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Introduction. Consider the following problem: Given a quadratic field
Q(\/E) with class number h(m) = 0(mod 3), construct an unramified abelian

" cubic extension K of Q{\/f;q). That is, if K = Q(\/f;, &) give a polynomial

with coefficients in Q(\/ﬁ;) which has & as a root.

This problem could, of course, be regarded as an aspect of the theory of
non-Galois cubic extensions of ¢, and their normal closures. See, for
example, [1] and [7]. Also, it is well known that the all-powerful class field
theory solves the problem. However, it is not practical to apply these
theories to solving a specific case. It is the main purpose of this paper to give
a simple and concise method for the construction described above. One
needs some knowledge of the ideal classes in Q(\/Fn_z) and Q(\/—3m); given
this, the procedure is straightforward. It may be summarized as follows:

Let F = Q(\/i;) be any quadratic field, and let ye F. Define the ideal T
in F by: if 3tk then T=(9), and if 3|k and (3) = P2, then T = P3.

We say that y is a semi-cube in F provided y is not a perfect cube, and y
is an Integer, and

(i) the principal ideal (y) is an ideal cube,

(ii) for some integer x&F, y= x* (mod T,

(i) 3.4 N (). | - | ‘
. We show that if y is a semicube in Q(./~3m) and & = i/§+%’
(where y' is the conjugate of y), then Q(ﬂ, ¢) is an unramified abelian cubic
extension of Q(\/m). On the other hand, if Q(\/m, &) is an unramified
abelian cubic extension of Q(\/E), then we can find a semi-cube
7€Q(/~3m) such that for # = 3/y+3/7 we have Q(/m, & = Q(/m, 7).

Generally speaking, thé proof may be described as a combination of
standard field theory (4 la Van der Waerden), and of the work done in [11]
and [12], which allows the precise determination of the discriminant of any
quadratic or cubic extension of a given field.

6 — Acla Arithmeticn . XLIV.4



380 T. P. Vaughan

Section 1 contains notation and statements of known results. In Section
2. we cstablish some casy preliminary results, for example, if K is an
unramified abelian cubic extension ol Qf fm) then J=K(/—3) is a

norrral field, with dibedral Galois group, unrarmﬁed over Q{ \/_ . \f 3)
{Theorem 2.5).

In Section 3, we establish the pairing between unramified abelian cubic
extensions of Q(\‘/r_n_) and pure cubic extensions Q(./—3m, i/g‘l) where y is a
semi-cube (Corollaries 3.4 and 3.5); we also give the discriminant of the pure
cubic extension.

In Section 4 we state some known results, which are very easy
consequences of the pairing. Theorems 4.1 and 4.2 are contained in the work
of A. Scholz [9] and H. Reichardt [8].

In Section § we give somé examples of the construction.

I would like to thank Professor R. Bélling for his helpful remarks, and
for the references [8] and [9].

1. Preliminaries. If F is an algebraic field, and if xeF, the norm of x
(over 0} is the product of all the conjugates of x, dencted N(x).

If n is an integer and r a non-negative integer, and p a prime, then p'{|n
means p'|n and p'*! n. We also use this notation for ideals.

~ If R is the ring of integers in F, write disc F = disc R (the discriminant
of R over Q; see e.g. [6]). If F = K where K is also algebraic, and if § is the
ring of integers in K, write disc(K/F) for the discriminant of S over R. The
Galois group of K over F is denoted Gal(K/F).

We will need the closed-form expression for the roots of a cubic
polynomial. For details see [4] or [10]. Any polynomial ax® +bx*+cx+d
can be rationally transformed into a polynomial of the form

f(x)=x*+gx+r.
Put
V -3D)Y18, M =(r/2)~(\/ —3D)/18.

D= —(4¢+27r%), L=(r/2)+(

Then the roots of f(x) are
~3L-3M, —0¥L-w*¥M,

—w? Y L-wd/M

(Cardan’s formulas), where w = (— 1+ / —3)/2. L and M are the roots of the
auxiliary gquadratic

g(x) = x*—ry—g*/27

and D is the square of the difference product of the roots of f{x). We may
write D = disc f, keeping in mind that this may not be an integer.
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Lemma 1.1, Let f(x) = x*+qx+r, with L, M, D defined as above, and
suppo.s‘@ﬁzfz_nd roare in a field F. Put y = —afi—i/r}_\/hf. Then F(./—3D, y)
=F(/=3D, ¥/L).

Proof. This follows from the fact that L and A are in F
that LM = —{¢/3)* is a cube in F. m

CororLrary 1.2, Let F(y) be any cubic extension of a field F, with
discriminant D over F. Then F(, /—3D, V) is a pure cubic extension of
F(./~3D). m

In [11] we dmuss pure cubic extensions F(J/ 7) of a field F. We say
that y; ~ 7, provided F(\/yI] = (\f yz) Given ye F and a prime p in Z, it
is shown that there is a v, in F so that y ~ y, and the principal ideal (yy) is
not divisible by the cube of any prime ideal factor of (p). In particular, we
may always assume without loss of generality, that y is an integer and that

(7) is not divisible by the cube of any prime ideal factor of (3).
The lemmas stated below are extracted from [11].

LemMa 1.3. Let F = Q{\/r; and K = F ( v) where v is not a perfect cube
in F, and (y} is not divisible by the cube of any prime zdealjacmr of (3} in F,
Let D = disc (K/F).

{(a) Let m=0 (mod 3). If 34N (y) and y = x* (mod T Jor some xeF,
then 3 ¥ D. Otherwise 3*| D.

{b) Ler m = 0{mod 3).
Otherwise, 3*|D. m

Lemma 14. Let F be a field and K = F(Q.f);) Jor some y in F which is not
a perfect cube. Put D = disc(K/F). Let p be a rational prime, p # 3. Then p| D
if and only if for some prime ideal factor P of (p) we have P*'*"||(y) where r
=1 or r = 2. In particular, if p ¥ D for every prime p then (v) must be an ideal
cube. If (y) is an ideal cube, and p+ 3 is prime, then p¥D. w

i —313) and

If 3YN(@) and y=x*(mod 9), then 3%||D.

2. Second-order preliminaries. The main purpose of this section is to
show that if K is an unramified abelian cubic extension of Q(./ ‘m), then J
= K(V —-%) is a normal field with dihedral Galois group, whmh is
unramified over Q( /m, \f —3) (Theorem 2.5). The proofs in this section are
quite straightforward and are included for the sake of completeness.

Lemma 2.1. Let J he a normal (over Q) cubic exrension of Q (/ /m, fr—mij.
Then G = Gal(J/Q) is either dihedral or Z;xZ,xZ5.

Procf. Since J contains three normal subfields of degree 2, then G has
three normal subgroups of order 6. There are only five groups of order 12;
only Z,xZ,xZ, and the dihedral group have three normal subgroups of
order 6. m
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Lemma 2.2, Let J be an unramified, normal (over Q) cubic extension of
Q(/m, /=3). Then Gal(J/Q) is dihedral.

Proof. We know that J contains at least one field Q (&) of degree 3 over
Q; G = Gal(J/Q) will be dihedral precisely when Q(&) is not a normal field.
We put D, = disc (Q(N/—m‘)); then disc J is (3D,)° if 3 4m, and is DS if 3|m.
Let D =disc(Q(¢)). Then |D| > 23, and Q(¢) is normal if and only if D is
square in Z (see [5]). We also have D*|disc J. Now suppose that D = k2,
Then k® divides disc J, and since m is squarefree, k can only be a power of 2,
Since at most 2% can divide disc J, then k is at most 4. But 42 = 16 is too
small for a cubic discriminant. Thus D is not square, Q(¢) is not normal, and
G is dihedral. w

Lemma 2.3. Suppose that F = Q(ﬁ) has an abelian extension of
degree 3: K =F{y)= Q(ﬁ, y) where y is a root of f(x)= x +gx+r
(4, reQ{\f’;)). Define L, M as in Section 1, and assume y = hf/i-—i/ﬁ.

Then
J=Q(/m, /=3, ) =0(/m /=3, 3/L)

and J is a normal field of degree 12 over Q.

Proof. Put D= —(4¢*+27r%. Since K is normal over F, then D must
be square in F, so that F(,/-~3D)=F(\/—_3). By Lemma 1.1 we have
F (\/—_3', 7).=F (\/:3_, i/i) =J. It is clear that [J:0] =12. Next, since
LEQ(\/E) = Q(\/—r;e, \/?3), then L has only two distinct conjugates in
Q(/m, \/?3), namely L and M. Since LM =(—g/3), then 3/M is in J.
Since J (:ontains'\/—_i’: (and hence the cube roots of unity) it follows that J is
the splitting field of the polynomial '

(x*—M)(x*—L)eQ[x]
(sincg this field also has degree 12 over Q and contains J). Thus J is normal
over 0. m

Lemma 24. Let F be a field of degree n over Q, and put K = F (\/_;3).

(a) If'3 is not ramified in F, then disc K = (disc F)?-3%",

(b) If (3) is an ideal square in F, then disc K = (disc F)2.

Proof. This is an easy consequence of [12], 3. m

THEOREM 25. Assume the hypotheses and notation of Lemma 2.3, and
assume also that K is unwramified over F. Then J is unramified over

Q{/m, /—3) and Gal(J/Q) is dikedral.

Proof. Put D, =disc Q(/m), and D = disc Q(./m, /—3). I 3 ym,
then D =(—3D,)% and if 3|m, then D =DZ. If 3 fm, then since disc K
=D, 3 is not ramified in K, and by Lemma 24, disc J = DE3% = D3 If
3|m, then (3) is an ideal square in K, and disc J = DS = D% again by
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Lemma 24. Now J is unramified over Q(ﬂ, \,/:_f’;) and Gal(J/Q) is
dihedral by Lemma 2.2. =

3. The cubic connections. In this section we show how the unramified
abelian cubic extensions of Q(\/ m) pair off with certain pure cubic extensions
of Q(V/——fi—n—z). We assume throughout that D,, = disc Q(\/n;) and |D,} = 23
(since it will be the discriminant of a cubic field also).

Tueorem 3.1. Let L be any unramified cubic extension of J
= Q(ﬁ, f——B) such that L is normal over Q. Let Q(£) be one of the cubic
subfields of L. Then precisely one of the following two cases must occur:

(1) K, = Q(x/rﬁ, &) is an unramified abelian extension o_}"Q(\/r;) and K,
= Q(\/_:B_n;, §) is a pure cubic extension of Q(\/—_Bm);

(b) Kz = Q(/—3m, &) is an umamified abelian extension of Q(\/m)
and Ky = Q(.\/l‘?‘l, ¢) is a pure cubic extension of Q(w/’;)'

Prool. By Lemma 2.2, G = Gal(L/Q) is dihedral. Let C be the (only)
cyclic normal subgroup of order 6, and H the (only) normal subgroup of
order 2. H fixes a normal field of degree 6, which has just one quadratic
subfield and three (conjugate) cubic subfields, one of which is Q). Put D
= disc Q@ (£); we know .D is not square.

Suppose that Q(ﬁ) is fixed by C. Then K, = Q(ﬁ, £) is fixed by H
and is normal, so \/EEK 1» Since K, has only one quadratic subfield, we
have D = mk?* for some integer k. Since D*|disc L, no odd prime can divide
k, particularly 3. Now if 3 ¥ m, then 3 is unramified in K , and disc L= 36 D¢
= (disc K,)*3° (Lemma 2.4) whence disc K, = D3. If 3|m, then (3) is an
ideal square in K; and disc L= D§ = (disc K,)*; again we find disc K,
=D3.

Now K, is unramified over Q(‘\/E), and since disc K, = D} = D?j
(where j = disc(K,/Q(£))) it is not difficult to show D =D,. Then by
Corollary 1.2, K, = 0(./—3m, £} is a pure cubic extension of 0(/—3m).
The argument is similar in case Q(./—3m) is fixed by C.

It remains to show that Q(\/:i) is never fixed by C. Suppose to the
contrary that Q(\/——S, ¢) is normal. As before, we must have disc Q (&) = D
= —3k? for some k&2 and (as in the proof of Lemma 2.2) k is a power of 2,
and k < 4. Then |D| =1 or 12 or 48 and D cannot be the discriminant of a
cubic field ([5]). This contradiction completes the proof. m

CoroLLARY 3.2. Let L satisfy the hypotheses of Theorem 3.1. Then E

=Q(\/n_;, \/73-, Q/;)) where either '}JEQ(\/—H—’I)'OI‘ PeQ@(\/~3m). =

Remark. One could equally well distinguish the two cases of Theorem
3.1 according to whether or not the quadratic subfield fixed by € has
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discriminant divisible by 3. We shall henceforth make the convenient
assumption that 3 ¥m.

"The next result fills in some of the details about the pure cubic
extensions occurring in Theorem 3.1.

TuEOREM 3.3. Assume the hypotheses and notation of Theorem 3.1, and
assume also that 3 f m.

(a) Suppose that Q. f?{i) is fixed by C, so that Ky = Q(/=3m, &) is a
pure cubic extemzon 0)‘ O/ — Bm) Then D(L/K;) =1, D(K,/Q(4/ u—:‘j}'n:l)) =1,
and Ky =0/ —3m, 3/—) where y is a semi-cube in Q(Vﬁe) (that is, v is
not a perfect cube, (y) is an ideal cube, 3 ¥ N(y), and for some er(\/ :'“3.1;1-),
y = x*(mod T)).

(b) Suppose that Q(\,/_—Tm) is fixed by C, so that K| =
pure cubic extension of Q(y ‘m). Then D L/Ki)—B2

and K; =Q(./ m. \f“) where y is a semi-cube in Q(.,

Proof. {a) Smce 3,1’m we know disc Q(\/ —3m) = —3D,. Then
disc K = (=3D, D(K»/Q(/—3m)) and disc L=(—3D,)® = (disc K,)*x
xD(L/K,). Then both rel:ttwem discriminants are 1. Since K,
=Q(, —3m, /o) for some aeQ(y

—3m), it follows from Lemmas 1.3 and
1.4 and the preceding remarks, that @ = 7 for some y, where 7 is a semi-cube;
K? - Q(\ n, \_Mf,)

(b) We have disc K, =DiD(K,/Q(./m), and disc L=3°Dg
= (disc K,)* D(L/K,). Clearly the two relative discriminants can only be
powers of 3, and since 3% disc L, then 3* ¥ D(K,/Q( F)) Then by Lemma

Q(;V/;n-'z f) is a
(K1/Q (/M) = 3%

1.3 we must have P = D( 1/Q (/m)). It follows that D(L/K,) = 3* also, and _

as before, K; = Q(,/ ,\/ y) where v is a semi-cube. m

Putting all the picces together, we have a constructive pairing between
unramified abelian cubic extensions of Q(\/rﬁ) and what might be called
minimally ramified pure cubic extensions of Q(\m). This is summarized
in the following two corollaries.

CoROLLARY 3.4. Let 3 fm.

(a)y Let Q(\[_ £) be an unmmlfred ahelign cubu extension of Q( /m)

Then we may assume £ is a root of x> +agx+r )‘or some o, reQ, and if yisa
root of the auxiliary quadranc then K, = Q(\/ 3m \/y is an unramified
pure cubic extension of Q(\/ Bm) We also have K, = Q(./ ~3m, \/cx Jor a
semi-cube o in Qf f——3m).

{b) Assume K, =Q(,/—3m, %) is an unramified extension of
Q(\ —3m), where o is a semi-cube in Q(./=3m). Then the minimum
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polynomial of o is the auxiliary quadratic for a cubic polynomial of the form
x2 4 gx+r with root 4’ = —wi/&wi/oc—’, and Q(V"E, &) is an unramified abelian
extension of Q(

Proof. (a) By Lemma 23, L= Q(,, /m, \/— 3, &) satisfies the hypotheses
of Theorem 3.1. We also have 3,{’ m, so Theorem 3.3 applies.

{b) Put L= Q(V'rnvz, V=33 /). As in the proof of Lemma 2.3 we find
that L is normal over Q (we use the fact that N(a) is a cube in Q). By
Lemma 24, L is unramified over Q(,/m, x[:3)’ and by Lemma 2.2,
Gal(L/Q) is dihedral. The rest follows from Theorems 3.1 and 3.3, m

CorovLrary 3.5. Ler 3./m.

{a) Suppose Q(y "~3m, &) is an unramified abelian cubic extension of
N j—3m) We may assume & is a root of x° —|—qx+r forsome g, reQ. Ifyisa
Q(\/m:‘\ I) hus D( 1/Q(\/m))
= 3%, Furthermore, K, = Q(\/ﬁ, Q/&) where o is a semi-cube.

(b) Assume K, = f \f has D( I/Q(f))—Bz with o a semi-
cube in Q(f Then rhe minimum polynomzal Jor o is the auxiliary quad-
ratic for a cubic polynomial x*+gx+r with root = —3_/——\/05, and
Q(/—3m, &) is an unramified abelian extension of Q(Vfréwrﬁ_).

Proof. The proof for (a) is the same as for Corollary 3.4 (a). To see (b),

put L= Q(/m, /=3, 3/a) and D = disc(L/Q(\/m, \/—3)). By Lemma 1.3,
if p is prime, p s 3, then ptD. To see that 3 4D, consider the basis

3)(x—2/2)3, (x—3/w?/3)

for L over Q(V m, / /23). We have 3 ¥ N(«) and a = x*(mod T): with this
choice of x, one checks that the members of the basis B are algebraic
integers, and that 3 ydisc B. Then 34D. The rest of the proof is like
Corollary 3.4 (b). =

4. Let H"(m) denote .the maximal abelian unramified extension of
Q(\/ﬁ) with Galois group G*( ) H(m) the Hilbert class field of Q(\/i;?—-),
with Galois group G(m); ht(m)=|G*(m) and h(m)=|G(m) = the class
number of Q(\/ When we take into account the natare of a semi-cube,
the pairing establmhed in Section 3 leads 1mmcd;ately to relations between
h* (m) and A" (—~3m), or between G*(m) and G* (—3m). In this section we
give some of the more obvious consequences of the pairing.

Say that a pure cubic extension of Q(\ﬂ) is minimally ranﬁﬁed if its
relative discriminant over Q(\/— ) is 1 when 3|m and is 3 when 3 m. A

necessary condition for Q( /_ } to have a minimally ramified pure cubic
extension, is that it must contain an ideal cube, () =1I°, with I net

root of the auxiliary quadratic, then K =

B=11,(/-3
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principal. If m < 0, this would jmply 3|h(m), but not necessarily for m > 0,
since the fundamental unit of a real quadratic field may be a semi-cube (for
example, if m =87, h(m) =2, the fundamental unit is a semi-cube and
31| h(—29)). Since not every ideal cube yields a semi-cube, the number of
minimally ramified pure cubic extensions of Q(\/r;) cannot exceed the
number of distinct subgroups of order 3 in G* (m). Hence this latter number
bounds the number of distinct subgroups of order 3 in G*(—3m), by the
pairing. For instance, we have

TuroreM 4.1 ([8], [9]). Suppose
34T (-3m). =

Treorem 4.2 ([81], [9]). Suppose m >0 and y is the fundamental unit of
Q(\/r;), If y = x*(mod T) for some xeQ(/m), then 3| h(—3m).

Question 4.3: For what integers m > 0 do we have 3| h(~3m) while the
fundamental unit of Q(\,%) is not a semi-cebe? Are there any such m?

m<0 and 34fh(m). Then

5. Examples.

S50 Letm =287 and y = 28+3\/§3_i. Since 3|m, we have 3} = P2 and T
= P3; clearly y = I(mod T). Since N (y) = 1, and (y} = (1), then y is a semi-
cube. The minimum polynomial for v is g{x) = x*~56x-+1, which is the
auxiliary quadratic for '

| F(x) =x—3x+56.

For { 'a root of f(x), we have Q(,/~29,¢&) is an unramified abelian

extension of Q(/—29). By .the way, (£—1)/3 is a root of x*-+x%42, a
polynomial with smaller coefficients and discriminant —4.29. This reduction
seems to work fairly often.

5.2. Let m =79. The class number is 3, so there must be at least one
unramified abelian cubic extensions’ of Q(\/’E), and a corresponding pure
cubic extension of Q./—~3:79) with discriminant 32. Looking around, we

find py = 172412 «/—379. This y is not a perfect cube, it has norm 78, 50 ()
is an ideal cube, and we have 177 = | (mod 9) and 12 = 3 (mod 9). Then y is
a semi-cube. Now y is a root of g(x) = x?~2-172x-+75 which is the
auxiliary quadratic for

S{x) =x¥~3-49x42-172

and if & i_s_ a root of f(x), then Q(\/’E, £) is an unramified abelian extension
of Q(\/’—iQ). We also have (£--1)/3 is a root of x°+x?~16x—16.

33. From Example 5.2, we see that Q(\f —3:79) has class number
divisible by 3, so we seek a semi-cube in Q(./79). The fundamental unit
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y=80+9 \a“7§ is a semi-cube; it is a root of g(x} = x* - 160x+ 1, which is the
auxiliary quadratic for f(x) =x'—3x4160. If £ is a root of fi{x), then

Qv _3-7—7—5, £) is an unramified abelian extension of Q(\m). Here we
find (6+1)/3 is a root of x®—x*+6,

54. Let m=109. The fundamental unit is y= 118 +25(1+/109)/2

which is congruent to (,/109)*(mod 9), so y is a semi-cube, It is a root of
x*—261x—1, which is the auxiliary quadratic for f(x) = x*+3x+261. If ¢ is

a root of j'(i)_, then Q(«/—3:ﬁ)9, ?) is an unramified abelian extension

of Q(/—3-109).
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