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An operation called splitting will be defined on the disjoint covering
system (DCS) of congruence classes on Z. It will allow us to decompose
every natural DCS to some full systems Z,, p a prime, of congruence classes
modulo p. This decomposition of natural DCS corresponds to Z-trecs in [4]
(where further references also can be found). Irreducible DCS, to which every
(general) DCS can be decomposed, are introduced. Several infinite classes of
irreducible DCS will be constructed. They will make possible to find
infinitely many non-natural DCS.

1. Notation and basic notions. The symbol Z will denote the set of
integers. The letter D will denote the greatest common divisor and le.m. the
least common multiple; alb will denote: a divides b, For integers »n > 0, aq,
the symbol a(mod n) will denote the comgruence class {a-+nx; xeZ).
Although 0 < a < n is usual, an arbitrary a in the term a(mod n) is allowed ;
for example, 13(mod 7) = —1{mod 7) = 6(mod 7). '

The intersection of any two congruence classes X = a(modm), Y
= h(mod n) is either empty or a congruence class. The first case never takes
place if m, n are relatively prime. Further, if X is a subset of ¥ then the
modulus »n of ¥ divides the modulus m of X.

The system

(1.I) ay(mod ny), ¢;(mod ny), ..., o (mod )

will be called disjoint covering system (abbreviated; DCS) if every integer
belongs to exactly one of the classes (1.1). More formally, a DCS is a
partition of Z inte {initely many congruence classes (we always assume that
these classes are given in (1.1) withoutl repetition). The integers ny, ..., n
will be called moduli of (1.1) and their least common multiple N
= lem. {ny, ..., m,) will be called the common modulus of (1.1).

The partition [Z} is usvally excluded from the consideration but it will
be considered as a (degenerated) DCS in the present paper. Therefore some
theorems on DCS’s must be slightly modified. For example, a well-known
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necessary condition on the modulus of a DCS (1.1} is
{1.2) Din, n)>1 forevery i,je{l, ..., k},i%].

(Here “i # j” had to be added.) The condition {1.2) follows from the fact that
the intersection of any two congruence classes with relatively prime moduli is
nonempty.

For every positive integer n denote by Z, or Z(n) the partition of Z into
the congruence classes modulo n (the symbol Z(n) is sometimes used to
avoid double indices). In particular, '

Z,;=1{0(mod 2), I{mod 2)} and Z, = [0(mod 1)} = {Z}.

The number of elements of a set X will be denoted by card (X).

2. Definition of IDCS and splitting. Now we shall define irreducible DCS
and the operations-of splitting which allows us to obtain all DCS from the
irreducible ones. '

Dermvmion 2.1. (a) Let §,, S3 be DCS, let b{mod djeS,; and let S be
the DCS (1.1). We shall say that S, arises by the b-splitting of S, by S,, and
write S; =Split(S,, b, S,) if

83 = (S;—{b(mod d)}) w {b+a,d(mod nd);ieil, ..., kil

(b) We shall write Split(S;, a,, $,, a4y, 83)  instead of
Split (Split (S,, ay, Ss), a5, 8;), and analogously for a greater number
of spiittings. Further, we define Split(S) =S for svery DCS §.

The last part of this definition will be necessary, e.g. in Theorem 24.

‘ExampLes 2.2. Split(Z,, 1, Z,) consists of 0(mod 2}, 1{(mod 6), 3(mod 6),
S(mod 6), and Split(Z,, 1, Z,, 1, Z,) consists of O{mod 2}, 1(mod 12)
7{mod 12), 3(mod 6), 5(mod 6). .

On the other hand, Split(Z,, 1, Z;) consists of ¢(mod 3), 1({mod 6),
4(mod 6), 2(mod 3) and hence Split{Z,, 1, Split(Z,, 1, Z,)) consists of
O(mod 2), 1(mod 6), 3(mod 12), 9(mod 12), S5{mod 6).

We can easily see that for every DCS § and every integer a

Split(Z,, a, §) = Split(S, @, Z,) = 5.

H

Derinrion 2.3, A DCS (1.1) will be -called reducible il there is
Xe{l,..,k}, 1<card(X)<k such that U la(mod m); ie X} is a
congruence class, A DCS (L.1) will be called irreducible disjoint covering
system (abbreviated: IDCS) if k > 1 and the DCS (1.1) is not reducible.

For example, Z; is reducible, because 0(mod 4) i 2(mod 4) = 0(meod 2).
The partition Z, is neither IDCS nor reducible DCS, analogously as the
.integer 1 is neither prime nor composite, .

' Now- we can formulate the decomposition theorem.
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TueoreM 24. For every DCS S there are IDCS S,, ..., S, and integers
by ..o, by such that

(2_4) S=Spllt(21,b1, Sl,...,b", S").

Proof. We use the induction with respect to card(S}. For § = Z, we
choose n=0. If § is irreducible we choose n =1, b, arbitrary and §, = S.
Now let § be reducible. Then there is a subset T of § such that 1 < card(T)
< card(S) and the union of T is a congruence class b(mod d). We may
assume that T is a minimal subset with this property, ie. for no T, = T,
L = card(7T}) - card(T), [} T, is a congruence class. Let T consist of the
congruence classes (1.1). Then

ach (oam) b
y (mod d)’ Rl (mod d)

is an IDCS; denote it by S,. The set §' =(S— T)u {b(mod d)} is a DCS
consisting of less than S congruence classes. Hence by the inductive
assumption

S, - Spllt(217 bi) Sl‘ ey b"...,l, S?l“l)
for some integers by, ..., b,_, and IDCS §,, ..., §,_,. However,
8§ =Split(§', b, S,),

and hence we have (24) for b, =b. u

To obtain more comprehensive notation we can extend Definition 2.1 as
follows.

DeriniTion 2.5, If 8¢, §, are DCS and X = by, ..., b,} is a finite set of
integers such that b;, b; belong to different elements of §; whenever i # j,
then we shall also write Spiit(S,, X, S,) or Split(S,, {by, ..., by}, §,) instead
of . , .

(2.5 Split(Sy; by, Si, b2, Soy ooy By Sy).

We shall also use Split(S;, X;, ..., 5, X\, S,.,) analogously to Defi-
nition 2.1(b).
" The condition on by, ..., b, makes (2.5) independent on their order;
hence Split(S;, X, §,) is defined correctly. (We can also imagine that the
splittings in (2.5 arec parallel) The inequality Split(Z,, 4, Z,, 6, Z3)
s Split(Z,, 6, £,, 4, Z,) shows that this condition cannot be omitted.
As an example of use of 2.5, notice that

Split(Z,. (0, 1}, Split(Zs, 10, 2}, Z), 2, Z;)

denotes a DCS which consists of 28 congruence classes and has the common
modulus 210. ‘ .

The operation of splitting allows us to define a class of DCS which was
intensively studied, see [17], [2], [3]. [4].
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Derinmrion 2.6, A DCS § wilt be called a natural DCS (abbreviated:
NDCS) if there are integers a;, ..., @, and positive Integers Ao, By, ..., M
such that

S= Spﬁt(Z(no), ay, Z(ny), ..., ag, Z(m)).

Equivalently, a DCS is an NDCS if it arises by finitely many splittings
from the DCS Z,, kK =1,2,3,... The next example shows that in the
decomposition (2.4) of a natural DCS also some non-natural IDCS can
occur. Simultaneously it shows once more that the decomposition (2.4) of a
DCS is not uniquely determined.

ExampLe 2.7. Let P be the DCS consisting of the following 13
congruemnce classes: 0, 4(mod 6); 1, 3, 5, 9(mod 10}; 2(mod 15); 7, 8, 14, 20,
26, 27(mod 30) (P is derived from Porubsky's example of a non-natural
DCS, see [2]) Then

Z3yo =Split(P, 10,4}, Z5,{1,3,5,9],Z,.2, Z,)
and simultaneously .

Zao =Split(Z,, (0,1}, Z,, 10,1, 2, 3,4, 5], Z).
There are also further decompositions of Z3,.

3. Common modulus of IDCS. In this section, a simple necessary and
sufficient condition for common meodulus of IDCS will be proved. The
natural IDCS will be fully described by Theorem 3.1, and then nhon-natural
IDCS will be mainly studied. The first example of a non-natural DCS was
given by S. Porubsky [2]. The example can be immediately used in the
construction of several non-natural IDCS, all with the common modulis 30,
N. Burshtein [1] also gave several examples of non-natural DCS, however
they all were based on Porubsky’s example and lead to the same non-natural
IDCS. Here an infinite set of non-natvral YDCS will be constructed. For the
~sake of completeness the natural IDCS will also be described.

TueorEM 3.1. An NDCS X is irreducible if and only if X =Z, for a
prime p. !

Proof If X is not of the form Z,, then X is obviously reducible by the
definition of NDCS. If X = Z,, for some m > 1, n> 1 then | < m < card{(X)
and the union of m elements ni(mod mn), i =1, ..., m is a congruence class.
Therefore, X is reducible. Conversely, il k is a prime then elements of 2, are
maximal (proper) congruence classes, and hence Z, is irreducible.

The parts (b) and (c) of the next lemma hold for every non-natural DCS.
In part (a) the irreducibility is substantial; an example can be found in [1];
another example is Split(Z;, 0, P) where P is from Example 2.7. The
cxample Z; shows that non-naturality is substantial in (a), {b), (c); lor (a), (c)
also Split(Z;, 0, Z;) can be considered.
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LemMA 3.2, (a) The greatest common divisor of all moduli of a non-natural
IDCS is equal to 1.

(b) No modulus of a non-natural IDCS is a prime power.

{c) The common modulus of every non-natural IDCS has at least three
prime divisors.

Prool. (a) Let p be a prime divisor of all meduli of a DCS 8, and let
S Z, (only here non-naturality is used). Every i{mod p} (i=0,1,..., p—1)
is the union of a subset X, of 5. Since § # Z,, we have card(X;) > 1 for
some i, and obviously card (X)) < k., which contradicts the irreducibility of S.

(b) If a prime power p* is a modulus of an IDCS § then by {1.2) all
moduli of § are multiples of p. Hence S = Z, by the first part of the proof,
and § is natural, which contradicts the assumption.

(¢} It easily follows from the first two parts. (For a reducible S, a non-
natural IDCS §; from (2.5) must be considered in the proof)

Turorem 3.3, For a positive integer N, an IDCS with the common
modulus N exists if and only if either N is a prime or N has at least three
prime divisors.

Proof. Let 8§ be an IDCS with the common modulus N. If § is natural
then N is a prime. If S is not natural then Lemma 3.2 implies that N has at
least three prime divisors. Conversely, if N is a prime then N is the common
modulus of the natural IDCS Zy. It remains the case where N has at least
three prime divisors.

Let N = p{' p3...pi* be the standard form of N, p, <p, <... <p, and
k= 3. Denote N, = N/p, for i=1, ..., k, and write

X, = (N;(mod pi))n(i-Ny(mod p)) for i=1,..., k—1,
X, = 0(mod pi*-... ph).

The sets X; (i=1,..., k—1) are nonempty; hence they are congruence .
classes modulo p; - p*; the set X, is obviously a congruence class. These sets
are pairwise disjoint. Indeed, if, for example, X;n X; # @ for some 1<
<j<k~1 then

(i Ne(mod p}) (i Ne(mod pt) # @, p*1(—i) - Ny
hence p.|(f—i) which contradicts 0 <j—i <k <p,. Analogously, if X;n
N X, 5 @ for some 1 <i<k—1 then p*{N;, a contradiction.

Since the congruence classes X,,...., X, are pairwise disjoint (and their
moduli divide N), there is a DCS § with the common modulus N which
contains all X, ..., X,. The system § can be expressed in the form (2.4). We
shall show that the common modulus of the IDCS §, is N. The common
modulus M of S; obviously divides N. To finish the proof, we show that N
also divides M.
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Take arbitrary i, 1 <i<k—1. The set X; is contained in some Ye§,.
. Obviously,

Y = h(mod ppl) = (b(mod pf)) N (b (mod pg))
for some u < a;, v < ¢, and integer be X. Then we can obtain
| ; = (N;(mod p¥)) n(i- Ny (mod pj)).
If u<aq then Ni = 0(mod pf), and
Y n X, = (0(mod pit-...- pt3 ) (i Ne(mod pit) # @

because the moduli are relatively prime. Hence X, &Y what gives
PPl Pyt .. P!, v =0, which contradicts Lemma 3.2 (b). Therefore u = q;,
which implies pi'| M for arbitrary i=1, ..., k—1.
It remains to prove p.*| M. Consider arbitrary j=i I <j<k~1 (the
assumption k23 is used here). The set X; is contained in an element
Y' = (N;(mod pf) n(j* N, (mod p}))

of the set §;. If v < g, and w < g, then N, = O{mod pj), N, = 0(mod p}),
and hence

YY" =(N;(mod p})) n(N;(mod p%)) N (0(mod p*) = @.
Therefore Y = ¥’, which implies
P, = Pipy

From that we have u = 0, z = 0 which contradicts Lemma 3.2 (b). Therefore,

v=a or w=a, and in both the cases p,*| M, which completes the proof.

No classification of IDCS will be made in the present paper. However,

- we shall show that there are IDCS which substantially differ from the IDCS
contructed above.

Tueorem 3.4. For every k there is an IDCS such that every moditlus of it
has at least k prime divisors.

Proof. Let k > 1 be given. Choose 2k~ 1 primes p,, ..., ps._; such that

2k—1
( B )Spi <Py < < Pag-t

. | -1 ‘
The set- P ={p;, ..., psu_y} has r m( . ) subsets consisting of k elements.

Let ny,...,n, be thé products of elements of these sets, and N
=PpPi1 P2 Pax—-1- The congruence classes

ifmod n), i=1,.., r
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are pairwise disjoint, and their moduli divide N. Hence there is a DCS §
with the common modulus N which contains all these classes. Let S be
expressed in the form (2.4). We shall show that every modulus m of S, has at
least k prime divisors. Let, conversely, b(mod m)eS,, and m have less than &
prime divisors. Then there is i, 1<i<r such that Dim, n)=1. The
congruence class b{mod m) has a nonempty intersection with i{mod n), and
hence it must contain i(mod ). Therefore m|n,, which contradicts m > |
and D(m, m) =1,
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