icm[©]

C is an approximation of U by E over X. This completes our proof of Lemma R.

Now, we give a proof of Theorem A. Suppose that A is an R-positive formula in L, X is a finite set of R-atomic formulas, U is a finite set of uniqueness conditions of R, and E is a finite set of existence conditions of R. The "if-part" of Theorem A is obvious because that the formula $\bigwedge X \land \bigwedge U \land \bigwedge E \supset B$ is provable in L, for every approximation B of U by E over X. Also, if E consists of simple existence conditions only, for any approximation B of E over E0 by E1 over E2, we can find a simple approximation E3 of E4 by E5 over E6 is provable in E7. So, it is sufficient to prove the "only-if-part" of Theorem A.

Assume that the formula $\bigwedge X \bigwedge \bigcup U \bigwedge \bigwedge E . \supset A$ is provable in L. Then, the sequent X, U, $E \to A$ is provable in L. By Lemma K, the sequent X, U, $E \to A^=$ is provable in L_1 . Then, this sequent is also provable in L_2 by Lemma L. Since $A^=$ is R-positive, the sequent $X \to A^=$ is an R-sequent. By Lemma P, this sequent is provable in $L_3(U, E)$. By Lemma Q, the sequent $X \to A^=$ is provable in $L_4(U, E)$. By Lemma Q, the sequent Q of Q by Q over Q such that the sequent Q is provable in Q. Since the sequent Q is provable in Q, the sequent Q is provable in Q. Hence, the formula Q is provable in Q. This completes our proof of Theorem Q.

References

- [1] J. Barwise, Some applications of Henkin quantifiers, Israel J. Math. 25 (1976), pp. 47-63.
- [2] V. Harnik and M. Makkai, Applications of Vaught sentences and the convering theorem, J. Symb. Logic 41 (1976), pp. 171-187.
- [3] H. J. Keisler, Model Theory for Infinitary Logic, North-Holland, Amsterdam 1971.
- [4] A. C. Leisenring, Mathematical logic and Hilbert ε-symbol, Gorden and Beach, New York 1969.
- [5] N. Motohashi, Object logic and morphism logic, J. Math. Soc. Japan 24 (1972), pp. 683-697.
- [6] Elimination theorems of uniqueness conditions, Zeitschrift Math. Logik und Grundlagen Math. 28 (1982), pp. 511-524.
- [7] An elimination theorem of uniqueness conditions in the intuitionistic predicate calculus, Nagoya Math. J. 85 (1982), pp. 223-230.
- [8] An axiomatization theorem, J. Math. Soc. Japan 34 (1982), pp. 531-560.
- [9] Some remarks on Barwise's approximation theorem on Henkin quantifiers, to appear in the proceeding of the first south Asian Logic Conference held at Singapore, September, 1981.
- [10] C. Smorynski, On axiomatizing fragments, J. Symb. Logic 43 (1977), pp. 530-544.
- [11] The axiomatization problem for fragments, Ann. Math. Logic 14 (1978), pp. 193-221.
- [12] G. Takeuti, Proof Theory, North-Holland, Amsterdam 1975.
- [13] R. Vaught, Descriptive set theory in $L_{\omega_1\omega}$, Cambridge Summer School in Math. Logic, Lecture Notes in Math., vol. 337, Springer, Berlin 1973, pp. 574-598.

Accepté par la Rédaction le 30. 11. 1981

On the homotopical classification of DJ-mappings of infinitely dimensional spheres

b

Bogdan Przeradzki (Łódź)

Abstract. This paper contains some results which concern the DJ-homotopical classification of DJ-mappings of the sphere in an infinitely dimensional Hilbert space into itself.

In connection with the appearance of the definition of the category in which a sphere in the infinitely dimensional Banach space is not contractible, we have to consider the homotopical classification of transformations of such a sphere into itself within this category. This problem has been presented by B. Nowak [5]. It will be a certain simplification to notice that the set of homotopy classes is a group, as it is in the finite-dimensional case. This paper is an attempt to present certain numerical invariants of the homotopy classes. However, we will not be able to prove that there is a one-to-one correspondence between them.

We will first define objects and morphisms of DJ-category.

DEFINITION. A pair $(X, (X_n)_{n\in\mathbb{N}})$ where X is a metric space and $(X_n)_{n\in\mathbb{N}}$ is an increasing sequence of its subspaces such that

$$(1) X = \overline{\bigcup_{n \in \mathbb{N}} X_n}$$

is called a metric space with filtration.

DEFINITION. Let $(X, (X_n)_{n \in N})$ and $(Y, (Y_n)_{n \in N})$ be two metric spaces with filtration and d_{Y^-} the distance in Y. A uniformly continuous transformation $f: X \to Y$ such that

(2)
$$\lim_{n \to \infty} \sup_{x \in X_n} d_Y(f(x), Y_n) = 0$$

is called a DJ-mapping. If condition (2) is replaced by:

(3) there is $n_0 \in N$ such that for $n \ge n_0$: $f(X_n) \subset Y_n$, then f is called an FJ-mapping.

FJ-mappings are a particular case of DJ-mappings.

We will consider an infinitely dimensional Hilbert space H with a filtration containing finite-dimensional linear subspaces $(H_n)_{n \in \mathbb{N}}$. A filtration induced on $S_H = \{x \in H: ||x|| = 1\}$ makes the unit sphere a metric space with

filtration by finite-dimensional spheres. We have a canonical abelian group structure in the set of classes of DJ-homotopically equivalent DJ-mappings of S_H into S_H . This group is marked $[S_H, S_H]$. In paper [5] B. Nowak has proved that this group is nontrivial in the general case of a Banach space.

The theory of DJ-mappings of infinitely dimensional spheres is a kind of generalization of the classical Leray-Schauder theory [3] and of the theory of approximatively-proper mappings by Browder and Petryshyn [1], [6]. Neither the set of Leray-Schauder mappings nor the set of approximatively-proper mappings is closed with regard to the algebraic operations and the operation of taking inverse transformation, while DJ-mappings have these properties. We can define a degree of DJ-mapping and show [5] that homotopical classification by degree of DJ-mapping is better than by the Browder-Petryshyn degree and that there exist DJ-mappings which are not approximatively-proper.

Now we will prove two theorems which reduce the study of the group $[S_H, S_H]$ to the study of FJ-mappings and FJ-homotopies between them.

Theorem 1 (FJ-approximation). The set of all FJ-mappings of a metric space with filtration $(X, (X_n)_{n\in\mathbb{N}})$ into a Hilbert space with filtration by finite-dimensional linear subspaces $(H, (H_n)_{n\in\mathbb{N}})$ is dense in the set of all bounded DJ-mappings of X into H in the uniform convergence topology. We get the same result when we replace $(H, (H_n)_{n\in\mathbb{N}})$ by $(S_H, (S_H \cap H_n)_{n\in\mathbb{N}})$.

Proof. Let $f: (X, (X_n)_{n \in \mathbb{N}}) \to (H, (H_n)_{n \in \mathbb{N}})$ be a bounded DJ-mapping. For every $\varepsilon > 0$ we will find an FJ-mapping $f_{\varepsilon}: (X, (X_n)_{n \in \mathbb{N}}) \to (H, (H_n)_{n \in \mathbb{N}})$ such that $\sup_{x \in X} ||f(x) - f_{\varepsilon}(x)|| \le \varepsilon$.

From the definition of a DJ-mapping, there is an $n_0 \in N$ such that for $n \ge n_0$ and $x \in X_n$

$$(4) d_H(f(x), H_n) \leq \frac{1}{2}\varepsilon.$$

We will show that there is a $\delta > 0$ such that for $n \ge n_0$ and $x \in X$

(5)
$$d_X(x, X_n) \leq \delta \Rightarrow d_H(f(x), H_n) \leq \varepsilon.$$

In fact, since f is uniformly continuous, there is a $\delta>0$ such that $d_X(x,y)\leqslant 2\delta$ implies $d_H(f(x),f(y))\leqslant \frac{1}{2}\varepsilon$. If $n\geqslant n_0$, x is a point of X and $d_X(x,X_n)\leqslant \delta$, then there exists a $y\in X_n$ such that $d_X(x,y)\leqslant 2\delta$. Hence $d_H(f(x),f(y))\leqslant \frac{1}{2}\varepsilon$ and from (4) $d_H(f(y),H_n)\leqslant \frac{1}{2}\varepsilon$. So $d_H(f(x),H_n)\leqslant \varepsilon$. We have shown (5).

We define a family of functions α_k : $X \to [0, 1]$ for $k \in \mathbb{N}$:

(6)
$$\alpha_k(x) = \begin{cases} 1 & \text{when } k \leq n_0, \\ \min[1, \delta^{-1} d_X(x, X_{k-1})] & \text{when } k > n_0. \end{cases}$$

The functions α_k satisfy the Lipschitz condition

(7)
$$|\alpha_k(x) - \alpha_k(y)| \leq \delta^{-1} d_X(x, y)$$

for $x, y \in X$ and $k \in N$, and have the following property:

(8)
$$x \in X_n \Rightarrow \bigwedge_{k > \max(n, n_0)} \alpha_k(x) = 0.$$

We will write P_n for the orthogonal projection onto H_n , $n \in \mathbb{N}$ and $P_{-1} = 0$. For all $x \in X$ we have the formula

(9)
$$f(x) = \sum_{k=0}^{\infty} (P_k - P_{k-1}) f(x).$$

Now we can define the mapping $f_{\varepsilon}: X \to H$:

(10)
$$f_{\varepsilon}(x) = \sum_{k=0}^{\infty} \alpha_k(x) (P_k - P_{k-1}) f(x).$$

This series is convergent because its terms are orthogonal to each other,

$$\|\alpha_k(x)(P_k - P_{k-1})f(x)\|^2 \le \|(P_k - P_{k-1})f(x)\|^2$$

and the series $\sum_{k=0}^{\infty} ||(P_k - P_{k-1}) f(x)||^2$ is convergent to $||f(x)||^2$.

We will show that f_{ε} is uniformly continuous. Using the Minkowski inequality and (7), we get:

$$\begin{split} ||f_{\varepsilon}(x) - f_{\varepsilon}(y)|| &\leq \Big(\sum_{k=0}^{\infty} |\alpha_{k}(x) - \alpha_{k}(y)|^{2} ||(P_{k} - P_{k-1}) f(x)||^{2}\Big)^{1/2} + \\ &+ \Big(\sum_{k=0}^{\infty} |\alpha_{k}(y)|^{2} ||(P_{k} - P_{k-1}) (f(x) - f(y))||^{2}\Big)^{1/2} \\ &\leq \delta^{-1} ||f(x)|| d_{Y}(x, y) + ||f(x) - f(y)|| \quad \text{for} \quad x, y \in X. \end{split}$$

Since f is bounded, f_{ε} is uniformly continuous.

If $n \ge n_0$ and $x \in X_n$, then by (8) $f_{\varepsilon}(x) \in H_n$. Hence f_{ε} is the FJ-mapping. Now we will prove that f_{ε} is the FJ-approximation of the mapping f. Let x be a point of X. A sequence $(d_X(x, X_n))_{n \in N}$ is decreasing and convergent to 0, therefore there is an $n' \in N$ such that $d_X(x, X_{n'}) \le \delta$ and $d_X(x, X_{n'-1}) > \delta$. We get an inequality:

$$\begin{split} ||f(x) - f_{\varepsilon}(x)|| &= \Big(\sum_{k=0}^{\infty} |1 - \alpha_{k}(x)|^{2} ||(P_{k} - P_{k-1})f(x)||^{2}\Big)^{1/2} \\ &= \Big(\sum_{k=n'+1}^{\infty} |1 - \alpha_{k}(x)|^{2} ||(P_{k} - P_{k-1})f(x)||^{2}\Big)^{1/2} \\ &\leq \Big(\sum_{k=n'+1}^{\infty} ||(P_{k} - P_{k-1})f(x)||^{2}\Big)^{1/2}. \end{split}$$

icm®

The last expression is equal to $d_H(f(x), H_n)$ and from (5) we have $||f(x)-f_{\varepsilon}(x)|| \le \varepsilon$.

Now let $F: X \to S_H$ be a certain DJ-mapping. Since $S_H \subset H$, by the first part of the theorem for $\varepsilon > 0$ there is an FJ-mapping $f_\varepsilon: X \to H$ such that $\sup_{x \in X} ||F(x) - f_\varepsilon(x)|| \le \varepsilon$. For $\varepsilon < \frac{1}{2}$ we can define an FJ-mapping $F_\varepsilon: X \to S_H$

(11)
$$F_{\varepsilon}(x) = ||f_{\varepsilon}(x)||^{-1} f_{\varepsilon}(x).$$

For each $x \in X$ we have

$$||F(x) - F_{\varepsilon}(x)|| \le ||F(x) - f_{\varepsilon}(x)|| + ||f_{\varepsilon}(x) - ||f_{\varepsilon}(x)||^{-1} f_{\varepsilon}(x)|| \le 2\varepsilon.$$

We have proved the second part of our theorem.

This theorem and its proof can be written without changes for spaces 1^p with filtration generated by vectors of the standard basis. The problem whether the FJ-approximation theorem is true for all Banach spaces is open.

Theorem 2. If $f, g: S_H \to S_H$ are DJ-homotopically equivalent FJ-mappings, then there is an FJ-homotopy between them.

Proof. Let h be a DJ-homotopy between f and g. Due to Theorem 1 there is an FJ-mapping $h^*\colon X\times [0,1]\to S_H$ such that $||h^*-h||\leqslant 1$. We define $G\colon X\times [0,1]\to H$ by the formulas

(12)
$$G(x, t) = \begin{cases} (1-3t) f(x) + 3th^*(x, 0) & \text{for } t \in [0, \frac{1}{3}), \\ h^*(x, 3t-1) & \text{for } t \in [\frac{1}{3}, \frac{2}{3}), \\ (3t-2)g(x) + (3-3t)h^*(x, 1) & \text{for } t \in [\frac{2}{3}, 1]. \end{cases}$$

It is clear that G is an FJ-homotopy between f and g and that $||G(x,t)|| \ge \frac{1}{2}$ for all $x \in S_H$, $t \in [0, 1]$. Therefore, $(x, t) \to G(x, t)/||G(x, t)||$ also has the above properties and takes values in S_H .

The following theorem is proved in [5]: if $f, g: S_H \to S_H$ are FJ-mappings and are DJ-homotopically equivalent, then from a certain $n_0 \in N$ we have

(13)
$$\deg f|_{S_{H} \cap H_n} = \deg g|_{S_{H} \cap H_n}.$$

We will find a better characterization of DJ-homotopy classes and, by constructing an example, show that the converse is false.

We will first prove two lemmas about the extension of homotopy.

Lemma 1. We suppose that $f: (S_n, S_{n-k}) \to (S_n, S_{n-k})$ where $k \ge 2$, $f \sim 0$ and $f|_{S_{n-k}} \sim 0$. Then there exists a homotopy $h^*: f \sim 0$ such that $h^*(S_{n-k} \times [0, 1]) \subset S_{n-k}$.

Proof. All the sets in question are included in R^{n+1} :

$$\begin{split} B_m &= \big\{x \in R^{n+1}\colon \, x_i = 0, \ i > m; \ \|x\| \leqslant 1\big\}, \\ B_m^+ &= \big\{x \in B_m\colon \, x_m \geqslant 0\big\}, \\ S_m &= \big\{x \in R^{n+1}\colon \, x_i = 0, \ i > m+1; \ \|x\| = 1\big\} \end{split}$$

and

$$S_m^+ = \{x \in S_m: x_{m+1} \ge 0\}.$$

Since we have a homotopy $f|_{S_{n-k}} \sim 0$, we can define a transformation $F\colon B_{n-k+1}\cup S_n\to S_n$ such that $F|_{S_n}=f$ and $F(B_{n-k+1})\subset S_{n-k}$. We will prove that F has an extension $F^*\colon B_{n+1}\to S_n$. To show this, it is sufficient by Borsuk's Homotopy Extension Theorem to verify that F is homotopic to a map $G\colon B_{n-k+1}\cup S_n\to S_n$ which is extendable to B_{n+1} . To this end take any extension $f\colon B_{n+1}\to S_n$ of f and let $G=f\mid B_{n-k+1}\cup S_n$. To see that F and G are homotopic, as maps to S_n , it is sufficient to show that their restrictions to B_{n-k+1} are homotopic modulo S_{n-k} . This, however, is a direct consequence of the fact that $\pi_{n-k+1}(S_n)=0$.

Let $f: S_n \to S_n$ be a continuous mapping. We will write $\deg^+ f|_{\dot{S}_n^+}$ for the local degree of $f|_{\dot{S}_n^+}$: $\dot{S}_n^+ \to S_n$ at points $y \in \ddot{S}_n^+$ where $\dot{S}_n^+ = \{x \in S_n: x_{n+1} > 0\}$. This number does not depend on the choice of the point y [2]. Similarly, we define \dot{S}_n^- , $\deg^- f|_{\dot{S}_n^+}$ as the local degree of the same mapping at points $y \in \ddot{S}_n^-$, and $\deg^+ f|_{\dot{S}_n^-}$, $\deg^- f|_{\dot{S}_n^-}$. We have the obvious relations:

(16)
$$\deg f = \deg^+ f|_{\dot{S}_n^+} + \deg^+ f|_{\dot{S}_n^-} = \deg^- f|_{\dot{S}_n^+} + \deg^- f|_{\dot{S}_n^-}.$$

Lemma 2. Let $f: (S_n, S_{n-1}) \to (S_n, S_{n-1})$ be a continuous mapping of pairs, $f \sim 0$ and $f|_{S_{n-1}} \sim 0$. There is a homotopy $h^*: f \sim 0$ such that $h^*(S_{n-1} \times [0; 1]) \subset S_{n-1}$ if and only if

(17)
$$\deg^+ f|_{S^+} = \deg^+ f|_{S^-} = 0$$

or equivalently $\deg^- f|_{\dot{S}_n^+} = \deg^- f|_{\dot{S}_n^-} = 0$. If such a homotopy exists, then each homotopy $f|_{S_{n-1}} \sim 0$ has an extension to $f \sim 0$.

Proof. Suppose that $h^*: f \sim 0$ and $h^*(S_{n-1} \times [0, 1]) \subset S_{n-1}$. Then we can define a continuous transformation $F: B_{n+1} \to S_n$ such that $F|_{S_n} = f$ and $F(B_n) \subset S_{n-1}$. Hence $\deg F|_{\dot{S}_n^+ \cup B_n} = \deg F|_{\dot{S}_n^- \cup B_n} = 0$ and $\deg F|_{\dot{S}_n^+ \cup B_n} = \deg_y F|_{\dot{S}_n^+}$ and $\deg_y F|_{\dot{S}_n^- \cup B_n} = \deg_y F|_{\dot{S}_n^- \cup B_n} = \deg_y F|_{\dot{S}_n^+}$ where $y \notin S_{n-1}$. But the degrees $\deg_y F|_{\dot{S}_n^+}$ and $\deg_y F|_{\dot{S}_n^-}$ are equal to $\deg^+ f|_{\dot{S}_n^+}$ and $\deg^+ f|_{\dot{S}_n^-}$, respectively, or $\deg^- f|_{\dot{S}_n^+}$ and $\deg^- f|_{\dot{S}_n^-}$ if $y \in \dot{S}_n^-$. Hence condition (17) is necessary.

Suppose now that condition (17) is satisfied. Having a homotopy $h: f|_{S_{n-1}} \sim 0$ and the homeomorphism $(S_{n-1} \times [0, 1]/(S_{n-1} \times \{1\}) \cong B_n$, we construct the mapping $G: S_n \cup B_n \to S_n$, $G|_{S_n} = f$, $G(B_n) \subset S_{n-1}$. The existence of a homotopy h^* is equivalent to the existence of an extension of G to B_{n+1} . Let us consider the mappings $G|_{S_n^+ \cup B_n}$ and $G|_{S_n^- \cup B_n}$. Since their domains are homeomorphic with S_n , this extension exists if the degrees of these mappings vanish. But this is the consequence of the assumption.

Both lemmas imply the following:

If $f: S_H \to S_H$ is an FJ-mapping which is DJ-homotopically trivial, then if dim H_n – dim $H_{n-1} > 1$,

(18)
$$\frac{\deg f|_{S_{H} \cap H_{n}} = 0, \quad \text{if } \dim H_{n} - \dim H_{n-1} > 1}{\deg^{+} f|_{S_{H} \cap \dot{H}_{n}^{+}} = \deg^{+} f|_{S_{H} \cap \dot{H}_{n}^{-}} = 0} \quad \text{in the remaining cases.}$$

We have chosen an orthonormal basis $\{e_n: n \in N\}$ in H such that H. = Lin $\{e_k: k \leq k_n\}$ and we have marked $\mathring{H}_n^+ = \{x \in H_n: (x, e_{k_n}) > 0\}, \mathring{H}_n^ = \{x \in H_n: (x, e_k) < 0\}$. Due to the group structure in $[S_H, S_H]$ and Theorems 1, 2, we get:

Theorem 3. There is a homomorphism $[S_H, S_H]$ into the group $X_{n=1} G_n / \bigoplus_{n=1} G_n$ where

(19)
$$G_{n} = \begin{cases} Z, & \text{if } \dim H_{n} - \dim H_{n-1} > 1, \\ Z \oplus Z, & \text{if } \dim H_{n} - \dim H_{n-1} = 1. \end{cases}$$

This homomorphism is not canonical in the general case. There are two equivalent ways to choose it: the first if we use the pairs deg+, and the second if we take deg⁻. If, for each $n \in \mathbb{N}$, dim $H_n - \dim H_{n-1} > 1$, this homomorphism is canonical.

Example. Now we will construct an FJ-mapping $f: S_H \to S_H$ such that, for every $n \in N$, $\deg f|_{S_{H} \cap H_n} = 0$ but f is not DJ-homotopically trivial.

Let $H = c^2$, $H_n = \text{Lin}\{e_k : k \le n\}$ where $\{e_k : k \in N\}$ is the standard basis in c^2 , and $0 < \varepsilon < \frac{1}{2}$. For ε -neighbourhoods of elements of the basis and vectors opposite to them: $V_n^+ = K(e_n, \varepsilon) \cap S_H$, $V_n^- = K(-e_n, \varepsilon) \cap S_H$, $n \ge 1$, we define transformations $T_n^+: V_n^- \to H$, $T_n^-: V_n^- \to H$ by the formulas

(20)
$$T_n^+(x_0, x_1, ..., x_n, ...) = 2\varepsilon^{-1} (4 - \varepsilon^2)^{-1/2} (x_0, x_1, ..., x_{n-1}, x_{n+1}, ...),$$

$$T_n^-(x_0, x_1, ..., x_n, ...) = 2\varepsilon^{-1} (4 - \varepsilon^2)^{-1/2} (-x_0, x_1, ..., x_{n-1}, x_{n+1}, ...),$$

Then we define $F: B_H \to H$ where B_H is the unit ball in H:

(21)
$$F(x_1, x_2, ..., x_n, ...) = \begin{cases} (2||x||-1, 2x_1, ..., 2x_n, ...), & \text{if } ||x|| \leq \frac{1}{2}, \\ (2||x||-1, 2||x||^{-1}x_1(1-||x||), ... \\ ..., 2||x||^{-1}x_n(1-||x||), ...) & \text{if } ||x|| > \frac{1}{2} \end{cases}$$

and $R(y) = ||y||^{-1}y$ for $y \in H$. Now we get f by defining on pieces:

(22)
$$f|_{V_n^+} = R \circ F \circ T_n^+, \quad f|_{V_n^-} = R \circ F \circ T_n^-, \quad f|_{S_{H_n^-} \cup \{V_n^+ \cup V_n^-\}} = e_0.$$

We can see that $||T_n^+(x)|| \le 1$. Therefore, on the images $T_n^+(V_n^+)$ and $T_n^-(V_n^-)$ the norm ||F(x)|| is not less than $\frac{1}{2}$. Moreover, for $x \in Fr(V_n^+)$ we have $||x-e_n|| = \varepsilon$, i.e.

$$\sum_{k\neq n} x_k^2 + (1-x_n)^2 = \varepsilon^2;$$

then $||T_n^+(x)|| = 1$ and $f(x) = e_0$. In the same way we show that $x \in \operatorname{Fr}(V_n^-)$ implies $f(x) = e_0$. Hence f is well defined and continuous. It is easy to check that f is also uniformly continuous and, for each $n \ge 1$, $f(S_H \cap H_n) \subset H_n$. Therefore f is an FJ-mapping.

We can find degrees and local degrees using the fact that all these mappings are of C^{∞} -class [4]. We will obtain:

$$\begin{split} \deg f|_{S_{H} \cap H_{n}} &= \deg_{-e_{0}} f|_{S_{H} \cap H_{n}} = \sum_{i=1}^{n} (+1) + \sum_{i=1}^{n} (-1) = 0, \\ \deg^{+} f|_{S_{H} \cap \dot{H}_{n}^{+}} &= \deg_{e_{n}} f|_{S_{H} \cap \dot{H}_{n}^{+}} = \sum_{i=1}^{n} (+1) + \sum_{i=1}^{n-1} (-1) = +1, \\ \deg^{+} f|_{S_{H} \cap \dot{H}_{n}^{-}} &= \deg_{e_{n}} f|_{S_{H} \cap \dot{H}_{n}^{-}} = \sum_{i=1}^{n-1} (+1) + \sum_{i=1}^{n} (-1) = -1. \end{split}$$

All degrees deg $f|_{S_H \cap H_n}$ vanish but f is not DJ-homotopically trivial.

It is important for the applications that the described homomorphism of $[S_H, S_H]$ into $X G_n \oplus G_n$ should be an injection. For a mapping f which has local degrees equal to 0 from Lemmas 1 and 2, there is a homotopy $f|_{S_H \cap \bigcup_{n=1}^{\infty} H_n} \sim 0$ which is continuous on each sphere S_n .

The problem whether it is possible to choose a homotopy which is uniformly continuous, i.e. whether the homomorphism is injective, is still unsolved.

References

- [1] F. E. Browder and W. V. Petryshyn, The topological degree and Galerkin approximation for noncompact operators in Banach spaces, Bull. Amer. Math. Soc. 74 (4) (1968), pp. 641-646.
- [2] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972.
- [3] J. Leray and J. P. Schauder, Topologie et équations fonctionnelles, Ann. Ecol. Norm. Sup. 51 (1934), pp. 45-78.
- [4] J. Milnor, Topology from a Differential Viewpoint, University of Virginia, 1966.
- [5] B. Nowak, DJ-odwzorowania i ich homotopie, Acta Univ. Łódź, 1981.
- [6] W. V. Petryshyn, Some examples concerning the distinctive features of bounded linear Aproper mappings, Arch. Rational Mech. Anal. 3 (4) (1969), pp. 331-338.
- [7] E. Spanier, Algebraic Topology, New York-London-Toronto 1966.

Accepté par la Rédaction le 30. 11. 1981