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La relation D < {(N")® entraine gque deux D, au plus, sont supérienrs
4 N”. On a aussi D; < D**, on applique le lemme 4 avec

M = DD, ... DY K DHDHBNYY et N = DIT0 DO

pour obtenir la relation (4). Il suffit de regrouper les relations (1), (3) et
(4) et de remplacer par la valeur de D, pour cbtenir le théoréme,
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To Proféssor Paul Erdds on his 70-th birthday

The main sﬁbject of thig paper are reciprocal factors of gnadrinomials
over 0. For a quadrinomial

3
(1) qlm) == ag+ 2 w,'m"", 0 << Mg << Rp << g,y Gplylatdy =0
i=1

with given coefficients a; the question of non-reciprocal factors has been
completely settled in [1] and the eyclotomie factors are easily determined
by means of a theorem of Mann (ef. [3], Corollary 4). Some partial results
about non-cyclotomic reciprocal factors have been obtained in [5]. In
particular it has been proved there that if either |agl+|asl = |ay|--las|
or for some g, k: 0<Cg, A <3

(2) a2 = aimodg.cd.g-geda o ay] = |agl, & = jas
i <3 iFgk

then either all Teciprocal factors of g(x) are cyclotomic or else thers is

3
a relation 3 yn; =0 with p; integers satisfying
i=1

log jay|?
0 < max {y; | € max ———=—.
; 9
1sisa asjey  10g2

| The condition (2) is fulfilled by about 82/, of all quadruples (ay, 4y, 2, @z

with |e;] < & (a—>o0).

Now we shall show that for almost all guadruples {a,, 81, 4z, 3>
in the sense of density reciprocal factors do not exist. More exaetly we
shall prove '

TeroreEM 1. The number of integer gmdm;;les iy, gy Bg,y Gay With

0 < la,| < a (0< i< 3) for which g{@) = ag+ 3 a0 has a reciprocal
: i=1

Factor at least one triple {ny, ny, 0y is O[a* [(loga)*™).
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The proof of Theorem 1 is based on several lemmata. The fivst of
them is of independent interest, sinee it gives a necessary condition for
a quadrinomial to have a reciproeal faetor.

The estimate O{a*/(loge)*) can probably be replaced by O(a®).
In order to justify this conjecture we shall show

THEOREM 2. The number of inleger triples {aq, 61, sy wilh 0 < la;] K @

3

(0P 2) for which the trinomial ao—}—Z’tz_ia:ni has «a reciprocal factor
=]

for at least one pair {ny, ny> is 0{a?).

I thank Dr. J. Browkin and Dr. M. Ram Murty for their valuable
suggestions nsed in the proof of Theorem 1.

DEeriviTios 1. If {7, 4, &} = {1, 2, 3} let in the notation of Theorem 2
a; be the greatest factor of a; prime to Gttty

d; = (1, nk)

A; = a5 +aj +a; —2a50] — 20505, — 24303,
o R
'” Zaga; )

Lexs 1. If g{@} givern By (1) has a reciprocal faclor and £, 7, k}
= {1, 2,3} then

3 QP 4 il == 9 mod af.

(Note that the number on the left hand side is rational.)

Proof. Suppose that A is a zero of the reciprocal factor in questmn
It follows that

9.'{)“) = g(j--hl) = 0;

hence (a,,, A)al, @) =1 and (a” Ahi(af, @) = 1. ¥rom the above
equafions we get the congruences

— A" = a i - ay, (mod af),
— AT = g A gy (mod af),
which imply
A& AT - (g a5 — @) K- a0, = 0 mod af,
ot (A — 0 (A — 0"y = O mod a}
and by symmetry between § and &

Aoty (A7 —— Y A — fl,-_kl) = (0 mod a,;-h. '
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Since (agee, aj) = 1 it follows that a7 [{4*B*, "), where 4%, B* ¢, *
are nnmerators of the fractional ideals generated by

A =I"—ay, B=I71—qa;,

respectively., However

0 = ;,u:rl;‘._at_’” D = }‘(_ﬂk_aﬁul,

A;
{b,ilni—{—(bjjl +a;;C‘ = — = a_.,{B—_‘_‘i.} - ak(D"‘G),

aiMta;B el =

* o= g;(4 —-B) = q,(0-D),

0

Hence
(a'fs A*r O*)!((L:, A*: B*s 6*5 -D*)?
(a;:ks B*J D*}J(a‘:: A*: B*! G*J D*)
and it follows that

a:i(a:y A*B*a G*-D*)[(a?1 A*: D*) (a‘:‘: B*: 0*)-

Now
i = oK% mod (af, A7),
/'u”j”?:/di = C!Ecnjld‘. mod (a:: D*}i
hence
af;k-'di a;li = 0 mod. (af, A%, D).
2
Himilarly
ap; "% — oz?f:’ % = 0 mod (a7, B, C%)

and it follows that

npldy o —mgldpy ¢ o=y A e 9 m: 1ty — gl
nld; gy, T (a'ij kit “1-;5 iy =12 a; Foe y

(o2 apMi’ = 0 mod af.

Remark 1. Applying Lemma 1 to the guadrinomial a:’“ag(m—lj one
obtains under the same assumption the congruence

ol )y (ma= iy 4. izl —ral% = 2 mod a5,

where d, = (g — Ny, By — T}y &g 18 the greatest factor of g, prime 10 a,a.0,

and

—{a; EP EP) EP
(a2 +ai—a_;)-+Vak +at +at —2alal — 2aia; — 2ai0;
f7 P .
N 2a40,

T was unable to use this congruence to improve Theorem 2, but it may be
useful in dealing with specific guadrinomials.
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DepxrroN 2. Let for a prime plaf, § #4¢ (1<4,7<3)

(aij__l/_‘di_iai p) if (Ai)WOOr 1, 4;= 9 modp,
a0, p
sy(7) = 4
R

and let for ¢ = 41
Fu(p) = {{@ay 1y @25 Az>: Pk‘fs ey(p) = &t.

Remark 2. The definition of s;(p) is eorrect in spite of the ambi-
guity in the choice of §;. Indeed

(a,-,-— Kf‘__:“_‘s_) (%._ @) _ (aij“ V7. )2 _ ( s

2
> ) = 1 mod P
Zagn; 2aq0, a0, “lhot;

Lmnea 2. If {5, 5, %} = {1, 2,3}, p 48 an odd prime and(?)

{4) {gy @yy Ogy U3) € F55(D)
or
_ (3) gy @1y Doy Gz € ,9917 (_’p)ﬂy.?;c(jp)
the condition (3) implies
(6) ordyny, = ord,n;
or
(" ordyty, > ordyn;,
respectively.

Proof. Take a prime ideal factor p of p in Q(I/Z-) and let y be a
primitive root mod p. The congruence (3) implies
(a7H/ g% — 1)
Ja“kf‘;ia“ﬂdi = 0modp
4 ik
and since a, ag are p-adic units

nk,'dz- nj’[d‘ —
@ = 1 mod p.

Hence
N, | T . - .
(8) ?Ind.},(l,ij—I— —&T-—mdrai,c = {) mod 1\}3 —1.
T 1

Now we distinguish two cases

A
(9 ( 1) =0 or 1

p

Q] 5%(17) stands for .9’%?1@)_
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and
(10) (‘d ") = 1

" .
In the case (9) the conditions (4) 2nd (5) take the form

o
11 (_) - -1
(11) v
and

7453 [ Oy

2) )= ()
respectively.

Now (11) implies ind¢;; = 1 mod 2 and since ¥p —1 is even we infer
from (8) that '

either @, fd; = m;/d; = 1mod 2 or = u,/d; = 0 mod2.

Since (m/d;, n./d;) =1, (6) follows. _

Similarly (12) implies ind,a; = 1 mod 2, ind,a; = 0 mod 2, we infer
from (8} that #,/d; = 0mod 2 and (7) follows. In the case (10) we
have Np = p?,

(13) . oyt +1 = (az+1)’ mod p
and since
;= (az+1) ez +1)
we geb
ind,e; = {1 —p)ind, (e;+1) mod p2—1.
Similarly

ind,ay, = (L—p)ind,(ay+1) mod p*—1
and the congruence (8) takes the form

v,

(14) %mdy(a,.j+1)+ L ind, (ag,+1) = 0modp+1.
On the other Iiand,
a3+ 1) (a5 +1)
() =(( R )

and in view of (13) the conditions (4) and (5) imply

(p+1) ind,(oy+1) % 0mod 2(p+1), ie. ind,(az;+1) =1mod2

8 — Acta Arithmetica XLIII, 4
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and

ind,(ey;+1) =1mod 2, ind,{g;+1) = 0mod2,

respectively. Now (6) and (7) follow from (14) in the same way as they

followed from (8) in the case {9).
DrvmerrioN 3. Let for >0, j> 0, ¢ = jmod 3, ¢ = 41,

Ty = Ry a} (P) 1, i (P) )

where ¢', § are the least positive residues mod 3 of 4, § respectively.
Limygs 3. IF

U ([(Umpine

i (130)) n
DgPPepy =1

odd primes

@y gy oy @y €

3
D ( 75 (PO F (DY P s (191)))

then g(x) given by (1) has noe resiprocal factor for any choice of ny, fa, Ny
Proof. If for an odd prime p, '
{Byy @y, Ay, A3y € U (90:,1+1(Pn)ny1,z+z(?u))
bt

we have by Lemma 2 and Definition 3 for o suitable ¢ <

{15) ordgn; ., << ordghy .
On the other hand from
3

&gy By oy A3 € ﬂ (

F=1

51 (PO g+1,an(2’3))

.’P+2 (P;.-)

we infer by Lemyma 2 and Definition 3 that for every positive j
(16) ordgm, .

Jt+2

< ordyftyy; o orday.. < ordgm;.
Substituting in (16) 7 = i+2 we get
ordatiy,y < ordsm;  or  ordang,; << ordgy,,
which togefher with (15) gives
(17} ordy,, o < ordym; ., < ordgty.
Subgtituting in (16) § = ¢+1 we get |
ordym; << ordsm,,, or

ordn, < ord.n;

i+1

which contradicts (17).
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Lennra 4. For an odd prime p and a,b c F let
Ale) = &'+ ot

— 2a%h2 — 2ac? — 25202

and let 2(p, a, b) be the set of all ¢ € Fy such that

—(e*+b2—at) -+ A(e)
2bo

— /
gither VA(c) € F,, and —i,ﬁ ¢F

B

— e (2 L2 g2
or Vd(e) ¢ F, and ]/iibz—al

Then

+2¢F,.

12(p, &, B)] = p/2+0(Vp)

where the conslant in the O-symbol is absolufc.
Remark 3. 2(p, e, b) is independent of the choice of ¥ A(¢) since

—(c* b —a?) LV A(e)  —(2+b*—a2) V(o)

2be 2be =1

Proof. We choose an element ¢ ¢ F,, such that Ve ¢ F,, and consider
two function fields

bi—a? TVA(I'/

v = ( ]/ 20t )
B — — (t—h)
B, = F, (t, }/ed(t),]/eT).

_ — (@b —a?) vy

a— (t—b)?
bt - Bt

Note that

For every finite extension F, of F, the composite fields K,F, and
K,F, are each of degree 4 over F,(3). To prove this it is enough to show

that _
a?—(E—-0)% a4 (t—Db)?
(18) 40, ed(t), ey Alf)
aTe not squares in. F,(t)
and that
2 LE B At _ _
(19) e (242 2; )1V A0) is not a square in F,t, VA{1).
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Now
A{) = {a2— (¢~ (02— (t-+8)}) = (@ —1+b){a+t—b)(a—i—Db)(a+1-I-b)

and (18) follows by considering the factorization of all four functions in
question into factors linear with respect to %

o % £b A(t) is squareiree in ¥, [?] hence 1, Vm forms a basiz
of the ring F,[t, I/Z(Wt.)-} over F,[t] and the ring itself is integrally closed.
Hence in order to prove (19) it is enough to show that

2ebt(— (124 B2 —a?) HVAQR) - (a+BV AR, o b e F,lH]
Assuming the contrary we gef
— 26B1(12 4 B2 — 0%) = a2+ B2A(1), 2ebt = 2af,

dega <1, degp®4 =4, hence

deg(a?+f24) > 4 > degt(i+b° —a?),

a contradiction.

Ifa= +bthenv4 {Z) = 1V12—4a? and (19) can he proved by an
argument similar to the above but with I/Zf{ ) replaced by V2 — 4t
Henee Fj, is the exact constant field of K; (i =1, 2).

By Wexl’s theorem the number of divisors of degree one over ﬁ(t)
of the field K, is p+1+2g16w]/_, where |6,,| <1 and g,is the genus ofIL
Over eack ¢ eF ", U{oo} which is not ramified lie 0 or 4 such divisors and

since ¢ eorrespondi.ng to 4 divisors in K, (resp. K,) gives raise to 0 divisors
of degree one in K, {resp. K,} we get

> p1112¢.,0.Vp -
2, s, b)|m25—i4g*m—ﬂ +0) =L +owp).

i=1
The constant in the O-symbel is absohrte sinee the number of ramification
points of K,, K, is bounded by a number independent of «, b. Indeed, if
a = -+b there are 6 ramification points (J-a, +b, 0, o) and if & = --&
there are 3 (+24, o). Incidentally g, = g, = 3 in the former case and
¢ = g, = 0 In the latter. This proves the lemma.

Leama 5. In the notation of Lemma 4 let R(p, a, b} be the set of ¢ e F,
such that

either VA(e) e F, and ]/ (ot ;bf) ¥ 4() ¢ F, and

»

l/u(cuaz_bz)ﬂ/ﬁ”(?) .
2a¢ — %
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o 2y T2 __ g2
or VA(0) ¢ F, and ]/Jilmb—&)wu' and
— {2 2__h2
]/———————-—(G et +2eF,.
ac

% (p, a, b)|= p/4--0(Vp),

where the conglani in the O-symbol is absolule,

Proof. Using the notation infroduced in the proof of Lemms 4 we
congider the function fields

(a2 b)) VA B b —(i—a)
o=t (l/ s e

For every finite extension ¥, of F, the composite fields KF, and E,F,
are each. of degree 8 over F,(t). Indeed, since for ¢ =1, 2, [KF: F, (f)]
= 4 it is enough to show that

If a = b lhen

(20) ———w—-bz_(;_a)e ,  ed() ﬂm—bz—g;a)z, “2_(;“"1’)2. bz—(zt_ a
A(t) az,_(;t_b)z . bzﬁ(:;a)a are not squares in F,(t)
and
—@ra—B) VAR —(EEb-a?) VAR
1) 2at ’ 2bt
— (B +a2—b%) 1V A()

are nob squares in F,(f, VA_(t))

2at

The assertion (20) is easily verified by factorization of the four el-
ements in question into linear factors. The first pard of the (21} is proved
similarly to (19). To prove the second part of (21) we notice that

—(Brbi—at) VAR (a0 VAl #-ar-b VAR
26t 2at © 2ab

Since 1, VA is a bagis of the ring F,[1, YAty A(t)] over F,[t] and the ring
itgelf is integrally closed it is enough to show thab _

2_g VA

La, f e Fli].
2ab

F# (a—{—ﬁl/-ﬂ—-("t")-)z,
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Agsuming the contrary we get ﬁaﬁ & F, hence a, § eF: and
deg(a?+f24) = 4 > deg({2— a2 —b?),
a contradiction. Hence F), is the exact constant field of K, (i = 3, 4).
"By Weil’s theorem the number of divisors of degree one over (1)

of the field K (4 = 8,4) is p-+-12¢,6,, Vp, where |0,,|< 1 and g, is the
genus of K. Over each ¢ & F,\{co} whieh is not ramified lie 0 or 8 such
divizors and sinee ¢ corresponding to 8 divisors in K, (resp. K,) gives raise
to O divisors of degree one in K, (resp. K;) we get

4 —
N 2428V
ed

I(p, @, B)} = - +0(1) = -+ 0(¥p).

The eonstant in the 0-symbol is absolnte since the number of ramification
poiuts of K; , K, is always six. Indeed K;, K, have the same ramification
points as IG, K, and g, = g, = 5.

Lewma 6. For each i > 0 and for every odd prime p we have
@ —1P = 190 1,00(0) N[, 21| = 9324+ 0(p%F),
(@12 9L @INF L (BN L, BT = pP4+ 0 (p%).
Proof. Dendting the regidue mod p by a bar we have
FinnialP) = {0 a1, @3, a5) € 2°: plag,y, pYag,,,
Gy € 2(p, G, 8;45)},
FEnPINF (D) = Koy ay, ag, 3> € 2% pla,, Pl By

8y R(P, Tyyqy 5i+2)}-
In virtue of Lemmata 4 and 5 it follows that

n—1 p—1
i @OIL o = 3 3120, 0, 8) = p—11*L +0((p—1)7/7)
a=1 b=}
= p*[2+0(p*")
and sinee #(p,e,d) =0
-1 -1
1 0) 0 F @) 0L, 93 = 2 2 1a(p,a,b)]
az;gﬂl
p—1 =1 p—1
=18, 6 p—a)i+ Y 3 |alp,a,b)
a=1 a=1 b 1
azb, p—b

= (P—l)(?—3)—i-)- +0((p<1)(p—3)Vp) =p£ +0(p%).
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Since
12(p; a, b)) << Byl = p—1, [2(p,0,b)<

we get similarly the desired estimates from above.

Remark 4. In the above proof Lemmata 4 and 5 could be replaced
by the theorem of Lang and Weil [4] applied to suitable varieties. This
would resulb in a slight shortening of the proof at the eost of conceptual
eomplication.

LeMmA 7 (Gallagher). For each pnme P lei Q(p) be a subset of the
group Ztp&* of cardinality w(p)p™*. If B(N) is the number of integral
vectors [@py <oy @p_1] wilh max lal <K N then for every redl m>0 aand
N = a® we hcwe Gtan

o =p—1

B) < ¥ (0;2),

2 wX H (p{)?)

»la
and the constant in the Vinogradov symbol depends at most on 4.
Proot, see [2], p. 92 with a slightly different notation.

Lmira 8§ (Halberstam-Richert). If for some real numbers x, A,>1,
A, >1 o Funciion op) defined on ‘primes satisfies the conditions

< 5\ wp)lobp

w<p<z

where

() Iog — —[—Aa

0< 1~—,

then for a certain B = B(A,, %)

w(p))_

S(w;w)*‘gB”( .

pL=

Proof. Put # =2, 4 =1 in Lemma 4.1 of {3].
Proof of Theorem 1. Let us fake in Lemma 7 » =4, Q2) =@

and 2(p) — Qp) (j =0,1,2,3) the set of residue classes modp Te-
presented in
5 . -
77 [U 131N 53l P) for j=0,
1? .
;j+1(’P)nyj 1o PIVF G reniee(®) for j=1,23.

The sets Jl'a are unions of cosets modp thus we have
0 if
p Y7 Ln, p1 i

p =2,

w(p) = w,p) = 22
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In virtue of Lemma 6 we have
3(p—1¥  if
l2(p —1)2 i

) ] =0
Tl pT < r="
i=0

and since the sets |J &
B =1

i (3 =1,2,38) are digjoint

AL P14 = 17 +0(p™") (05 <3).
It follows that for 7 =0,1,2,3
L ey <3,
1 ap) 1
(22) 5> 0 (—133 ﬂ)

hence (see [3], Chapter 2, formula (3.2))

D aylplogp o V18P g0 ® g
WEPLT P wsgéz 7 w

Thus the conditions of Lemma 8 are fulfilled with 4; = 2, 4, =3,

# = 3. In virtue of that lemma

8(w; Vo)< H(1 )

p<ya -

hence by Lemma 7 with ¥ =a, @ = Va

Eg{a) = ([ —a, a]*\ 9'71! <€ gt H (1“_ wj;p))'
n<v¥a
By (22)
{p) wy{p) 3 ¢l 1
10gn( B ) - 2= —.+0( )
2<Va <va P 4:13<2|/¢_z ) p;v/;_ s
= —}logloga+0(1)

and it follows that

. @
B(0) = 0 (12
Hence

IT—a a™ () U3 = | U (=g, a1 Usdi< D Ba)

i=0 p
J at .
= O — .
((10ga)3"’)

iom
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However
N Usgi= U ﬂ
=0 p PyPaPa.Pg f=
and by the definition of 77 and Lemma 3 if

U ﬂ

D0223+23,. PaEyﬁ
then ¢{z) given by (1) has no reciprocal factor. The proof is complete.
LevMA 9. If a trinomial

Gy @y Gy A

Qg+ AE" L a2, Gy, 0, 0 < ny < My
has a reciprocal factor then either for suitable e, e;e {1, —1}
{28) @yt gy - Gags = 0
or for suitable integers k, m,m, p,q
(24)
& =k an_?:-;ﬁn_m @, a;=—Fk a;“:i"’ a4, = o —gmtqn_m

where n>m>0, p # 0, g >0, (n,m)
the trinomial z®—pe+g-
Proof. It follows from the equations

= (p, §) = 1 and o, B are zeros of

g Mt a2 =0 = g+ " F a5 ™
that -
. 2 2
e QUA), 4= Yd—2 ) dal.
Hence
§ = £md e Q(V 4)
- and pufting
g L)
"= {1y Ta) ’ T (g, 1)
we geb ' .
Uy 0™ - 46" = 0 = @+, 07"+ @677,

Tt follows that )
(6‘"‘ 6= L a (6" —6") =0
and either B’"’ g™ — g*— ™" = 0 or for a suitable geQ(l/A}
= —(6"—67"), @, = o("—07").
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In the former case sinee {m,n) =1 we gebt from 6 = 6°* = 1 that
B2 =1, § = L1, thus (23) holds. In the latter case assume first that 0
is rational, 6 =r/s, (r,s) = 1. We geb that

an 8211,

F . g e

0 fmsm

eZ, o eZ,
? T pngm

2 g2

henee ¢ oy

=k ¢ Z and (24) is satisfied with p = r*+s%, ¢ = rs.

Assume now that # is a guadratic irrational and let ¢ be the least
positive integer such that ¢f is an algebraic integer. Since 6™ is conjugate
to 7™ and 0™ is conjugate to 67" we infer from (m, #) = 1 that 0 is con-
jugate to 6~ Hence (9) factorizes into prime ideal factors of degree one
unramified in Q(l/d) and g equals the norm of the denominater of (4).
Tt follows that ¢ is the least positive integer ¢ such that 160" is an alcrebralc

6“%
_ 66—t
is an algebraic integer. On the other hand from (6" — 8™ /(0—0 e Q

integer and ¢"! is the least positive integer # such that u

we infer that = g{6—07)eQ and x- _9-1 e Z implies that
% = ¢"'%jl, {gh 1) = 1. Putting
a=gb, F=a0, o =g(6+6

we geb {24) with a; replaced by Ig; (4 = 0,1, 2). However gince (o, f) =1

n__ 51:. amwﬁm

we have ( , — "] = 1, thus 1 = 1. From p = 0 we infer
a—p a—4@

6% = —1, a8, = 0 contrary to the assumption. Hence p == 0 and the

proof is complete. o

Proof of Theorem 2. Estimating the number of triples {ag, 4y, @)
such that for at least one pair {(n,, n,» the trinomial a,-- 2_ ax™ has

i=1

a reciprocal factor we may assume in view of symmetry that n, < #,.
This enables us to use Lemma 9. The number of triples (a,, By, Gy
satisfying
(25) _ Llal<e ({#=0,73,2)
and (23) is clearly O(a) Let Ny(4) be the number of triples {a,, a;, @G>
satisfying (25) and {(24) for a fixed & and suitable m, n, p, ¢. Since

Ny(a) = Nylafk) and D1 < oo
it is enough to show that N,(a) = O(a?). Now

0 n-1 © n—I -

(26) @) SN+ ) NN (a) - 2 N (@)

n= lm— n= 1 pve]l
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where N(«a) is the number of triples {ay, a,, 6.y satisfying (25) and (24)
with & =1,

(@7) C g=1, |pl-2¢<0;

N {a)is the number of txiples satisfying (25) and (24) with & =1,
(28) . lpl—2¢<0, ¢>1;

*+ (a) iz the number of friples satisfying (25) and. (24) with & =1,

m it

(29) ipl—2¢> 0.
The eonditions {24) and (27) imply that la,] = |ay] = |as]. Henee
{30} Nefa) = Ofa).
The conditions (24), (25) and (28) imply that
| logae loga
max{m, 1 —m} < Togq logz
and
g<a, pl<2s i m=n—m=1,
4= VZL", lpl < 2Ve  otherwise.
Hence
o n—1 Dga, 2
(31) Z 2, Fanle )<4“‘+4“(10g2)‘

The condition (29) implies that a, f are real hence for {, being a primitive
ath root of unity

— rﬁ 2 . o
4 -—j--—_"—&;— == (C&—!—ﬁ)g—l-(a—ﬁ)zﬁﬂ'tg? (0 <‘r<%).
It follows that _
11 n—1 27T . E gyl
o — P . a"[‘ﬁ ey 1P - (__)
a—f Hl o= babl = g(l &) 12 "z
and the conditions (24) and (28) imply
logsa
log?’
pl<ae if =2 péjﬂ@ﬁ' otherwise.
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Hence

@) hS
n=L

and N¥;(a) = O(a?) follows from (26}, (30), (31) and (32).
. Remark 5. By a modifiecation of the above argument one could get
an asymplotic formula for the number of triples in question.

-1
. 4 [logla\?
<o el )

m=
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An application of the Fouvry-Iwaniec theorem
by

MARTIN HUXLEY (Cardiff)

The celebrated prime number theorem of Bombieri [1] and A. I. Vino-
gradov [7] states that for any 4 > 0 there iz a congtant B for which

@ < (loga)™?
implies

max Sup
(a,g)=1 y<w

. | 1 I @
W(ZI:Q;’-")— qﬂ(q) Y < (logm)A-

g<Q

Tt would be of great interest to extend the range for @, even at the cost
of the maximsa over a and 4. The first step in this direetion has been taken
by Fouvry and Iwaniec [L],

&

..
) P {n(w; 2 a)—wlw} < oz ™’

g=<Q
(@&@=1

for
Q _g mgll‘{-a ,

where A(g) satisfies extremely technical conditions, and the imp].ie@ eon-
stant depends on « as well ag on A and & A study of their paper indicates
that we may replace the bound on the right hand side of (1) by

'
(logzy* '

<3

the implied constant now being independent of a. The Corollary in [4£]
stated only for a == 2, can now be extended as follows.

Liet (1, o) denote the number of pairs of primes p, p +« such that
p < @ We then have with B = 34/9 :

@)  m@a *<~(B+5)H(“)'a‘ag_m')§ |



