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On sign-changes in the remainder-term of the
prime-number formula, 1

by

J. Kaczorowski (Poznat)

1. There are many interesting questions concerning the oscillatory nature
of various remainder-terms in the prime-number theorem. If n(x) stands for
the number of primes not exceedirg x, then the theorem in question shows
that the average value of =(x) is li x; but there may appear wide deviations
in either direction from this average.

It can be verified by the use of tables of primes that

(1.1) r{x) <lix,

for x < 10% (seec [9], [18]).

There were not only numerical, but also théoretical grounds for
believing that (1.1) holds generally for x > 2, and B. Riemann in his famous
memoir from 1859 stated this as a conjecture.

Tt was proved, however, by J. E. Litlewood [1], [11].in 1914 that the
function - g - : : -

(1.2) ' A, (x) = n(x)mli'x

changes sign infinitely often as x — oo. .
It can also be shown. that if the Riemann hypothesis on the non-trivial
zeros of {(s) is true then

(SR )

(m(&)—1i&)dE <0

holds for large x. It means that aithough (1.1) fails in the general it is true on
the average. .

Unfortunately Littlewoods method was ineffective and it gave no
numerical value of x for which z(x) > li x and also no estimate from-below
for the number of sign-changes of 4, (x) in the interval 2 < x € T. Also other
theoretical reasonings provided no numerical solution - of the inequality
7(x) > li x until Skewes [21] in 1955 proved that there is at least one sign-
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change of 4,(x) in the interval

(1.4) 2 < x < exp exp exp exp(7.705).

This was improved by S. Lehman [8] in 1966 who found smaller upper
bound

(1.5) 1.65- 101163
for the first sign-change.
Infinitely many sign changes of the relaied function

1
=Hx)~lix= 3 ~ 7 (M) i x

mz1

(1.6) 4;(x)

was exhibited in 1903 by E. Schmidt [19].

It is clear that methods used in the investigation of sign changes of
4,(x) and A,(x} can be applied to similar questions concerning other
remainders in the prime-number formula, namely

(L7) A5 =pl9—x= T A(m—x,

and

(1.8) dg(x)=3(x)~x= ¥ log p—x.
’ pPEX

Let K(T), 1<
in [2, T].

One of the important problems in the analytic theory of numbers is to
investigate the magnitude of the functions V(7).

Let
(1.9) @ = sup Reg

Llg)=0

4 denote the number of sign-changes of d;(x)

and define y, as follows. If {(s) has any zeros @+iy on the line ¢ = @,
then y; denotes the least positive y corresponding to these zeros: otherwise
Y=+,

PSlya {14], [15] proved in 1930 that

LA
1.10
(1.10) _ 1}13; o e

This interesting theorem, however, still giifes no estimate of V5 (T) from
below.

~ Ingham dttacked the problem in 1936. He proved, [2], that if there is a

zero on the line 0 = @ (O defined by (1.9)), then for T2Ty, 4;(x),1<j<4,
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changes sign in every interval of the type T < x < ¢, T, where ¢, stands for
positive constant. This implies that

(L11) Vi ze dog T for T2T), 1<j<4.

Note that Ingham formulated his theorem only for j = 1 but the method of
the proof works also in other cases.
Levinson [10] in 1974, using Ingham’s theorem and modifying Pélya’s

method, proved that

(1.12)

(1.13) fim =~

without the use of Ingham’s theorem.
Using the estimates contained in Pélya’s paper and the result of
Ingham, one can prove that

Va(T)

1.14 >0
{1.14) Thfi og 7> 0
and in the case @ > 1/2

Va(T)
1.15
(113) 1’]:1}3:1:: log T

The last estimate is obtamed without the use of Ingham’s theorem.
Basing on the paper of Levinson, one can prove without the help of
Ingham’s theorem that
— W (T) 3’1

1.1 . li
(1.1 o Tog T

The subsequent progress on the subject was achieved by the application
of Turdn’s power sum method. In 1961 and 1962 S. Knapowski [4], [5]
proved unconditionally the following ineffective estimate

(1.17) W(Nzeloglog T, Tz=T,,

and he also proved the effective estimate
(118)  K(T)=
These results were improved later by S. Knapowskl and P. Turan [6],

e loglogloglog 7, T =exp SXp eXp eXp exp (35).
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[7] who obtained

(log T)*"
2 —_—'ﬁ""—_:—_n ' T2 Ta
(1'19) I/l(n C3 (lOg log T‘)4 2
(1.20) Wil zc logloglog 7, Tx=T,,

where again (1.19) is ineffective while (1.20) is effective.
J. Pintz improved (1.19) and (1.20) by showing that ineffectively

log T

2 25— T2T,
(121 Wi 2 s g SEs :
and effectively

| log T)"/2
(1.2 BTy s e LB D s g

=% g log T

(see [12], [13]).
He proved also similar estimates for Vi(T), j=2,3,4 For V,(T) and
Va(T) the results are effective (compare [137).

2. In this paper we are going to prove uncoriditionaliy the following
stronger theorem.

TheoreEM. The inequality

2 VT Yo ) T .

holds for sufficiently large T, where Yo = 14.13 ... denotes the imaginary part of

the “lowest”. zero of the Riemann zera Junction,

The estimates (2.1} are stronger than any unconditional éstimates given
hitherto and are of the same strength as Ingham’s conditional estimate (L.11).

The factor yo/4r in (2.1) can be improved slightly and the best value
which can be obtained by the use of the presented .method seems 1o be y,/n,
which would agree with Pélya's result (1.10). .

Let us note that the estimates (2.1) are effective. It means that there is
possible to compute numerically the constant T, such that (2.1) holds for T
=T .

It is also possible to prove the inequality

(2.2 V(M zcelog T,
for j = 1, 4, but it needs some additidnal modifications in the method of the

proof. The proof of (2.2) will appear in the second paper of this series. The
estimates (2.2) are ineffective.
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3. For a com;ﬁlex valued function f defined on the set of the positive
real numbers, let us put

x e

(3.1) S(F %) =6, (f: x) = J 1a% x>0
4]

and for n>= 2

(3.2) 8, (f: x) == jén- 16

if these integrals do exist. It means that &, is the n-fold iteration of the
operator 4. _

In the proof of (2.1) we shall use §,(f; x) with the function f(&), which
for £ = 2 is equal to 4,(&) or 4, (&), respectively. As we shall see it is easier
to deal with the smoother functions &,(f; x) that with f(x) itself.

We shall give two separate proofs for ¥, (T) and V(1.

4. Proof of the theorem in the casej = 3. First of all we are going
to prove a certain ‘explicit formula’ for §,(45; x).
Using Perron’s summation formula we get

2+icy
. 1 ¢ xF
4.1 S, (Y x) = néx A(n) log (x/n) = 5 J ; *E (S)% =3 ds.
2—im ’
let us choose a real number I with the properties:
4.2) (e+iN)#0 for 0<€ek1,
4.3) ) 10f < I < 10541,

Let us define the curve L consisting of the following five parts:
L,: the half-line: s = 1+if, ~c0 <t < —T,
L,: the line segment: s =o—il", 0.1 <0 < 1,
(44) L the line segment: s = 0.1+it, —I'st s T,
L,: the line segment symmetrical to L, upon the real axis,

Ls: the half-line symmetrical to L, upon the real axis.

Shifting the path of integration in (4.1) we get

- e 1 (¢ x
“s) sig=x- T Sl Lol Za

g=1/2+iy
Iyl =r L
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We use here the known fact that all zeros of { (s} with |y| < I" lie on the line
oc=1/2.

From the definition of the contour L and from (4.5) it is easy to deduce
that for n =2

¢ ’ o
(4.6) Ou-1(d3;%) = —  } 35___|_____ { C(S)}g;ds

n : A
e=ipriy @ 2w 4
bl <r L :

x¢
=~ ¥ S40(0 kO Xl

o= 172 +iy
jyl=r

Let us denote by go = 1/2+iy, = 1/2+i-14.13... the “lowest” zeta-zero
and write

4.7 0 =lool €™, 0<p,<ma

Since the only zeros g = 1/2+iy with Iyl < 15 are g, and @y, we have

\ xg'; x172 1 2 _
(48) D e e P Ea
|g=1it2|+£ly_@ | 15 P el
o syl =
and thus
X0 X0
(49) $,.1(d3:1 %) = _?*En_+0(x°-5-15""+10"-x°-1+xr"")
) 0
2x1/2

{COS (vo log x—nepg)+

ro[40) i e oo,

This is the needed ‘explicit formula’ for §,.,(45; x).

leo!”

5. We restrict the range for x as follows:

(5.1} T acx<T, 0<s<3/4
and put
‘ Tog T
(5.2) n= [M————w—m——J+ 1.
1.9 log (I'/jol}
It is easy to verify that then .
‘ log T

" log(10]gq))
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and thus
10 "
(5'3) (—;Clogg{)— < T0-29.x~(}_4 < T 0.01 +s',
logl \" _ .
54 ol 0.0015+g
(5.4) (15 <T !
(55 £03 (L@Ig') Py

where ¢' = £'(¢) is positive and tends to zero as e does.
Hence for x satisfying (5.1} and n given by (5.2) we have

X 2x1[2
(5.6) Opy (d3; %) = “Ted" (cos (yo log x—ngpo)+0(T" 0.001y)
)

for sufficiently small positive e.

6. To finish the proof we must exhibit the connection between the
number of sign-changes of f(x) and 8,(f; x).
In order to perform this we use the following known

Lemma 1 (ses [16], pp. 40-41). Ler S (0, cc) =R be a real valued,
piecewise continuous function, non-constant in every interval (a, b), 0 <a< b
< o0 and such that the integral

A
g [/ () dg

is finite for every A > 0. If v(T) denotes the number of sign-changes of f (x) in
the interval (O, T and V(T) denotes the number of sign-changes of the function
F(x), where

F(x) = [ /(&) de,
]
then for T > (),

(6.1) V(T) < o(T)..

7. Let V§"(T) denote the number of sign-changes of 3,(45; x) in the
interval 0 € x < T From Lemma 1 it follows that

(7.1) V(1) 2 " (),

for every n2 2 and T > 0.
Since (5.6) evidently implies that

(72) . Vé,(n—l)(T) s 'Vé(n"'«l)(T)_]'/BLn—-I)(TSM—E) > 3;_:[ log ’I;

the proof of the case j =3 is complete.
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8. Before we turn to the proof of the case j =2, let us introduce the
following notations. For every complex number z, with real part greater than
0.1, and any real number 5, 0 <# < Rez—0.1, let us denote by C.{n) the
curve consisting of three paris:

Cl(m: the line segment: s = c+ilmz 0.l <o < Rez~y,
CZ(y): thecircle: s =z+5e'”, —n < @ <,
C2(n): the line segment: s =c+iImz, Rez—n =0 20.1.

For x>0 and 0<% <075 let

8.1)

——L_ f log(s—1) T s for O<x< 2,
2mi 8
Cyind
{8.2) I(x) = .
i = [ for+ x32
i(x) = og 0 > 2.

0

With these notations we have the following
Lemma 2. For x>0

I(x) = —5111—1: f IOg(S—l)-f,-derO(x“")-

Cyon

(8.3)

Proof. For 0 < x < 2 the proof is obvious. Let x = 2 and let

¢ 1 *
(84) Joo L —— j log(s—1) = ds.
27 §
Cylm
Then
d 1 o1
(8.5) ™ (x =5 log(s—1)x*"* ds

¢ym

0 - 4

' xm_;;g{f(logm]—m)x@dﬁ J (!og|£I+ni)x““d€}+
o

-~ o0

+0(x" 0%

ﬁ;o(xmf).g)

[s.d] .
= J xCdEFO0(x%) =
log x

0

and (8.3) follows.

For the sake of convenience we shall introduce the following notation: if

f is a complex-valued function and g is a- positive-valued function, both

icm
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defined on the set @ of complex numbers and satisfying the inequality

Ifx) <g(x), xeQ,

then we shall write

(8.6) J(x)=0(g(x),

xef2.

373

Lemma 3. For any complex number z such that Re z = 1/2 and 2| > 4 we

have for 0 <n <04, x>e and 1 < n<hlog x

(8.7 I.(z. x) =~«1-_
i

Proof. Since

xF _ 12
T 2" log x <|z|"“ log x

12
Jrolz

|z]* log_zx)'

Jlog(s-uz)%ds:o(l% as n—0

c2m
.We can write

k1
< (u
<ksn . K
1

)

.4

ntk—1y 1
R
S z

0

j_' 1
Izlk (log x)k+ 1
(n+h)!

“EE g,

I'k+1)

1

T2 108X geiZn (1= 1)1 (2] log X
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Since n < (1/2) log x, we have
k
(n+k)! L gﬁ(n+1)...(n+k)<n 2n <n
(n—1)! (log x)* (log x)* log x
thus (8.9) is smaller than

L, T S
|z) log? x & lz] log x

Moreover, since

0.4

f “egr <L
log? x

0
and obviously (:) < 2", we have

0.4

Z n+k——] IJX

Ezn+ Z
0

R AU AT 1 (ay L 1
“lgl\m) 2\ T \E) T ey
0g” x \|z| K=o \J2l |z log® x \[z| /lzl  log®x

These estimates together with (3.8), give the assertion of Lemma 3.

2r|+k'~1 i

<3 I

kner l2* log?x

k4

nrr-

Ui

9. Let us prove an ‘explicit formula® for §,_,(I7~1; x) similar to (4.6).
For ¢ > 1

(9.1) log {(s) = ¥, —o

g1
aon logn-nt

and hence by Perron’s summation formula
2+ion

i x¥
9.2 S, (IT: x) = — £(s) = ds.
(9.2) 1T x) o log {(s) " ds

2-im

Let ' denote the number defined by (4.2) and (4.3), and let L' be the
curve consisting of the contour L defined by (4.4), the curve C,(»), and the
family of curves C,(#), where ¢ = 1/2+:y runs over all {-zeros with |1 < I

By Lemma 2

1 (9.3) . Ei?; f logC(s) ds-(S Al )40 (x%1).

Ciin)
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Shifting the line of integration in (9.2) and using (9.3) we get

Ry

log ¢ (5) ff ds + 0 (x°1)

L\C1(m

04) 6, (I —1:x) = 5—

1 x3
= I, (0, X)+-— log {(s) = ds+
M%m 20, X)+5— f glls) 3

[ = LyuloulgulLs
+0(x™h

where I,{g. x) are given by (8.7).
Applying the operator 6, n—2 times we get

(93)  Spe i UT—1; %)

1 5 -

= ¥ Llextg f log {(s) - ds+0 (107 x°1)

e=1/2+1y i s
[yl =r LyuLyulguls

= ¥ Lile, x)+0(10" x4 xrn).
a—“-liﬁll}f‘iv
el

10. Proof of the theorem {2.1) in the case j = 2. Let us choose n
as in (5.2} and put the restriction (5.1) upon x. Then by Lemma 3 the
contribution of the terms I, (g, x) with |y > 15 in (9.5} can be estimated by

o x1[2 ,
15" log x

and thus still by Lemma 3 we get

X0 %70 w0 2x12 N
0% log x 7 log x o5 *| log x
o 108

xl,’Z xl/z 01
- 10" . !""‘ n
+O(|Qo[" log2x+15" log x+ X )

Bue1 T =15 x}

xl/2

ii

3
{cos (yo log x— ncp0)+0( )+
[@ol

e\ o
(F') x /2] log T)

fQo|" IOE x

" (10
of s 2

for sufficiently large x.
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Using now (5.3)-(5.5} we get for sufficiently large T, satisfying (5.1) and n

given by (5.2)

8,y (=15 x)
= —%ﬁ cos(y, log x— n%)+0(lm30—|>+ (T~ 49 1og T)}
and finally .
(10 6, (T-5x) = il ll:g - {c:os.(y-0 log x—ngq)+0(0.5)]

because 3/lgol < 0.3 and T7%%° log T < 0.2 for large T
As previously (10.1) implies that the difference n(x)—/(x) changes sign
more than (y,/4m) log T times in the interval (0, 7). But in the interval {0,2)

xt=e
—x) = — d
1(x) j L
0
18 negatlve and so m{x)—I(x) changes sign for x > 2 only. But for such x

w(x}—1(x)=nm(x)—h x

and thus the proof of the theorem is complete.

n(x)—l{x) =
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