Hence

(32)
$$\sum_{n=1}^{\infty} \sum_{m=1}^{n-1} N_{m,n}^{+}(a) < a^{2} + \frac{4}{3} a \left(\frac{\log \frac{3}{2} a}{\log \frac{3}{2}} \right)^{2},$$

and $N_1(a) = O(a^2)$ follows from (26), (30), (31) and (32).

Remark 5. By a modification of the above argument one could get an asymptotic formula for the number of triples in question.

References

- M. Fried and A. Schinzel, Reducibility of quadrinomials, Acta Arith. 21 (1972), pp. 153-171.
- [2] P. X. Gallagher, The large sieve and probabilistic Galois theory, Proc. Symp. Pure Math. 24 (1973), pp. 91-101.
- [3] H. Halberstam and H.-E. Richert, Sieve methods, New York-London 1974.
- [4] S. Lang and A. Weil, Varieties over finite fields, Amer. J. Math. 76 (1954), pp. 819-827.
- [5] A. Schinzel, Reducibility of lacunary polynomials III, Acta Arith. 34 (1977), pp. 225-266.

Received on 1.2.1983

and in revised form on 30.6.1983 (1337)

ACTA ARITHMETICA XLIII (1984)

An application of the Fouvry-Iwaniec theorem

Ъу

MARTIN HUXLEY (Cardiff)

The celebrated prime number theorem of Bombieri [1] and A. I. Vinogradov [7] states that for any A > 0 there is a constant B for which

$$Q \leqslant x^{1/2} (\log x)^{-B}$$

implies

$$\sum_{q \le 0} \max_{(a,q)=1} \sup_{y \le x} \left| \pi(y;q,a) - \frac{1}{\varphi(q)} \operatorname{li} y \right| \leqslant \frac{x}{(\log x)^d}.$$

It would be of great interest to extend the range for Q, even at the cost of the maxima over a and y. The first step in this direction has been taken by Fourry and Iwaniec [4],

(1)
$$\sum_{\substack{q \leqslant Q \\ (q,q)=1}} \lambda(q) \left\{ \pi(x;q,a) - \frac{1}{\varphi(q)} \operatorname{li} x \right\} \leqslant \frac{x}{(\log x)^{A}},$$

for

$$Q\leqslant x^{9/17-s},$$

where $\lambda(q)$ satisfies extremely technical conditions, and the implied constant depends on a as well as on A and ε . A study of their paper indicates that we may replace the bound on the right hand side of (1) by

$$\leqslant \frac{|a|^{1/2}x}{(\log x)^A}$$

the implied constant now being independent of a. The Corollary in [4] stated only for a = 2, can now be extended as follows.

Let $\pi_2(x, a)$ denote the number of pairs of primes p, p+a such that $p \leq x$. We then have with B = 34/9

(2)
$$\pi_2(x,a) \leqslant (B+\varepsilon)H(a)\frac{x}{(\log x)^2}$$

An application of the Fourry-Iwaniec theorem

443

uniformly for $a \leq (\log x)^c$. The arithmetic constant is given by

$$H(a) = (1+(-1)^a) \prod_{\substack{p \mid a \ p>2}} \frac{p-1}{p-2} \prod_{p>2} \left(1-\frac{1}{(p-1)^2}\right).$$

For large a this does not replace Chen's estimate [3] which requires only a = O(x). Chen obtained the larger constant 3.9171... in place of 34/9, and for the Goldbach problem. His techniques also apply to the twin primes problem.

The uniform bound (2) can be applied to the estimation of

$$E_r = \liminf \frac{p_{n+r} - p_n}{\log p_n}$$

using ideas of Bombieri and Davenport [2]. The method of [6] gives

$$E_r \leqslant \frac{2r-1}{4Br} \left\{ Br + (Br-1) \frac{\theta}{\sin \theta} \right\}$$

where θ is the smallest positive solution of

(3)
$$\theta + \sin \theta = \frac{\pi}{Br}, \quad \sin \theta < (\pi + \theta) \cos \theta,$$

and B is a constant for which (2) is valid, uniformly for $a \leq (\log x)^2$.

The equations (3) are soluble for Br > 1.34952, which is valid for all positive integers r when B = 34/9. When r = 1 the numerical improvement is from $E_1 < 0.4426$ in [6] to $E_1 < 0.4394$.

Similarly another result of [5] can be expressed as

$$\lim_{n\to\infty}\inf\frac{\max(p_{n+1}-p_n,\,p_n-p_{n-1})}{\log p_n}\leqslant \frac{3}{4}+\frac{\{(B-1)(9B-8)\}^{1/2}}{4B},$$

and the constant is improved from 1.3624 to 1.3124. Some further improvement is possible, as the weight function used in [5] was not optimal.

References

- [1] E. Bombieri, On the large sieve, Mathematika 12 (1965), pp. 201-225.
- [2] E. Bombieri and H. Davenport, Small differences between prime numbers, Proc. Royal Soc. A 293 (1966), pp. 1-18.
- [3] J.-R. Chen, On the Goldbach problem and the sieve methods, Sci. Sinica 21 (1978), pp. 701-739.

[4] E. Fouvry and H. Iwaniec, Primes in arithmetic progressions, Acta Arith. 42 (1983), pp. 197-218.

[5] M. N. Huxley, On the differences of primes in arithmetic progressions, ibid. 15 (1969), pp. 367-392.

[6] — Small differences between consecutive primes II, Mathematika 24(1977), pp. 142-152.

[7] A. I. Vinogradov, The density hypothesis for Dirichlet L-series, Izv. Akad. Nauk SSSR, Ser. Math. 29 (1965), pp. 903-934.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY COLLEGE P.O. Box 78, Cardiff CF1 1XL

Received on 15.2.1983

(1341)