200

ACTA ARITHMETICA XLIV (1984)

On consecutive Farey arcs

by

R. R. HALL (Heslington) and G. TENENBAUM (Vandoevre)

1. Introduction. Let $F_N = \{x_r, 1 \le r \le R\}$, where $R = R(N) = \varphi(1) + \varphi(2) + \ldots + \varphi(N)$ and φ is Euler's totient function, denote the Farey series of order N, that is the sequence of positive, irreducible fractions not exceeding 1 with denominator not exceeding N arranged in increasing order. We write $l_r = x_r - x_{r-1}$, $2 \le r \le R$ and set $l_1 = x_1$, $l_{R+1} = l_1$.

Sums related to consecutive Farey fractions, i.e. involving the *l*, have been studied by several authors [1], [2], [3], [4] and have been shewn to have applications to the evaluation of certain infinite series. Also, it has been known for a long time that the distribution of Farey arcs is closely related to the deepest problems in number theory — for the connection with the Riemann Hypothesis see [5], Chap. XIV.

In this note we are concerned with the joint distribution of the pairs (l_r, l_{r+1}) , $1 \le r \le R$ which we approach via the moments

$$T_N(\alpha, \beta) := \sum_{r=1}^R \, l_r^{\alpha} \, l_{r+1}^{\beta}$$

which we evaluate in a region of the (α, β) -plane. Notice that because of the symmetry of Farey series we have $T_N(\alpha, \beta) = T_N(\beta, \alpha)$. We shall encounter several new features which did not appear in previous work, restricted to the case $\beta = 0$, on this topic [1]-[4]: a fuller set of references may be found in [3]. A point of interest is that the shape of the main term in our asymptotic formula for $T_N(\alpha, \beta)$ changes when $\gamma := \alpha + \beta$ passes through the value 2; when $\gamma = 2$ we obtain our weakest error term.

Interpreting $T_N(\alpha, \beta)$ as a two dimensional Laplace transform we may deduce the existence of the limiting distribution

$$\Delta(x, y) := \lim_{N \to \infty} R(N)^{-1} \operatorname{card} \left\{ r : N^2 l_r \leq e^x, N^2 l_{r+1} \leq e^y \right\}.$$

An explicit formula for the transform of the measure $d\Delta(x, y)$ is given in Theorem 4 below. We also obtain the answer to a question raised in [3] (cf. Remark 2).

On consecutive Farey arcs

399

THEOREM 1. Let α , β be real numbers such that $\max(\alpha, \beta, \alpha + \beta) < 2$. Then there exists $\eta = \eta(\alpha, \beta) > 0$ such that

$$T_N(\alpha, \beta) = \left(\frac{6}{\pi^2} + O(N^{-\eta})\right) H(\alpha, \beta) N^{2-2\alpha-2\beta}$$

where

$$H(\alpha, \beta) := \int_{1}^{\infty} \int_{0}^{1} \left\{ (t-w)^{-\alpha} (t-\{2t-w\})^{-\beta} \right\} t^{2\alpha+2\beta-3} dw dt.$$

In particular

$$H(\alpha, 0) = \frac{1}{(1-\alpha)^2} \left\{ 1 - \frac{\Gamma^2(2-\alpha)}{\Gamma(3-2\alpha)} \right\}, \quad \alpha \neq 1,$$

$$H(1, 0) = \Gamma''(1) - \Gamma'(1)^2 = \pi^2/6.$$

More precisely, if we set $a:=\min(1,2-\alpha,2-\beta,2-\alpha-\beta)$, $b:=1+\max(-1,\alpha,\beta,\alpha+\beta)$, $c:=\min(1,1-(\alpha+\beta)/2)$ then we may replace N^{-n} above by $N^{-ac/(a+b)}\log^3N$.

THEOREM 2. We have

$$T_N(\alpha, 2-\alpha) = (6/\pi^2 + O(1/\log N)) N^{-2} \log N$$

for each $\alpha \in (0, 2)$.

THEOREM 3. Let $\gamma = \alpha + \beta > 2$, $\alpha > 0$, $\beta > 0$. Then

$$T_{N}(\alpha, \beta) = \left(\frac{\zeta(\gamma - 1)}{\zeta(\gamma)} + O(N^{-\alpha} \log^{\delta(\beta, 2)} N + N^{-\beta} \log^{\delta(\alpha, 2)} N + + N^{-1} + N^{2-\gamma} \log^{\delta(\gamma, 3)} N)\right) N^{-\gamma},$$

where $\delta(\gamma, \gamma') = 1$ $(\gamma = \gamma')$, = 0 $(\gamma \neq \gamma')$ is Kronecker's symbol.

When either α or β is zero the main terms given above no longer apply: in this case see the references cited. Usually in these papers it has been assumed that the exponent of l, is an integer.

COROLLARY. Let $d_r = x_r - x_{r-2}$, $3 \le r \le R$ and $d_1 = 1 + x_1 - x_{R-1}$, $d_2 = x_2$. Then we have

$$D_m(N) = \sum_{r=1}^{R} d_r^m \sim (2^m + 2) \frac{\zeta(m-1)}{\zeta(m)} N^{-m}$$

for integers $m \ge 3$, also

$$D_2(N) \sim \frac{36}{\pi^2} N^{-2} \log N.$$

Remark 1. It would be interesting to know whether the integral for $H(\alpha, \beta)$ may be evaluated in any case for which $\alpha\beta \neq 0$.

Remark 2. The problem of evaluating $D_2(N)$ was raised in [3], after a suggestion of one of us. It was shown in [3] that for large N,

$$\frac{24}{\pi^2} N^{-2} \log N \leqslant D_2(N) \leqslant \frac{48}{\pi^2} N^{-2} \log N.$$

We state the following result without proof.

THEOREM 4. The limiting distribution

Gm

$$\Delta(x, y) = \lim_{N \to \infty} R(N)^{-1} \operatorname{card} \{r : N^2 l_r \le e^x, N^2 l_{r+1} \le e^y\}$$

exists. Moreover for $\min(\text{Re } z, \text{Re } \zeta, \text{Re}(z+\zeta)) > -2$ we have

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-zx-\zeta y} d\Delta(x, y) = 2H(-z, -\zeta)$$

where H is the function defined in the statement of Theorem 1.

Remark 3. The corollary to Theorem 3 is almost immediate: we write $d_r^m = (l_r + l_{r-1})^m$ and use the Binomial Theorem. Since this method requires that $m \in \mathbb{Z}^+$, it would be interesting to consider the function $D_m(N)$ for other values of m.

2. Proofs of the theorems.

Lemma 1. A necessary and sufficient condition that the positive integers r, s, t appear as successive denominators (in this order) in F_N is that

$$r+s > N$$
, $s+t > N$, $(r, s) = (s, t) = 1$, $r+t \equiv 0 \pmod{s}$.

They are successive denominators at most once.

Proof. It was shown in [1] that r, s are adjacent denominators in F_N if and only if r+s>N and (r,s)=1. In any case r, s can be adjacent (in this order) at most once, hence r, s, t can be adjacent at most once and it is necessary that

(1)
$$r+s > N$$
, $s+t > N$, $(r, s) = (s, t) = 1$

for them to be so. Now let (1) hold, so that somewhere in F_N the denominators r, s and s, t are adjacent. A sufficient extra condition that in fact r, s, t should be adjacent is that the numerators of the fractions with denominator s in these occurrences should be the same. Accordingly let r'/r, u/s be adjacent fractions, similarly v/s, t'/t. Then ru-sr'=st'-tv=1 (by a well-known property of Farey series) and so $ru\equiv 1 \pmod s$, $tv\equiv -1 \pmod s$. Since 0 < u, v < s, the numbers u, v are precisely determined by these congruences, and u=v if and only if $r+t\equiv 0 \pmod s$. This completes the proof.

On consecutive Farey arcs

Remark 4. The chain of denominators r_1, r_2, \ldots, r_m will be adjacent (in this order) in F_N if and only if each triple, r_i, r_{i+1}, r_{i+2} $(1 \le i \le m-2)$ are adjacent. Hence there are no extra conditions beyond those given in the lemma for each separate triple.

LEMMA 2. We have

$$T_N(\alpha, \beta) = \sum_{s=1}^N \frac{1}{s^{\alpha+\beta}} \sum_{\substack{r=N-s+1\\(r,s)=1}}^N \frac{1}{r^{\alpha} t^{\beta}}, \quad \alpha, \beta \in C$$

where

(2)
$$t = t(r) = s \left\lceil \frac{N+r}{s} \right\rceil - r = N - s \left\{ \frac{N+r}{s} \right\},$$

and [x], $\{x\}$ denote as usual the integer and fractional parts of the real number x.

Proof. We have

$$T_N(\alpha, \beta) = \sum_{\alpha} (rs)^{-\alpha} (st)^{-\beta}$$

where the sum is over all sets of three adjacent fractions r'/r, s'/s, t'/t, in F_N . We just need a condition for the denominators r, s, t to be adjacent and we apply Lemma 1. Given r and s we can determine t for $N-s < t \le N$, $t \equiv -r \pmod{s}$. The formula (2) will be useful in what follows.

We proceed to the proof of Theorems 2, 3. This is quite straightforward: the main term does not involve the awkward function $H(\alpha, \beta)$ indeed it depends on $\gamma = \alpha + \beta$ only. We have $\gamma \ge 2$.

We split the sum appearing in Lemma 2 into two parts A(N) and B(N) according as $s \le M := \lfloor N/2 \rfloor$ or not. We have $r, t \in (N-s, N]$ and so for $s \le M$ we have $r^{-\alpha} = N^{-\alpha} + O(sN^{-\alpha-1}), t^{-\beta} = N^{-\beta} + O(sN^{-\beta-1})$ and so

$$r^{-\alpha}t^{-\beta} = N^{-\gamma} + O(sN^{-\gamma-1}).$$

The inner sum is therefore

$$\sum_{r=N-s+1}^{N} r^{-\alpha} t^{-\beta} = \varphi(s) N^{-\gamma} + O(s^2 N^{-\gamma-1}),$$

whence

$$A(N) = \frac{\zeta(\gamma - 1)}{\zeta(\gamma)} N^{-\gamma} + O(N^{2 - 2\gamma} \log^{\delta(\gamma, 3)} N + N^{-\gamma - 1})$$

where $\delta(\gamma, \gamma') = 1$ if $\gamma = \gamma'$, = 0 if $\gamma \neq \gamma'$ and $\zeta(\gamma - 1)$ is to be interpreted as $\log N$ if $\gamma = 2$. Next, we estimate B(N) as an error term and we note that $r+t \geq s$ so that $\max(r, t) \gg N$. Let us assume for the moment that $\alpha \leq \beta$

so that $\beta \ge 1$ with equality implying $\gamma = 2$. Then

$$\sum r^{-\alpha} t^{-\beta} \leqslant N^{-\alpha} \sum t^{-\beta} + N^{-\beta} \sum t^{-\alpha} \leqslant N^{-\alpha} \sum t^{-\beta}$$
$$\leqslant N^{-\alpha} \left((N - s + 1)^{1 - \beta} + \delta(\beta, 1) \log \frac{1}{N - s + 1} \right),$$

and so

$$B(N) \ll N^{2-2\gamma} + N^{-\alpha-\gamma} \log^{\delta(\beta,2)} N.$$

We drop the constraint $\alpha \leq \beta$ and put these results together to obtain

$$T_{N}(\alpha, \beta) = \left(\frac{\zeta(\gamma - 1)}{\zeta(\gamma)} + O(N^{-\alpha} \log^{\delta(\beta, 2)} N + N^{-\beta} \log^{\delta(\alpha, 2)} N + N^{-1} + N^{2-\gamma} \log^{\delta(\gamma, 3)} N)\right) N^{-\gamma},$$

which gives the results stated.

Proof of Theorem 1. In what follows we shall often make use of the inequality

$$\sum_{a < n \le b} n^{\lambda} \le (a^{1+\lambda} + b^{1+\lambda}) \log \frac{b}{a}$$

which is valid uniformly for $1 \le a < b$, $-\lambda_0 \le \lambda \le \lambda_0$ provided we interpret $\log x$ as $\max(1, \log x)$. When $(1+\lambda)^{-1} = O(1)$ this factor may be omitted. We apply Lemma 2, writing

$$T_N(\alpha, \beta) = A_1(N) + R_1(N)$$

where the s-summation is restricted by the condition $s \le M$ in $A_1(N)$. Here $M = [(1-\varepsilon)N]$ and $\varepsilon = \varepsilon(N) \to 0$ in a manner to be determined. We estimate the remainder $R_1(N)$ first. We note that t(r) is a permutation of r, and the inner sum is majorized by supposing t(r) = r when $\alpha\beta \ge 0$, t(r) = 2N - s - r + 1 if $\alpha\beta < 0$, and we distinguish these cases. In the case $\alpha\beta \ge 0$,

$$R_1(N) \ll N^{-\alpha-\beta} \sum_{r \leq N} r^{-\alpha-\beta} \sum_{\max(n-r,M) < s \leq N} 1 \ll N^{2-2\alpha-2\beta} (\varepsilon + \varepsilon^{2-\alpha-\beta}) \log \frac{1}{\varepsilon}.$$

When $\alpha\beta < 0$, we get (if $\beta < 0 < \alpha$),

$$R_{1}(N) \leqslant N^{-\alpha-\beta} \left\{ \sum_{r \leqslant \varepsilon N} r^{-\alpha} \sum_{N-r < s \leqslant N} (2N-s-r+1)^{-\beta} + \sum_{\varepsilon N < r \leqslant N} r^{-\alpha} \sum_{M < s \leqslant N} (2N-s-r+1)^{-\beta} \right\}$$

$$\leqslant N^{2-2\alpha-2\beta} (\varepsilon + \varepsilon^{2-\alpha}) \log \frac{1}{\varepsilon}.$$

If $\alpha < 0 < \beta$, α is replaced by β in the exponent of ε . In any case,

$$R_1(N) \leqslant N^{2-2\alpha-2\beta} \varepsilon^a \log \frac{1}{\varepsilon}$$

where a was defined in the statement of the theorem.

We turn next to $A_1(N)$, taking account of the condition (r, s) = 1 by introducing the familiar sum over $\mu(d)$. We write s = kd, r = hd and have

$$A_{1}(N) = \sum_{d \leq M} \frac{\mu(d)}{d^{2\alpha + 2\beta}} \sum_{k \leq M/d} k^{-\alpha - \beta} \sum_{N/d - k \leq h \leq N/d} h^{-\alpha} \left(\frac{N}{d} - k \left\{ \frac{N/d + h}{k} \right\} \right)^{-\beta}$$

= $A_{2}(N) + R_{2}(N)$, say,

where the h-summation is replaced by an integral in A_2 and R_2 is the remainder. To estimate R_2 , set

$$D(k, y) = \sum_{y-k < h \le y} h^{-\alpha} \left(y - k \left\{ \frac{y+h}{k} \right\} \right)^{-\beta} - \int_{y-k}^{y} h^{-\alpha} \left(y - k \left\{ \frac{y+h}{k} \right\} \right)^{-\beta} dh$$

$$= \sum_{l \le k} \int_{0}^{1} \left(f(l, \{y\}) - f(l, v) \right) dv$$

where

$$f(l, \theta) := (y - k + l - \theta)^{-\alpha} \left(y - k \left\{ \frac{2y + l - \theta}{k} \right\} \right)^{-\beta}.$$

In the application, y = N/d, $k \le M/d$: hence $k \le (1 - \varepsilon)/y$. Now put $\eta := \{(2y+l)/k\}$ so that for $0 \le \theta \le 1$ we have

$$\left\{\frac{2y+l-\theta}{k}\right\} = \begin{cases} \eta - \theta/k & \text{if } \theta \leqslant \eta/k, \\ 1 + \eta - \theta/k & \text{else.} \end{cases}$$

If l is such that $nk \ge 1$, we have

$$f(l, \{y\}) - f(l, v)$$

$$= (y - k + l - \{y\})^{-\alpha} (y - k\eta + \{y\})^{-\beta} - (y - k + l - v)^{-\alpha} (y - k\eta + v)^{-\beta}$$

$$\leqslant \varepsilon^{-b} y^{-\alpha - \beta - 1}.$$

Thus the contribution of these l's to $R_2(N)$ is

$$\leqslant \varepsilon^{-b} \sum_{d \leqslant M} d^{-2\alpha - 2\beta} (N/d)^{-\alpha - \beta - 1} \ll \varepsilon^{-b} N^{1 - 2\alpha - 2\beta} \log N.$$

If nk < 1 we observe that there exists an m such that

$$m \le (2y+l)/k < m+1/k$$
, i.e., $km \le 2y+l < km+1$.

Thus the number of such I's is bounded, and their contribution to $R_2(N)$ is

$$\ll \varepsilon^{-b'} \sum_{d \leqslant M} d^{-2\alpha - 2\beta} (N/d)^{-\alpha - \beta} \sum_{k \leqslant M/d} k^{-\alpha - \beta}
\ll \varepsilon^{-b'} (\log N)^2 (N^{-\alpha - \beta} + N^{1 - 2\alpha - 2\beta})$$

where $b' := \max(0, \alpha, \beta, \alpha + \beta) \leq b$. Therefore

$$R_2(N) \leqslant N^{2-2\alpha-2\beta} (\log N)^2 (\varepsilon^{-b} N^{-1} + \varepsilon^{-b'} N^{\alpha+\beta-2})$$

Putting $h = N/d - k\omega$ in the integral and m = kd in the summation, we see that

$$A_{2}(N) = N^{-\alpha - \beta} \sum_{m \leq M} \frac{\phi(m) g(m)}{m^{\alpha + \beta}}$$

with

$$g(m) := \int_{0}^{1} \left(1 - \frac{m}{N} \omega\right)^{-\alpha} \left(1 - \frac{m}{N} \left\{\frac{2N}{m} - \omega\right\}\right)^{-\beta} d\omega.$$

Let us write $\varphi(m) = 6m/\pi^2 + \psi(m)$ and $A_2(N) + A_3(N) + R_3(N)$ with

$$A_3(N) = \frac{6}{\pi^2} N^{-\alpha-\beta} \sum_{m \leq M} g(m) m^{1-\alpha-\beta}$$

and R_3 a similar sum involving ψ , to be regarded as a remainder term. We split R_3 into two sums $R_3^{(1)}$, $R_3^{(2)}$ according as $m \leq \sqrt{2N}$ or not. Noticing that $g(m) \ll \varepsilon^{-b'}$ for $m \ll M$ we have immediately

$$R_3^{(1)}(N) \ll \varepsilon^{-b'} N^{-\alpha-\beta} \sum_{m \leqslant \sqrt{2N}} m^{1-\alpha-\beta} \ll \varepsilon^{-b'} N^{1-3(\alpha+\beta)/2}.$$

Set

$$P(u) = \begin{cases} \sum_{m \le u} \psi(m) m^{-\alpha - \beta} & \text{if } \alpha + \beta \le 1, \\ -\sum_{m \ge u} \psi(m) m^{-\alpha - \beta} & \text{if } \alpha + \beta > 1, \end{cases}$$

it is easy to check that the infinite series converges if $\alpha + \beta > 1$, moreover that in either case

$$P(u) \ll u^{1-\alpha-\beta} (\log u)^2.$$

Now

$$\begin{split} R_3^{(2)}(N) &= N^{-\alpha-\beta} \sum_{\sqrt{2N} < m \leq M} \big(P(m) - P(m-1) \big) g(m) \\ &= N^{-\alpha-\beta} \sum_{\sqrt{2N} < m \leq M} P(m) \big(g(m+1) - g(m) \big) + \\ &\quad + O \big(N^{2-2\alpha-2\beta} (\log N)^2 (\varepsilon^{-b'} N^{-1} + N^{(\alpha+\beta-3)/2}) \big). \end{split}$$

For
$$m > \sqrt{2N}$$
 and $\omega \notin \left(\frac{-2N}{m(m+1)}, 0\right) \pmod{1}$, we have
$$\left\{\frac{2N}{m} - \omega\right\} = \left\{\frac{2N}{m+1} - \omega\right\} + \frac{2N}{m(m+1)}.$$

We deduce that $g(m+1)-g(m) \leqslant m^{-1} \varepsilon^{-b}$ for $\sqrt{2N} < m \leqslant M$ so that

$$\sum_{\sqrt{2N} < m \leq M} P(m) \left(g(m+1) - g(m) \right) \ll \varepsilon^{-b} (\log N)^3 \left(N^{1-\alpha-\beta} + N^{(1-\alpha-\beta)/2} \right),$$

and

$$R_3(N) \leqslant N^{2-2\alpha-2\beta} (\log N)^3 (\varepsilon^{-b'} N^{(\alpha+\beta-2)/2} + \varepsilon^{-b} N^{(\alpha+\beta-3)/2} + \varepsilon^{-b} N^{-1})$$

Next, we write $A_3(N) = A_4(N) + R_4(N)$ where

$$A_{4}(N) = \frac{6}{\pi^{2}} N^{-\alpha-\beta} \int_{0}^{M} g(v) v^{1-\alpha-\beta} dv$$

and

$$R_4(N) = \frac{6}{\pi^2} N^{-\alpha-\beta} \sum_{m=1}^{M} \int_{m-1}^{m} (g(m) m^{1-\alpha-\beta} - g(v) v^{1-\alpha-\beta}) dv.$$

It is not difficult to check that an estimate for $R_3(N)$ is equally valid for $R_4(N)$. We use the trivial bound $g(v) \ll \varepsilon^{-b'}$ when $m \leqslant \sqrt{2N}$; for $\sqrt{2N} < m \leqslant M$ we show that the integrand is $\ll \varepsilon^{-b} m^{-\alpha-\beta}$. Next, we have (substituting v = N/t),

$$N^{\alpha+\beta-2} \int_{0}^{M} g(v) v^{1-\alpha-\beta} dv$$

$$= H(\alpha, \beta) - \int_{1}^{N/M} \int_{0}^{1} (t-\omega)^{-\alpha} (t-\{2t-\omega\})^{-\beta} t^{2\alpha+2\alpha-3\beta} d\omega dt.$$

We need an upper bound for the ω -integral when t = 1 + h, h small. It is

equal to

$$O(h) + \int_{2h}^{1} (1+h-\omega)^{-\alpha} (\omega-h)^{-\beta} d\omega \ll h + (h^{1-\alpha} + h^{1-\beta} + 1) \log (1/h)$$

so that we need $\max(\alpha, \beta) < 2$ for convergence at t = 1. The double integral above is then

$$\ll (\varepsilon + \varepsilon^{2-\alpha} + \varepsilon^{2-\beta}) \log(1/\varepsilon) \ll \varepsilon^{\alpha} \log(1/\varepsilon).$$

Provided $\log(1/\varepsilon) \ll (\log N)^3$, we may deduce from all the above that

$$T_N(\alpha, \beta) = N^{2-2\alpha-2\beta} H(\alpha, \beta) \left(\frac{6}{\pi^2} + O\left((\log N)^3 (\varepsilon^a + \varepsilon^{-b} N^{-1} + \varepsilon^{-b} N^{(\alpha+\beta-3)/2} + \varepsilon^{-b'} N^{(\alpha+\beta-2)/2}) \right) \right)$$

and we choose $\varepsilon = N^{-\gamma}$ and replace b' by b. The error term is

$$\leq (\log N)^3 (N^{-\gamma a} + N^{\gamma b - c})$$

and we obtain our result on setting $\gamma = c/(a+b)$.

References

- [1] R. R. Hall, A note on Farey series, J. London Math. Soc. (2) 2 (1970), pp. 139-148.
- [2] S. Kanemitsu, On some sums involving Farey fractions, Math. J. Okayama Univ. 20 (1978), pp. 101-113.
- [3] S. Kanemitsu, R. Sita Rama Chandra Rao and A. Siva Rama Sarma, Some sums involving Farey fractions I, J. Math. Soc. Japan (34) 1 (1982), pp. 125-142.
- [4] J. Lehner and M. Newman, Sums involving Farey fractions, Acta Arith. 15 (1968), pp. 181-187.
- [5] E. C. Titchmarsh, The theory of the Riemann Zeta-function, Oxford 1951.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF YORK Heslington, York Y01 5DD, England UNIVERSITE DE NANCY I UER SCIENCES MATHEMATIQUES 54506 Vandouvre les Nancy Cedex, France

Recu le 11.8,1983

(1370)