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1. Inmtroduction. Let Fy=x, 1 <r<R}, where R=R(N)=p(l)+
+@ {2+ ... +¢{N}) and ¢ is Euler’s totient function, denote the Farey series
of order N, that is the sequence of positive, irreducible fractions not
exceeding 1 with denominator not exceeding N arranged in increasing order.
We write [, = x,~x,_;, 2<r<R and set |, = x,, gy =1;.

Sums related to consecutive Farey fractions, ie. involving the I have
been studied by several authors {17, [2], [3], [4] and have been shewn to
have applications to the evaluation of certain infinite series. Also, it has been
known for a long time that the distribution of Farey arcs is closely related to
the deepest problems in number theory — for the connection with the
Riemann Hypothesis see [5], Chap. XIV.

In this note we are concerned with the joint distribution of the pairs
(L, h+1), 1 <7< R which we approach via the moments

R
Ty(a, B):= Z lflfn
r=1

which we evaluate in a region of the (a, f)-plane. Notice that because of the
symmetry of Farey series we have Ty(x, f) = Tn(B, o). We shall encounter
several new features which did not appear in previous work, restricted to the
case § = 0, on this topic [1]-[4]: a fuller sét of references may be found in
[3]- A point of interest is that the shape of the main term in our asymptotic
formula for Ty(x, f)) changes when 9:=a+f passes through the value 2:
when p =2 we obtain our weakest error term.

Interpreting Ty(x, ) as a two dimensional Laplace transform we may
deduce the existence of the limiting distribution

d(x, )= lim R(N)"'card {r: N?l < ¢*, N*l,, €&},
N—+co

An explicit formula for the transform of the measure d4(x, y) is given
in Theorem 4 below. We also obtain the answer to a question raised in [3]
{cf. Remark 2).
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TueoreM 1. Let w, B be real numbers such that max{a, f, a+f) < 2
Then there exists 1 = nla, f) > 0 such that

TN(Ol, ﬁ) = (—6—2+0(N“”)) H(Gﬂ, ﬁ)NZ’“ 20— 28
b

where

_ ' - 23
f(r—w) (e~ (20 —w})" P e ¥ dwdt.

O

H(a,ﬁ):élf‘

In particular

H(Ol,o):(lud)z{1”1—'(3,,205)}’ 271

H(L,0) = I" (1)~ I"(1)* = n%6.
More precisely, if we set a:=min(i, 2—e, 2, 2—a—f), bi=1+

+max(—1, a, B, a+f), ¢:=min(l, 1 —(a+p)/2) then we may replace N~"
above by N™%Ka*Dog3 N, : .

Turorem 2. We have
Tyl 2—a) ={6/n*+ O (1/log N)) N *logN
Jor each ae(0, 2).
TueoreMm 3. Let y=a+B>2, ¢ >0, > 0. Then

—1 e * - o, 2
Iy (o, ﬁ)——-(é(g(},)uow log## N 4 N~# log?®=2 N +

+NTEE N Joghnd N)>N"’,

where 8(y, ¥Y) =1 (y=7), =0 {y#y) is Kronecker's symbol.

When either o or f§ is zero the main terms given above no longer apply:
in this case see the references cited. Usually in these papers it has been
assumed that the exponent of [ is an integer.

CoroLLARY. Let d, =x,—X,.2, 3<r <R and dy =14+x,—%g..y, 4
= X,. Them we have
L{m=1)

m m e T
1 ar ~(2"+2) Fm)

[ =

D, (N) =

¥

for integers m 2 3, also

36
D, (N) ~ = N-2log N.
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Remark 1. It would be interesting to know whether the integral for
H(a, f) may be evaluated in any case for which ofi # 0.

Remark 2. The problem of évaluating D,(N) was raised in [3], after a
suggestion of one of us. It was shown in [3] that for large N,

24 4
= N~?log NéD;.,(N)STC—EN‘2 log N.

We state the following result without proof,
THroreM 4. The limiting distribution

A(x, y)= lim R(N)"!card {r: N?|, < &*, N? Ly

!
N—on

exists. Moreover for ‘min(Re z,Re {, Re(z-+{)) > —2 we have

[ e™™"Ydd(x, y) = 2H(~z, —{)

(=L W]
O 3

where H is the function defined in the statement of Theorem 1.

Remark 3. The corollary to Theorem 3 is almost immediate: we write
4" ={l,+1,_,)" and use the Binomial Theorem. Since this method requires

that me Z7, it would be interesting to consider the function D, (N) for other
values of m.

-

2. Proofs of the fheorems.

LemMA 1. A necessary and sufficient condition that the positive integers r,
S, t appear as successive denominators (in this order) in Fy is that

r+s> N, (r,8)=(s, 1) =1,
They are successive denominators at most once.

- Proof. It was shown in [1] that r, s are adjacent denominators in F if
and only if r+5> N and (r, s)=1. In any case r, s can be adjacent (in this
order} at most once, hence #, s, f can be adjacent at most once and it is
necessary that
{1 rHs >N, s+t>N, (r,8)=(s, )=1

for them to be so. Now let (1} hold, so that somewhere in Fy the
denominators r, 5 and s, t are adjacent. A sufficient extra condition that in
fact r, 5, t should be adjacent is that the numerators of the fractions with
denominator s in these occurrences should be the same. Accordingly let r'/r,
u/s be adjacent fractions, similarly v/s, t'/r. Then ru—gr = st'—tv — 1.(by a
well-known property of Farey series) and so ru = 1 (mod 8), tr = — 1(mod s).
Since 0 <u, v <s, the numbers 'u, v are precisely determined by these
congruences, and ¥ = v if and only if r+r = 0(mod s). This completes tha
proof. o

s+t>N, r+4-t = 0(mod s).
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Remark 4. The chain of denominators ry, ¥, ..., F,, Will be adjacent (in
this order) in Fy if and only if each triple, 7;, riq, a2 (1 ST m—2) are
adjacent. Hence there are no extra conditions beyond those given in the

lemma for each separate triple.
Lemma 2. We have
. N |

¥
= —_ C
TN{H, B) sgl Sm+ﬂ P=Ngs+1 r tﬂ, " ﬂe
(r.s)=1
where .
N N+r
) !=t(r)xsl: :_r:l—erus{ - ’},

and [x], |x} demote as usual the integer and fractional parts of the real
‘number x. '
Proof We have

Tilo, B =Y, (rs) (1) 7

where the sum is over all sets of three adjacent fractions r'/r, 5'/s, t'ft, in Fy.
We just need a condition for the denominators r, s, t to be adjacent and we
apply Lemma 1. Given r and 5 we can determine ¢ for N—s5 <t N,
t = —r(mod s). The formula {2) will be useful in what follows.

We proceed to the proof of Theorems 2, 3. This is quite straightforward:
the main term does not involve the awkward function H{a, f) indeed it
depends on y =a+f only. We have y 2> 2

We split the sum appearing in Lemma 2 into two parts 4 (N) and B({N)
according as s € M :=[N/2] or not. We have r, te(N—s, N] and so for
s< M we have r™ * = N"*+O(N™* 1Y), t #=N"?4+0(sN"*"1) and so

pet 8 = NTTHO(sNTY.

The inner sum is therefore

N
Y rfif= PEINTYFOZNTTTY,
r=N-z+1
whence
A(N)_C(g( )1) NT'+O (N>~ log?md N4 N=7Y)

where 6(y, Y) =1 y=v, =0if ysy and {(p—1) is to be interpreted as
log N if y = 2. Next, we estimate B(N) as an error term and we note that
r+t>s so that max(r, t) > N. Let us assume for the moment that x < f

icm
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so that > 1 with equality implying y = 2. Then
2PN Y i NTRY e g NTE Y
1
(N—s+1)'"21+5(8, 1) log ——
( ) (ﬁ ) log —— P
and so

B(N) €« N2y N7 jophhd

We drop the constraint o < f and put these results together to obtain

Ty(x, By = (C(g( )1) +O(N7*log?®2 N4 N~F logh=2 N 4

+N7TLE N2V [ogind) N))N",
which gives the results stated.

Proof of Theorem 1. In what follows we shail often make use of the
inequality

Z f‘l'l <(a1+k+b1+l)log_z_

a<nsh

which is valid uniformly for 1 < a <b, —lg < 1< 4, provided we interpret
log x as max(1, log x). When {141}~ 1 = 0(1) this factor may be omitted.
We apply Lemma 2, writing

Ty{o, B)

where the s-summation is restricted by the condition s € M in A, (N). Here
M =[(1 -‘—s) N] and s = ¢(N) - 0 in a manner to be determined. We estimate
the remainder R, (N) first. We note that f(r) is a permutation of r, and the

= A; (N)+R;(N)

_Inner sum is majorized by supposing t(r) =7 when af =0, t(r) = 2N —s—

—r+1if f <0, and we distinguish these cases. In the case af > 0,

Ri(N)gN~o-F % pre-h >

rEN max{n—r M) <sEN

1 € N?7 2= 2 (g4 g272=F) og l
P

When aff <0, we get (if §<0<ua),

RUN) € N2/ LS pox 5 (N~s—r+ 1)+
rseN Ner<s€N
+ 3t Y (AN—s—r+1)7f
eN <r€N M<sEN

% NZ““ZE‘-‘zﬂ(g_}NsZ"*M) log _}_-
£
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fx<0<f, ais replaced by f in the exponent of & In any case,
| R, (N) -:< N3 2= 2) lég;é

where a was defined in the statement of the theorem.

We turn next to A;(N), taking account of the condition (r, 5) =1 by
introducing the familiar sum over u(d). We write s = kd, r = hd and have

e N | [N/d+h)\F
Ay (N) = Z “d‘i(ﬂﬁ Z k™™ ﬂN/d—kgbs,N/dh (~d——k{ /k })

d<M k< M/

= AZ(N)+R2 (N): say,

where the h-summation is replaced by an integral in 4, and R, is the
remainder. To estimate R,, set

N e R e

Dk, yy= ¥

- f 10, D=7, ) dv
=k i3

where

In the application, y=N/d, k< M/d: hence k<
= {(2y+D/k} so that for 05 0 < 1 we have
{2y+l—9}_{n—0/k - if o< < n/k,
k| |1+9n=0/k else.
If I is such that sk > -
SO yh=r v
==kt N7 —kn+ (PN =y —k+1—0)"* (—kn+v)™4
<£“by—u—ﬂ”1"

(1—eg)y. Now put

1, we have

Thus the contribution of these T's to R,(N) is
@E_b Z d—lfz-—zﬁ(N/d)va"ﬁ—l @SMle—Za—ZB 10g N.

dxM
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If nk <1 we observe that there exists an m such that

m< (2y+hk <m+1/k, e, km<2v+l<km+1,

Thus the number of such I's is bounded, and their contribution to R, (N) is

Tl Z d—ZaﬁZﬁ(N/d)wa—ﬂ Z koam#

asM k<M
<€ l;""'(log N)E(N“ﬂ—ﬂ+N1 —2a—zﬁ)
£ b. Therefore
Ry(N) @ N3~ 2 M(log N2 (e P N~ 14 g% Ne+8-2)

where b= max{0, a, B, a+f)

Putting h = Nfd—ko in the integral and m=kd in the summation, we
see that

P (myg(m)

Ay (N) =N § B

msM

e e o )

= 6m/n 4+ (m) and A, (N)+ Az (N)+R;(N) with

with

Let us write ¢(m)

As(N)-w—N*“"" Y gmmt~=F
msM

and R; a similar sum involving ¥, to be regarded as a remainder term. We
split Ry into two sums R{"?, RY¥ according as m < ./2N or not. Noticing
that g{m) <e™* for m < M we have immediately

Rgl)(N) < E-—b’ N—z—ﬁ L ml"“‘ﬂ",ﬁ << B—Fb' Ni—3(m+ﬂ)/2‘

me& 2N
Set ’
Z wimm <4 fat+f<1,
(u}m{ 2 yimm "¢ i g+ f > 1,

m>u

it is easy to check that the infinite series converges if a+f > 1, moreover
that in either case :

P{w) <u' 77 (log w)’.
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Now

RY(Ny=N"=8 % (P(m)—P(m—1))g(m)
VAN <msM

S z  POmglm-+ D—g(m)+

“!

+O(N2—2m—zﬁ(log N)Z(E“b’N-1+N(cz+ﬂ-3),‘2))_

—2N
F /2N and B — ‘
or m> . an w¢(nz(m+1)’ 0) (mod 1)., we have

{2N } { 2N } 2N
—_—— e e (1) B o |
m m-1 m{m+1)

We deduce that g{m+1)—g(m) < “* for /AN <m< M so that

3 P{m)(g(m+1)—g(m)) <& P(log NP (N' 728 4 Nt —a=p2y

VIN<m<S M

and
R3(N) <& Nz—:aamzp(log N)3(£~b‘N(a+ﬁ—2)/2+6-—bN(m+ﬂ—3)/2+8-h N—l).
Next, we write A3(N) = A,(N)~+R,(N) where

M

' 6
A4(N}=;En5 N"“'ﬁfg(v)vl'““”dv
‘ o
and
8 s 1-
RyN)=— N 2 (gmym' = —g(w)p' = dy,
m=1 :
m—1

It is not difficult to check that an estimate for R,(N) is cqually valid fer

R4(N). We use the trivial bound g(v) <¢™% when m """
<m<M we show that the integrand is <o Pm™% ”. cht we have
(substituting v = N/¥),

M
Neth—2 [gv+4p
0
NIM 1
= Hx, f)— I I(t_—co)""(r— (20— )y P r2at22=38 fongy
1.0 '

We need an upper bound for the w-integral when t= 14k, h small. It is
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equal to

1

O(h)+ | (1+h—w) *(w—~h"Pdo < h+H* ">+ k' "F+1) log (1/h)

2k
so that we need max{a, f) < 2 for convergence at t = 1. The double integral
above is then

< (e+e? e Plog(l/e) < & log(l/e).

Provided log(l/s)} < (log N), we may deduce from all the above that

Tula, f) = N?" 2" 2 H (a, [f)(%+0({]og NP (g " N~ +

"i*ﬁ_b N(m+ﬁ—3)l2+£—b' N(m+ﬂ—2),‘2)))
and we choose ¢ = N7 and replace b’ by b. The error term is
< (log NP (N ™“+N?79

and we obtain our result on setting y = cf(a+b}.
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