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Sequences of integers whose iterated sums are disjoint
by
Joun R. Burke and WiLLiam A. Wess (Pullman, Wash.)

1. Introduction. If A and B are sets of nonnegative integers we write
A+B=[n: n=a+b,acd, beB). Erdds and Sarkdzy [1] studied the con-
ditions under which A+ A4 B # @. It is natural to ask in some sense how
dense sets can be and still be disjoint. In the case mentioned above, once 4 is
chosen, by taking B to be the complement of A+ 4 we get a relatively dense
example. In particular if 4 = {n: n=0(mod2)} and B = {n: n = 1{mod 2)},
A+AnB=@, 4 and B are equally dense (in the asymptotic sense), and
A W B contains all nonnegative integers. This serves naturally as an example
of maximum density.

In this paper we consider the problem of characterizing maximal
examples of sets A and B such that A+ A B+B = @ (as well as the more
general problem of higher order sums being disjoint).

Dermvirion 1. Two sets of nonnegative integers 4 and B are sum disjoint
il A+AnB+B =0, )

As usual, the lower asymptotic density of a set A is defined to be d(A)
= lim inf A{n)/n, where A(n) is the number of positive elements of A not
exceeding n.

The main result concerning sum disjoint sets 1s:

THEOREM 1. If A and B are infinite sum disjoint sets of mnonnegative
integers and d(A4) < d(B), then either

() did)=0 and d(BY< 12
or

(1) there exists « positive integer k such that

1 k
ald) < Tl and  d(B) < CEE
2. Proof of Theorem 1. Before proving Theorem 1 we will need
a number of definitions and lemmas. Some of this terminology is due to
M. Kneser [2], [4], [5].
Dermvation 2. A is said to be degenerate (modg) if A is the union of
entire congruence classes (modg). A is said to be essentially degenerate
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(modg) if 4 is contained in a sequence B which is degenerate (modg) and
d{A} = d(B). (That is, A v C is degenerate (mod g) for some set C, d(C) = 0)

DermiTioN 3. A’ is said to be g-worse than 4 if 4’ is degenerate (mod g)
and

i) 4= A,
(i) A+A = A"+ 4’ from some point on.
If we choose A ={n: n=0(mod3),n >0} and B = [n: n=1(mod3),
n 3 0}, it is clear that 4 and B are sum disjoint. It may also be noted that
the only sequence which is 3-worse than A is A itself, similarly for B.
As a special case of Kneser’s theorem on sums of sequences we have the
following:
TueoreMm 2 (Kneser [2], [41). Let A be a sequence of nonnegative
integers and let h be a positive integer. Then either

(1) d(hA) 2 hd(A), where hA=1{n:n= 73 a, A}
‘ i=1

or _

(2) there exists a sequence A’ which is g-worse than A.

Suppose A and B are sum disjoint, and both satisfy (1). We may assume
d(A)} < d(B). Then either d(A) =0 and d(B) < 1/2 or there exists a positive
integer k sach that 1/(2k+3) < d(4) < 1/(2k+1). Since 4 and B are sum
disjoint, d(B) < 1/2—1/(2k+3) € kf(2k-+1), so Theorem 1 holds. We now
assume that at least one of the sequences must satisfy (2}

If A satisfies (2), then there exists a sequence A" which is g-worse than A
for some integer g. Since A'+ A4’ = A+ A from some peint on, by deleting
at most a finite number of elements from B we obtain a new sequence B’ such
“that A’ and B’ are sum disjoint. Since B’ differs from B by only a finite set it
follows that d{B) =d(B"). Similarly, since 4 = A’, we have d(4) = d(A4).
Thus we may assume A is degenerate (modg).

LemMa 1. Let A and B be sum disjoint. If A is degenerate (mody) then
there exists a sequence B' such that

() B is degenerate (modg),

(i) d(B) < d(B"),

(i) A and B' are sum disjoint.

Proof. Let A be degenerate {mod g}. Define B’ = {n: n>0; and AbeB,
bz g, n=b(modg)}. Thus B’ is degenerate (modg).

If beB and b 2 g, then beB'. It follows that d(B) < d(B).

Assume ce(d+A4)~ (B +B). Then there exists ay,a,e4 and b,

5eB such that ¢ =g, +a, = b} +b5. From the definition of B’ there are

elements b,, b,eB such that b, =g, b,=g, b, =bi(modg) and

b, =b3(modyg). Since A is degenerate (modg) it follows that 4-+4 is
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essentially degenerate (mod g), missing perhaps the least element in any given
residue class (modg) which is represented in A+ 4. Hence, b, =g, by = g,
and g, +a, = b, + b, (mod g) implies that b, +b, € A+ A. This contradicts the
assumption that 4 and B are sum disjoint. Thus A and B' are also sum
disjoint.

In light of Lemma 1 it may be assumed that the sum disjoint sequences
A and B which maximize d(4)+d(B) are degenerate (mod g) for some g, and
so addition of the sequences A and B may be viewed as the addition of
residue classes (mod g).

Let Z, denote the additive group of residues {modg). If .« = Z,, then
denote the number of elements (residue classes (modg)) in o/ by [/]. If
o © Z,, then denote the subgroup of Z; which leaves «/ invariant by H(.«).
That is, ac H(s#) if and only if a+ & = &7, If [H(/)] = 2, then we say =/ is
periodic ([3]).

Let C be a degenerate sequence {modg)} and let C denote the set of
residues (mod g) represented by some element of C. Thus C < Z,. If 4 is
degenerate {or essentially degenecrate) and C is periodic, then we say C is
periodic (mod g).

LemMa 2. If A is degenerate (mod g} and A+ A is periodic, then A+ A is
essentially degenerate (modk) for some positive integer k < g such that klg.

Proof. H(A+A) = H is a subgroup of Z, and hence cyclic. If k is the
least positive integer which, considered as an element of H, generates H, then
klg, and since [H] > 2 we have k< g.

Let reA+A. To show that A+ A is essentially degenerate (modk), it
suffices to show that 44 A contains all but finitely many of the nonnegative
integers congruent to r(modk). Since the single residue class r(modk) is
equal to the union of the g/k residue classes (r+ik)(modg), 0 < i < (g/k)—1,
we need only show that A+A contains all but finitely many of the
nonnegative integers congruent to (r+ik){mod g) for each i, 0 < i < (g/k)—1.
A is degenerate (mod g), hence A+ A4 is essentially degenerate (modg), so it
suffices to show there is at least one representative of each of the classes
{r+ik}{(mod g).

Finally note that since ke H{A+A), k+A+A = A+ 4, and so ik+A+A
=A+A4 for 0<i< (g/k)—1. Thus for each re A+ 4, r+ik(modg) is rep-

_resented in A+ A4, which is the desired result.

LemMa 3. Let A and B be sum disjoint and degenerate (mod g). If A+ A is
periodic (mod g) then there exists sequences A' and B' such that
() d(4) <d(4) and d(B)< d(B),
(i) A' and B’ are sum disjoint,
(iii) A’ and B are degenerare (mod k) for some positive integer k such that
klg and k < g.

Proof. Since A+ A is periodic (mod g), we have by Lemma 2 that there



exists a positive integer k such that klg and 4+ 4 is essentially degenerate
(mod k). Let 4" be the union of the nonnegative residues (mod k) for which
there is a representative in 4. Thus A’ is degenerate (mod k) and since A = 4’
we have d(4) < d(A).

Now assume ce(d'+AYn(B+B). Then there exists o), ahed’ and
by, b;eB such that ¢ = g} +a; = b, +b;. From the definition of A4’, there
exists a,, a;£A such that a,+a, = b, +b, = c(modk). Since B+ B is essen-
tially degenerate (mod g} and klg, there are infinitely many solutions to &} +
+b, = c{mod k) with &, b, eB. But A+ 4 contains all but a finite number
of the positive integers congruent to ¢{mod k). This contradicts the fact that
A and B are sum disjoint. Hence, we must have that A’ and B are sum
disjoint and by Lemma 1 there exists a sequence B’ with the desired

properties. .
' Hence, by repeated applications of Lemma 3 we will, in a finite number
of steps, obtain two sequences A and B which are sum disjoint, degenerate
modg, having densities at least as large as the original sequences, and such
that neither 4-+4 nor B+ B is periodic.

TueoreM 3 (Kneser [3], [S]). Let o7 and 9 be subsets of a finite abelian
group G. If «f + 4 is not periodic then [of + %) = [/ ]+[#]—1.

It follows from Theorem 3 that {24] > 2[A1~1 and [2B] > 2[B]—1.
Let [A]=r and [B]=s with r<s. If g 2+25—1 it can be shown
through elementary computation that Theorem 1 must hold.

If cither [24] > 2[A] =2r or [2B] > 2[B] =2s then g3 2r+2s—1.
Thus we need only consider the case [24] = 2r—1 and [2B] = 2s—1. Since
g Z{(2r—1)+(2s—1) = 2r+ 25— 2, the proof will be complete once it is shown
that g = 2r+2s—2 is impossible.

Suppose there is a counterexample to Theorem 1. Then there exists
sequences A and B which satisfy all the above and what is more, we can
choose them with a minimal g. _

First we observe that [A—B] < (9—2)/2 =r+5—2. Since A and B are
sum disjoint and degenerate modg, it follows that 0¢ A— B, g/2¢ A— B, and
if xeA—B then —x¢A—B.

Now, since 4—B=A+(—B), by Theorem 3 A—5 is periodic. Thus

there exists &, h < g, such that if te A— B then t+nhed—B. Define
A" ={n: n=a(modh) for some acA4},
B'={n: n=b(modh) for some beB}.

Clearly A’ and B are degenerate mod h, h<g, and d{A)+d(B)
2 d(A)+d(B). It suffices to show A’ and B’ are sum disjoint. If so, A’ and B' will
provide us with a new counterexample degenerate mod h with k < g.

If A" and B’ are not sum disjoint then there exists aj, aze A" and
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1> b3€B’ such that a) +a) = b +b,. Thus there exist a,, a4, b,, b,eB
such that

al +n1h+a2+n2h = b]_ +mih+b2+mzh.

Thus for some n, a,+a; = by+b,—nh or ((a;—b,)+nk)+a, =b,. By the
pericdicity of A—B we have (a; —b;)+nh = a;~b;. Hence, (a3—b;)+a,
=by or az+a; = b, +by, a contradiction since A and B are sum disjoint.

This completes the proof of Theorem 1.

As immediate consequences of Theorem 1 and its proof, we have the
following: '

CoroLrary 1.2. If A and B are sum disjoint and d{A)+d(B) = 2/3 then
there exists sequences A' and B’ degenerate (mod3) such that A< A’ and
BcB and A'—A and B'—B are finite.

Cororrary 1.3. If A and B are sum disjoint and there are no sequences
A’ g-worse than A, or B’ g-worse than B, for any g, then d(A)+d(B) < 1/2.

3. Higher order sums. It is natural to ask if there are analogous results
to Theorem 1 for sums kd = {n: n=a,+a,+ ... +a, a,€A}. In this direc-
tion we have established the following:

Tueorem 4. If 4 and B are sets of nonnegative integers and kA ~kB
=@ for k=1,2,..., h, then d(A)+d(B) < 2/(h+1).

THEOREM 5. If A and B are sets of nonnegative integers and hA N hB
=@ then d{A)+d(B) < 2/m where m is the smallest positive integer which
does not divide h.

It is easily seen that the bounds in Theorems 4 and’' S can be attained. In
Theorem 4 take A = {n: n=0(modh+1)}, B={n: n=1(modh+1)}. In
Theorem 5 take A= {n: n=0(modm)}, B={n: n=1(modm)}. Since
m th, h=0(modm). '

Theorem 5 is easily proved once Theorem 4 is known. If kjh and
kA NkB % @ then clearly hA n kB # (. Therefore, by the definition of m in
Theorem 5, kAnkB =@ for k=1, 2, ..., m—1, Now apply Theorem 4.

The proof of Theorem 4 begins along the same lines as Theorem 1 with
the appropriate modifications. The difference occurs after establishing the
h-hold sum analogue of Lemma 3. Using the analogue of Lemma 3 and
Theorem 2, one obtains two sequences 4 and B such that k4 n kB = ) for
k=1, 2, ..., k neither kA nor kB is periodic, and they are degenerate (mod g)
for some g < 2(h+1). Examining the different cases yields the stated result.
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Sommes de puissances et d'irréductibles dans F, [ X]

par

MigreiLLE Car (Marseille)

L Introduction. Soit F, le corps fini 4 g éléments. De nombreuses
analogies entre larithmétique de Tanneau F,[X] des polyndmes a une
indéterminée sur le corps F, et l'anneau Z des entiers relatifs ont été mises en
évidence, notemment en ce qui concerne larithmétique additive. Les
problémes de Goldbach, [5], et de Waring, [2], [8], ont été étudiés, et plus
particuliérement le probléme de Waring pour les carrés. Il est actuellement
connu que tout polyndme M eF,[X], de degré assez élevé, est représentable
comme somme de trois polyndmes irréductibles de degré au plus égal au
degré de M, [5], et que, tout polyndme de degré 2n ou 2n—1 assez €levé, est
représentable comme somme de trois carrés de polyndmes de degré au plus
n, [37]. Nous nous intéressons ici & 1a représentation d’'un polynéme de ¥,[X7]
comme somme d'une puissance k-iéme et de deux polyndmes irréductibles.
Ce probléeme a déja été étudié dans [9] pour les polyndémes de degre
multiples de k. On y démontre le théoréme suivant:

TutorREME. Soit k un entier de Tintervalle [2, p[, ou p- est Ia
caractéristique du corps F,. Alors, si n est un entier suffisamment grand, rout
polyndme KeF, [X] de degré nk est représentable comme somme

K = a, P, +a, Py +a, A%,
P, et P, étant des polyndmes irréductibles unitaires de degré nk, A étant un

polyndme unitaire de degré n, a;, a, et ay étant des éléments de F,.

Il est possible d’avoir de telles représentations pour des polyndmes de
degré non multiple de k, et méme d’avoir des représentations de la forme

K =P, +P,+4",

les polyndmes P, et P, étant irréductibles, mais non nécessairement unitaires,
A étant un polyndme, ces polyndmes vérifiant de plus, des conditions de
degré. On peut aussi exiger que le polynéme A intervenant dans une telle
représentation soit irréductible. C'est ce qui est fait ici, oo Ton démontre
essenticllement le théoréme suivant:

TuioREME. Soit k un entier de lintervalle [2,pl, eoit p est la



