¥(t) and Lemma 2.3(a),

8
3 E‘ t.u(gv(m)"‘%) . 18 & ..
I )
and

i 3 iz ) s
e v=1 ¥ _ (!P(t))h”,h — 61‘,7}6’6( 2 )_I.B—iﬂ(:c)'

Thus we ean express 6(») by 0(z/2) and 0{(z+1) /2), respectively:

6(z) —«?7+B( ) Zt Qw(ﬂ?)—'

=yt (m;!—l) _Zt’(%—&(m)} (mod 27).

Iterating each of these representations m-times yields

w-evisfs)- 3o

m—1

Emn+e(ﬁ%n;l)) 2 Z( (fi@%_)) (mod 27).

"
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For sufficiently large m (independent of =)

e(—m—) =~ 6(0) and e(f#}l) = lim 0{a);

2m 2
and hence, for any o, €[0,1)

8(z)— b(a 2 2:(9”(2“) “"”(2“))

=1 =0
O, O (et o' +(3*~1)
:;tvg (g,,( o )—Q,( o )) {mod 2x).

(ii) Proof that these representations cannot bhoth hold
except for ¢ = 0: W.Lo.g., let

By < Ty << onn < Ty

Let xe{l,2,...,s} such that ¢, = 0 ¥» > » We show that then even
t, =0.

Case 1: &, > 1. Note that g, is continuous except at most at the end-
points of the I, (see Lemma 2.3(b)). We shall choose » such that for all
y << % g, is continuons at the 4/2* and (w4 (2 — 1)) /2#, and. for v = x g, i8
continuous at these points except at # and /2. #" will be ebosen in relation
to @ such that the regpective g,-values are equal in the continuity cases,
and z* (#'/2) Hes in the interval I, immediately preceding the interval
with left endpoint & (2/2). Namely, let

3 2 .
gi=— g :1=-——&  with0<s<min,.
k, k, hest
For » < » ko = k2/k, ¢ Z (becanse &, <k, and %, odd), hence
[k2] = (k']

which implies by (2.7(a) & (b))

@’ o (2F—1) o' +(2¢—1)
2] -fr2] [N < [ v,

For x itself %,» = 2, hence
(ko] =2, (2] = 1,

@ '
[5]-+ [=5]-o

@ z' '
[k"g] = [I“"‘EF] =0 Va>1.



402 J. Sehmid

z+1
Moreover, st-—-2'-—- =
-l

Ca+1l [, o'+l
o] -]

(2 —1) o' (2" —1)

+1 ¢ Z, henoe

This means that for » < % all g,differences in 6{x)— #(»") vanish except
e@—e ) =01 = ~1, @.(2/2)-e(0')2) =1-0~1.
Then, because f, = 0 Yo > x,
B()— 0(w) =1, (L+(—1)) = t,(—1) (mod 2r),

eonsequently t, = 0.
Cuse 2: I, = 1 (whence % = 1). Then p,{®) = 0 for 0 < & < 1, hence
B(z) = 9+ 0(2/2) +1,/2
and
241
2

B(a) = n+e( ),_Féa (mod 21).

' Lefting #->0-+ in the firgt, -1 — in the second case yieldé

4 1
OE'erEE'r;— {mod 2x),

1
2
consequently £ = 0. We thus successively have f, == 0, f_, =10, ..
vtz =0, 2

(b) Immediate by part (a) and Lemma 3.1(b).
Concludingly, we want to prove a syrametry relation for ¥(£), which

will be used in the following section to prove that the maximum modulus
cigenvalue of ¥ (¢} is an even fumetion in 2.

LEwMA 3.4, Lot e 1= (k,—1) ;. Then, for every he oL also k—he ot
and - '
e

(POl = (Fl—Dpopin Vo he .
Proof. Lk :
b = ((kz]),
yvhere w.Lo.g. & is none of the endpoints of the intervals Iy f & o, that
18, no ko is an integer. Then [%,(1—=)] = k,—1—[k,2], hence '

(3.1) —h = (kL —a)])5, € o2.

icm
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By definition

126 (ex(z)—1)
e’ it g =8,

(T = S g

0 . otherwise,

Now, in analogy te (3.1) (wlo.g., %/2 and (z+1)/2 are no endpoints,

too), EH

I

and simﬂarly )
ﬁ_hn — Uﬂ _h)l

Therefore
136, {3—ey(1—))
& g=»r,
(‘P'(t)).é‘—g.i?—n = ;vm"(g'(l_z)_i) it g = h",
0  otherwise.
Since 7

Qw(l_m) = .p(kv_l_kv) =p(hv) = Qr(m)$
the proposition follows in all three cases.

We have shown that ¥(0) hag a simple, positive eigenvalue A(0)
(= 2) exceeding all other eigenvalues of ¥(0) and all eigenvalues of #(t),
t £ 0, in modulus. The entries of ¥({) are analytic functions ot
t = (fy, oy wees Ba). ' _

So the implicit function theorem yields an amalytic funetion Al
on a neighbourhood of ¢ =0 that extends {0} a3 @& simple zero of
det(‘?(t)——z), that is a8 a simple eigenvalue of ¥(f). (Moreover, for small
It] A(1) exceeds all other eigenvalues of ¥(t) in modulus.)

Wrtte ' ‘ '

ker(W—4) =: Uy =: (&)  (“kernel spacs”),

im(¥-1) =: U, (“image space”).
Then there is & decomposition '
(3.2) ¥ = 1P+ Yy, |
where P is the projection onto U, with kernel. U, and

P, (0) = ¥(2) on Ty, = Bi() = 0.



404 J. Sehmid
Therefore

(3.3a) PP =P, P¥ =P =1;
alternatively

(3.3b) PP = (¥—2P =0,

(For the proof one ecan assume that ¥ is in Jordan normal form.)
Also P = P(t) and ¥, = ¥, (t) are analytic functions. This can be
zeen from the repregentation

1
Pi) = g

i
I

(z— ()",

I’ a small eircle around i(?) (see, e.g., Kato [5], page 38 and following,
especially (5.22)}.
(3.2) and (3.3a) imply

(3.4) ™ — Py P,

Furt]ier_more, all éigem'ectors of ¥ other than multiples of £ are in U,
The speetrum of ¥y, hence, is the spectrum of ¥ minus {1}.

4. The maximom modulus eigenvalue 2(7) and the back transform.
From this position we can do our first step in exploiting (2.6):

Levya 4.1, For sufficiently small ¢ > 0 there s an 5: 0 < 5 < 1 such
- that

(41) 8k, a3 2™

WZI @ f _f 1:( _E_bl(g))t‘j,m(t) (P(t)]g’hdt+0(lm(0)ﬂwl),
mﬁs .

where the O-constant does not depend on b, a, and 1.
Proof. We split the domain of integration in (2.6) into two parts:

[—%, 51" = {i; < > o)) = KUK,

Usmg now (3.4) on K,, we see that the integral in (2.6) equals the integral
in (4.1) apart from a remainder term

o f;- J vz nd o[- f ey

(... | denoting any matrix norm),

S}U({—-TC, wFO{t; it

By Lemma 3.2 and Lemma 3.3 the spectral radii of ¥,(#) and (1)

are less than 1(0) and, hecause of the continuity of the spectra and the
compactness of Kl, K,; this holds even unﬁormly on K; and Kz, respect-

icm
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ively. Namely, for some &> 0
. spr(¥, () < (1—8)A(0) Vielk,
and
spr(P (1)) < VicE,.

However, a8 can be inferred via the Jerdan normal form,

(1~ 8)4(0)

IE (1)) = Of{m*spr™ (¥, (5))

(P(t) analogously). This completes the proof.

We now want to obtain information on the analytic expansion of A(#}
and P().

() iz an even function in {: By Lemma 3.4,

_ (g(t))g n = (F( "i))ﬁ—-g,é’—h:
and hence, because a mere consistent relabelling of the rows and columns
does not change the eigenvalues, ¥(t) and ¥(—1) have the same spectrum;
especially A(f} = 4(—1). Thus:
For small {#]
(4.2)

where T iz a symmefric s xs-matrix.

The exponential way of writing facilitates to form A™(i).

Before showing that ¥ is actually the matrix V of Section 1, we
must prove some properties of P(i):

LEMMA 4.2. (a) Vg, h e o
(-P(O)}gr,h = I’g‘

l(_t) - 2(0) e—iﬁy.i"‘l'o(]ﬂ"),

T apP
(b) The entries of p

r

(0) depend only on the row indes, Too, and

(0) vawish, i.e. with
kd .

ar y
o= {50,
we have o
Z @y =0

ged
Proof. (a) By formula (3.4),

w0 w0}

P(0) = ﬁ.m(((])) ﬂ.m((O)
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Herein, the first right side term tends to I, as m-»oo by Lemma 3.2{a)
and the second tends to 0, because all eigenvalues of ¥,(0) are less than
A{0). )
: (b) We need from part (a) that each row of P(0) is proportional to
ap
_ ! 70
is—unless 0—a left ecigenvector of ¥(0) to A(0), i.e. propoertional to
(1,1,...,1), too: Differentiation of formula (3.3b) yields

{(1,1,...;1) and each column sum equals 1. Now, each row of

' d4 ar
P(0) i {0) —P(O)—5;;(?)—!-5;-(0)(97(0)—1(0)) =0,
aF
= ()(F(0)=A(0) =0,
by the definifion of W(t) and (4.2),
¥ apP
Hence, T (0VP(0) = Py (0) and consequently we get by differen-
tiating P(5) = P(1): |
ar épP ar
5 () = = (OPO)4P0) 7 (O),
' P
P(0 0y = 0.
(0)5-(0) =0
Now, back to A{t):
LevwA 4.3, For small [t
{4.2) A(E) = A(0) e—;mwamm’

where: ,
(a) V is the real, symmeiric s Xs-matriz 1wilh entries
1 ged®(k,, k)
Vyy = — ———
! bk,
{(b) V is positive-definite.
Proof. (a) Obviously,

(v =1,2,...,9).

* 1 & .
Cer = g e (O = T
.u »
Now, differentiating formula (3.3b) yields
#p GP AP — 1) 0P A¥—2)
0){(F(0) — 2(0)) + —— (0 e S
s OFO =10+ - O 52 0+ 20 T2 0+
PP —2
+20) 28 A (g — 0,

2,61,

icm
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Multiplying from the left by P(0) suppresses the second and third term
(see above), multiplying from the right by P(0) the firgt term. Hence,

G

1,,P(0) = B(0)5—
fIAd

(0)P(0),

o

1 U o -
b = 5 O g ) POs i e,

o hes?
- [ ¥
= L
2 ’*Z(at,,at, (0))”,
g ge& - 4

= i Z ({2 () — (o (k) —3) +{E -2 (W) (F—p (B)))
hest

(by the definition of P(#)),

= — § Ly (3) — E Ly (—3)
hest hest
)=kl B(h,)#p{lhy}

= —3 ((mea-sure of the set of all » e [0, 1) with
p([ka]) = p{(kal)~
— [measure of the set of all z [0,1) with
p([%z]) # 2D
1 ged® (%, k) '

2 kk

Far a proof of the last identity the reader is veferred to W. Schmidt’s
paper (see W. Schmidt [7], §6, proot of Lemma 6).

(b) Positive-semidefiniteness is immediate, becaunse A{E) < A(0}
Yt 0.

Positive-definiteness was proved by W. Schmidt (see W. Schmidt
[7], §8, Lemma 9) from the formula in Lemma 4.5(a). .

An alternative proof, due to the present author, shows that th
positive-definiteness of V is already rooted in the structure o_f ¥: For
all irreducible matrices ¥ = W(t) with entries of the form ¢ which
fulfill Lemma 3.3(2) the corresponding ¥ of the maximurm modulus eigen-
value is positive-definite (see J. Schmid [6]).

We now can complete the back transform of Lemma 2.2 and
~Lemma 4.1: *
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MAIN LEmuma 4.4, For 1d(1+2) = O0(dm)
(43) 8k, a52") |

e B (g o ) ) o

- Vorm' Vet V
omMalis4-2
+0 (._iij.)

Vo'm
1 8
¢ = (k— Z B(g))’=1.

Rl <ty (f+1)

where

Herein, the O-consiant does not depend on h, a.
(Bemark., 14({--2) = 0 (Ym[logm) would suffice for our proof,
but we do not need this.)

Proof. (i) (So called saddle point method, cf. Hoglund [3], Theorem
- 3.1, page 132).
The remainder term in Lemma 4.1 is already O(2™/m9) for every
g0 since A(0) = 2 (Lemma 3.2(b)) and 0 <y 1.
- Under the integral we use approximations for A™() and P(#): By
Lemma 4.3, for small [f] {w.l.o.g. for |t| < ¢ with the ¢ of {4.1))

e m—?m* ~Dypye Pirie

tFY (15
Am(E)—2™e 2 | =9mg ® |gnOlHY) g1 — gmy ® O@miil'e* )

My

= o@rmipe * ),
where in the second step the positive-definiteness of V is vifal, namely
< $eVe (Jt] small).
On the other hand, by Lemma 4.2,
P®)yn = L+ Qi +0 ().
With these expansions,
f e (==3-20)% m sy (2 (1),

<o

1 —ila—T —bg))er _ «
= = 2mf...f3 ( gt ) e éth_(L Q1) di -

<s

L0 (2mf fm —imiVi‘dt} +O(2mmf f”-l -imtVt'dt)
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These integrals can be brought into a handier form by the substitution
w = {Vim?,
du = didet(m 27y = Vm Vet Vdi.

Tt is seen, then, that the domain of integration of the main integral can
be changed to R® without enlarging the remainder ferm.
We omit the details of computing this integral and just state the result:

8k, a3 2™) = H,, ZE (L ———(a b)V‘ng)+O(l/ mm)

with the abbreviations

&= a—m/?:, b:=b;(g)’

om
4.4 H e ae——
4 " Voarm VetV
and
. —%E i 5
{4.5) H (&) i=a6 " (¢ eR°).
(i) Now

aTr—TT 4 bZ b2
(4.6) B, (a—b) =E’m(&)(1+ anb +0(mI - )) (1*0([{,1, ))

Herein we uged b = O(ld{I+2))= O(ldm) and supposed without loss
of generality that '

4] < CVmlogm  for some C.

The latter is justified because in view of Remark 3 to Theorem 1.1 the

Main Temma holds trivially if 4] = CVmlogm and 0 is large. (The fact
that we have to use z = (I+1)2™ instead of & = 2™ here does not matber,
because ! is of smaller order than 2™).

Hence

8;(h, a; 2™

AV~ 1p* i P
=HmEm(&)Z(1+ = — +O-terms) (L,,—EQV gy —bV IQ;) +

gest
27)1
0 |—}|
* (Vm_sm)_
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The sum over the terms containing I, is

o AT 10
2 aV Zb,, )., + O-terms —1—1-“ -I—Oterms,

el geof

the latter because

sz(_q)L - (ZB z.-.z+g,)1;) ( B([;’u,l+kw])dm)

- Z B(mm)

All other terms contribute only to the remainder term of (4.3), because
the terms of larger order add up to 0 {see Lemma 4.2(b)):

=1

—_ aV‘l =
m Qg
oo

Ve are left with remainder terms of the form

2 [ap b
o[ = Ea@ ), g5, 0em,
o laf
Because Em(a)Tﬁ- = (0{1), these are
m

27 )
0 ( il
Vi m®

With [b] = G{ld(I+2)) = O(ldm) these terms are seen to be

(2’“ 1d2(l+2))
O
Vm "
and fhe result follows.

3. Proof of the theoremis. We now want to derive the theorems of
Section 1 from the Main Lemma 4.4.

Proof of Theorem 1.1. (i) For

@ HZ"”’H—& My > M > >, 20, m,e NG, 0<5<1,

Bl
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we can decompose [0, [#])nN,, thus:

q1
[0, [2]) "N, = D' [1.27s (1, +1)2™) NN,

p=1
where
o
Loi= () 2 2
#=1
Hence,

Sla;or) = HFo<n<e; Vv =1,2,...,5: B(kn) = a,}
' »
= 8; {0 2 27 Ol
; w0 42 F (Vldm“;/ldm)’

g q A
where > is the restriction of 2 to those terms with
b= a=1 -

-

s+1

m, = 1dz— 1dld#;

the rest being put into the remainder term.
The Main Lemma yields

a

‘1’ i
; 2 o om, (6= d -I—O( —= -———)
&4 S —l m( g Vida' vide ’
where
. ld» m, 1das
a _—_a-—--u2 ) dﬂ-=-§—~——*2—-

(H,, and B#,(&) as in (4.4) and (4.5).)
Here, the second main term of Main Lemma 4.4 does only contribute
to the remainder term; namely with

o, = 0{1d(t,+2)) = O(my—m,+1)

it yields
(5.2) i

&y gmulmy —m,+1)\ _ (%woml p+1)) 0(_ﬁ—~—“’ )
O(fg Vm,' Vm, )“_0 %’ ViV Vida Vids

(i) In the following we may assume w.lo.g. that
4] < CV1daloglde  for some O

in view of Remark 3 to Theorem 1.1.
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Now we use (4.6) with dp instead of b taking into accotmt that
d, = O(m,—m,-+-1) = O{ldldz)
and obtain '

By (6—~d,) = B, (8)+0(d, |V m,)-
But .

r 2Ped, ( b )
= Vmﬂ l/m,, Vida Vide
like in (5.2). Hence (5.1) holds with & —d, replaced by 4.
As well we can eliminate the m,’s in Em# (@) and the divisor of Hm#
by Ide. Namely,

1 1. _/1z° 1 ( 1 ldldm)
Vm,® CHiaE ¥V om, Vias' Vids® lda
and . '
1 1 (Idldm)
- =0 — |
x 1l 187z
whence
. o =il Ly . Jdlde
B (@) = By (d)e w 9 = F, ()40 T
1
(m, > 1da— s:; 11d%).

The rest is immediate by = jz"‘y{— d. _
ue=l

Proofs of Theorem 1.2 and Theorem 1.3 (sketched). The heuris-
tic idea for & proof suggested in Section 1, namely summing up the terms
of the Main Theorem, can indeed be utilized.

We ghall demonstrate this generally applicable technigue on Theorem
1.3, whose proof we shall therefore treat first. For Theorem 1.2 we shall
skefch a different, more elegant way relating the Fourier-transforms of
this problem to those of the corresponding two-dimensional problem.

Proof of Theorem 1.3, Let, for abbreviation,

ldz
a__

icm
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Then

1d

. B(lem) — —2-"5 .

Se(E58) = FE0<n<a; Vv =1,2, ..., s: Yo <&,
¥ide
= Z Sia; ).

ma<h

We cannot immmediately insert the right side of the regult in Theoren: 1.1
for 8{a; =) because the remamder terms would add up desastrousiy.
However, it suffices to sum over those ¢ with 7 componentwise “small®

in modualus:
s
Sla:a) = 0( _)
Z (25 Vida

a:
3,,:]5,,]}0“10&1&::

for Iarge ¢ by Remark 3 to Theorem 1.1.

Summing up O( ) over all a e Z° with |g,| << OVlogldz Wy

@
Vida'v1da
would still yield an estimate too large by the factor ¥logld”. But a review
of the proof of Theorem 1.1 from the Main Lemma shows that all O-terms

2
larger than O L_w) originated from terms of the form
Vide' 1da

~

my P
—_— G';) e (. . .)
‘/m’u mu( 'I/’]nﬂ H
term of the Main Lemma and B, (4—d,).
Therefore we may sum up these terms even over all ¢ ¢ Z2° withont
2 1d%dw) |
Vidz® 1dz

namely when estimating the second main

gefting a remainder term worse than Oz ,’Vfd?n); and @ (

— . m .
summed up over all ¢ with |4,] < Gl/logldm Yy _ylelcls O(E_&u_;«) , too.

Thus we obtain

@ -1 1 el
So(f: @) = —mmp B m@)+o( _).
<t Vor VetV %ﬁ Vidg' ( Vids

Going over from this Riemann-sum to the respective integral yields the
desired result.

7 Acta Arithmetica XLIII, 4
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Proof of Theorem 1.2. Given s = 2 and by, by, for hewfand g e Z

Bk, d; 2™ 1= {0 <n < 2™; Bk +h) — Bk +hy) == a}
= Y'8y(h, (65, B); 27).

SEZ
We observe that

Fom D= > 8, &5 2™ 6 = (g, (F, —)]}ss
ge?

i.e. the Fourier-transform of §;(%, &; 2™) atf e R equals the Fourier-trans-
form of the respective two-dimensional problem at i = (, —1).

Moreover, let &(f), i), and Pd) be defined for S(h, ; 2™ as D (1),
Alt), and P(t) were defined for 8;(h, ¢;2™). Then

o@F) = &(F, 1)),

A(f) = ﬂ.((f, ""t)):
BE) =P|E, —1));

and the whole proof of Theorem 1.1 is franslated straightforward into
a proof of Theorem 1.2.

Acknowledgement. I am greatly indebted to Professor B. Wirsing of
Ulm Tniversity. An earlicr version of this paper was written as a doctoral
thesis on his suggeston and advice.
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