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C is an approximation of U by E over X. This completes our proof of
Lemma R. =

Now, we give a proof of Theorem A. Suppose that 4 is an R-positive
formula in L, X is a finite set of R-atomic formulas, U is a finite set of
uniqueness conditions of R, and E is-a finite set of existence conditions of R
The “if-part” of Theorem A is obvious because that the formula
AX A AU A AE.> B is provable in L, for every approximation B of U
by E over X. Also, if E consists of simple existence conditions only, for any
approximation B of U by E over X, we can find a simple approximation B’
of U by E over X such that B'> B is provable in L. So, it is sufficient to
prove the “only-if-part” of Theorem A.

Assume that the formula AX A AU o A\E.> A is provable in L.
Then, the sequent X, U, E — A4 is provable in L. By Lemma K, the sequent
X, U, E— A~ is provable in L,. Then, this sequent is also provable in L, by
Lemma L. Since 4~ is R-positive, the sequent X — A~ is an R-sequent. By
Lemma P, this sequent is provable in Ly(U, E). By Lemma Q, the sequent
X — A% is provable in L, (U, E). By Lemma R, there is an approximation B
of U by E over X such that the sequent B — A= is provable in L. Since the
sequent 4™ — A is provable in L, the sequent B— A is provable in L. Hence,
the formula B > 4 is provable in L. This completes our proof of Theorem A.
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On the homotopical classification of DJ-mappings
of infinitely dimensional spheres

by
Bogdan Przeradzki (L6d7)

Abstract. This paper contains some results which concern the DJ-homotopical classifi-
cation of DJ-mappings of the sphere in an infinitely dimensional Hilbert space into itself.

In connection with the appearance of the definition of the category in
which a sphere in the infinitely dimensional Banach space is not contractible,
we have to consider the homotopical classification of transformations of such
a sphere into itself within this category. This problem has been presented by
B. Nowak [5]. It will be a certain simplification to notice that the set of
homotopy classes is a group, as it is in the finite-dimensional case. This
paper is an attempt to present certain numerical invariants of the homotopy
classes. However, we will not be able to prove that there is a one-to-one
correspondence between them.

We will first define objects and morphisms of DJ-category.

DEFINITION. A pair (X , (X)nen) where X is a metric space and (X,),en iS
an increasing sequence of its subspaces such that
)] X=X,

neN

is called a merric space with filtration.

DerniTioN. Let (X, (X,)uen) and (Y, (Y,),en) be two metric spaces with
filtration and dy- the distance in Y. A uniformly continuous transformation
f: X — Y such that

2 lim sup dy(f(x), ¥,) =0

TR xeX,
is called a DJ-mapping. If condition (2) is replaced by:
(3) there is nye N such that for n>ny: f(X,) = Y,
then f is called an FJ-mapping.

FJ-mappings are a particular case of DJ-mappings.

We will consider an infinitely dimensional Hilbert space H with a
filtration containing finite-dimensional linear subspaces (H,),.y. A filtration
induced on Sy = {xeH: ||x|| = 1} makes the unit sphere a metric space with
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filtration by finite-dimensional spheres. We have a canonical abelian group
structure in the set of classes of DJ-homotopically equivalent DJ-mappings
of Sy into Sy. This group is marked [Sg, Sg]. In paper [5] B. Nowak has
proved that this group is nontrivial in the general case of a Banach space.

The theory of DJ-mappings of infinitely dimensional spheres is a kind of
generalization of the classical Leray—Schauder theory [3] and of the theory of
approximatively-proper mappings by Browder and Petryshyn [1], [6].
Neither the set of Leray-Schauder mappings nor the set of approximatively-
proper mappings is closed with regard to the algebraic operations and the
operation of taking inverse transformation, while DJ-mappings have these
properties. We can define a degree of DJ-mapping and show [5] that
homotopical classification by degree of DJ-mapping is better than by the
Browder—Petryshyn degree and that there exist DJ-mappings which are not
approximatively-proper.

Now we will prove two theorems which reduce the study of the group
[Su, Syl to the study of FJ-mappings and FJ-homotopies between them.

Tueorem 1 (Fl-approximation). The set of all FJ-mappings of a metric
space with filtration (X, (X ,),en) into a Hilbert space with filtration by finite-
dimensional linear subspaces (H, (H,),ey) is dense in the set of all bounded DJ-
mappings of X into H in the uniform convergence topology. We get the same
result when we replace (H, (H,)en) by (Su, (Sg 0 H,)uen).

Proof. Let f: (X, (X,)en)~ (H, (H)wey) be a bounded DJ-mapping.
For every >0 we will find an FJ-mapping f: (X, (X)uen) = (H, (H )en)
such that sup ||f (x)—f,(x)|| < e.

xeX

From the definition of a DJ-mapping, there is an nye N such that for n
Zny and xe X,

4 du(f(x), H,) < 3e.
We will show that there is a § > 0 such that for n > ne and xeX
&) dx(x, X,) & = dg(f(x), H,) <.

In fact, since f is uniformly continuous, there is a &> 0 such that
dy{x, y) <25 implies dy{f (x), f(y)) <Le. If n>ng, x is a point of X and
dy(x, X,) <6, then there exists a yeX, such that dy(x, y) < 26. Hence
dy (£, () < 3¢ and from (4) dy(f (), H,) <4z So du(f (x), H,) <o. We
have shown (5).

We define a family of functions a,: X — [0, 1] for keN:

when k < ng,

1
6 X) =
© %) % when k > n,.

min[1, 67 dy(x, X,_)]

icm
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The functions o, satisfy the Lipschitz condition

() log () — o, ()] < 07" dx(x, ¥)
for x, yeX and keN, and have the following property:
(8) xeX, = A a(0)=0.

k >max(n,ng)

We will write P, for the orthogonal projection onto H,, ne N and P_;
= 0. For all xeX we have the formula

£

9 fx)= ZO(Pk_Pk—I)f(x)'
k=
Now we can define the mapping f,;: X - H:
(10) L0 =Y 0 ()(Pe—Pyey) £ (9.
k=0

This series is convergent because its’ terms are orthogonal to each other,

llooe () (P = P 1) f (o)1 < (P — Pa— 1) £ (ON12

and the series Z I(Pe— Py— 1) f(x)|I® is convergent to ||f (x>
k=0

We will show that J; is uniformly continuous. Using the Minkowski
inequality and (7), we get: .

*

[FACIRIAT)ES (k ) for () = o (D) N(Pic— P 1) £ GI?) 2 +
)

+( 3
k=0
<O ISl dx(x, W+If)—f I for

Since f is bounded, f, is uniformly continuous.
If n> ng and xe X, then by (8) f,(x)eH,. Hence f, is the FJ-mapping.
Now we will prove that f, is the FJ-approximation of the mapping f.
Let x be a point of X. A sequence (dy(x, X)) is decreasing and conver-
gent to 0, therefore there is an n'eN such that dy(x, X,)<dJ and
dy(x, Xy-1)> 6. We get an inequality:

e 2 [[(Pa— Pae ) (f () =F O)|P)2

x, yeX.

1) —£ (ol = ( i 1= o () [|(Pe— Pe— 1) f (9II2)2

k

=0
(3 NP P Pry) f )
k=n+1

<( Y PP F R

k=n'+1
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The last expression is equal to dg(f(x), H,) and from (5) we have
If )—fll <e.

Now let F: X — Sy be a certain DJ-mapping. Since Sy = H, by the first
part of the theorem for ¢ > 0 there is an FJ-mapping f,: X — H such that
sup|iF (x)—f,(x)l| <e. For ¢ <% we can define an FJ-mapping F,: X — Sy
xeX

(11 Fo(x) = 1007 £ ().
For each xeX we have

IF ()= F, (x)ll < IIF () =1, Ol + ]| £ =L G ™ £ (0| < 26
We have proved the second part of our theorem.

This theorem and its proof can be written without changes for spaces 17
with filtration generated by vectors of the standard basis. The problem
whether the FJ-approximation theorem is true for all Banach spaces is open.

Tueorem 2. If f,g: Sy—Sy are DJ-homotopically equivalent FJ-
“mappings, then there is an FI-homotopy between them.

Proof. Let h be a DJ-homotopy between f and g. Due to Theorem 1
there is an FJ-mapping h*: X x[0, 1] > S, such that ||h*—h]| < 1. We
define G: X %[0, 11— H by the formulas

(1=3t) £(x)+3th*(x, 0)
B (x, 3t—1) for tef4, 3,
(Bt—-2)g(x)+(3—-30)h*(x, 1) for te[3, 1.
It is clear that G is an FJ-homotopy between f and g and that ||G(x, 1)]] >

for all xeSy, te[0, 1]. Therefore, (x, 1) = G(x, 1)/||G(x, t)l| also has the
above properties and takes values in Sj.

The following theorem is proved in [5]: if f,g: Sy — Sy are FJ-
mappings and are DJ-homotopically equivalent, then from a certain ngeN

we have
(13) degf[SHhH" = degglanH,,-
We will find a better characterization of DJ-homotopy classes and, by
constructing an example, show that the converse is false.
We will first prove two lemmas about the extension of homotopy.
Lemma 1. We suppose that f: (S,. S,-,) = (S,, S,_,) where k >2, f~0
and fls,_, ~0. Then there exists a homotopy h*: f~ 0 such that h*(S,., x
x[0, 1) =8,_,.
Proof. All the sets in question are included in R"*1:
B, = {xeR"™ x, =0, i>m; |]x]| <1},
By ={xeB,: x, =0},

Sw={xeR™ x; =0, i>m+1; ||| =1}

for te[0, ),
12 G(x, t) =

[

icm
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and
+ . )
Sn = 1XESy,: Xpmey = 0]

Since we have a homotopy fls, _ .~ 0, we can define a transformation
F: By y+1US,— S, such that F|g =f and F(B,_ 1) < S,-x. We will prove
that F has an extension F*: B,., — S,. To show this, it is sufficient by
Borsuk’s Homotopy Extension Theorem to verify that F is homotopic to a
map G: B,_4+; US, — S, which is extendable to B, ;. To this end take any
extension f: B,,, — S, of f and let G =f|B,_z+1 Y S,. To see that F and G
are homotopic, as maps to S,, it is sufficient to show that their restrictions to
B,_.+ are homotopic modulo S,_,. This, however, is a direct consequence
of the fact that m,_,.,,(S,) =0.

Let f: S, S, be a continuous mapping. We will write deg”* f] s+ for the
local degree of flg+: $F — S, at points yeS; where §§ = {x€S,: x,41 > 0.
This number does not depend on the choice of the point y [2]. Similarly, we
define S, deg™fls + as the local degree of the same mapping at points
yeSy, and deg* f s> deg™ fls7. We have the obvious relations:

=deg” flgy +deg” f3; -

Lemma 2. Let f (S, Su—1) = (S, Su-1) be a continuous mapping of
pairs, f~0 and flg _, ~0. There is a homotopy h*: f~0 such that
h*(S,_; x[0; 1)) = 8,-; if and only if

amn deg” fls; =deg*fls; =0

or equivalently deg™fls+ = deg™ fl5; = 0. If such a homotopy exists, then

each homotopy fls,_, ~ 0 has an extension to f~0.

Proof. Suppose that h*: f~0 and h*(S,_, x[0,1])=S,_;. Then
we can define a continuous transformation F: B,.; -+ 8§, such that Flg =f
and F(B,) < S,-;. Hence deg Fls* s, =deg Fls~ 5, =0 and deg Flst g,
= deg, Fls+, degFlg B, = deg,,F]g— where y¢S,-,. But the degrees
deg, Fls+ and deg, Fl;; are equal to deg* fls+ and deg” fls-, respectively,
or deg™ f |S+ and deg™ f |S- if yeS Hence condition (17) is necessary.

Suppose now that condition (17) is satisfied. Having a homotopy
h: fls,., ~0 and the homeomorphism (S,_; x [0, 1]/(S,—; x {1}) = B,, we
construct the mapping G: S,uB, =S, Gls, =f, G(B,) < S,-,. The existence
of a homotopy h* is equivalent to the existence of an extension of G to B, 1
Let us consider the mappings GIS:U,,,' and GIS"— UBy* Since their domains are
homeomorphic with S,, this extension exists if the degrees of these mappings
vanish. But this is the consequence of the assumption.

Both lemmas imply the following:

4 — Fundamenta Mathematicae CXX. 2
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 If f: Sy— Sy is an FJ-mapping which is DJ-homotopically trivial, then
(18) deg flsynm, =0, if dimH,—dimH,_, > 1,

deg™ flsynit =deg* flsyn- =0 in the remaining cases.

We have chosen an orthonormal basis {e,; neN! in H such that H
=Lin{e: k<k, and we have marked H; = {xeH,: (x, ¢, )>0!, H-
n je
= {xeH, (x, e,)<0]. Due to the group structure in [Sy, S4] an:i
Theorems 1, 2, we get:
TueorEM 3. There is a homomorphism [Sy, Syl into the group

X G/ ® G, where
n=1 n=1

G ={Z, if dimH,—dimH,_, > 1,
" 1Z®Z, if dimH,—dimH,_, =1,
_This homomorphism is not canonical in the general case. There are two
equlvalept ways to choose it: the first if we use the pairs deg*, and the
second if we take deg™. If, for each neN, dimH,~dimH,_; > 1, this
homomorphism is canonical. k ’
ExampLE. Now we will construct an FJ-mappi :
-mapping f: Sy — Sy such that,
for every neNZ, deg fls,nm, = 0 but f is not DJ-homotopically trivial.
' 2Let H=¢, H,,1= Lin (e Ifé n} where {e,: ke N} is the standard basis
in ¢ and 0 <e<y. For e-neighbourhoods of elements of the basis and
vectors opposite to them: V' =K(e,, &N Sy, ¥, =K(—e,e)nSy, nx>1
we define transformations T,*: ¥, — H, T, : V., — H by the form,ulas/ ,

(20) T (X0s X vey Xy o ) = 2671 (4~ 12(x,, X1, -

T (xo, Xiqeen

(19)

"’xn—l’xn+17"')7
V=2 14—t~ 12 (_
) & (4 8) ( X0s Xg5 ey n—l:xn—%l’--')'

Then we define F: By — H where By is the unit ball in H:

s Xy -

@l =1, 2x,, ..., 2x,, ..), if |Ix)| <3
@) Foas xa, oy 2y ) = S @111, 2067 3y (L= [, ..
s 20T e (U=, )i i) > 3

and R(y) =yl 'y for yeH. Now we get f by defining on pieces:

(22) flv} =RoFoT}, fl¥; =RoFoT, f| =
SH':"LJl(V:'uV"_) = €o-

\;Vf( ;a_l’)l iee that || T," (x)| < 1. Therefore, on the images T,* (V,*) and

» (V,") the norm [[F(x)|| is not less than 1. Fr(]

b o o 3. Moreover, for xeFr(V,*) we

Z X?-{—(I—-xn)z = gz;

k#n

icm°®
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then || T;* (x)l =1 and f(x) = e,. In the same way we show that xeFr(V,")
implies f (x) = e,. Hence f is well defined and continuous. It is easy to check
that f is also uniformly continuous and, for each n>1, f(SgnH,) < H,.
Therefore f is an FJ-mapping.

We can find degrees and local degrees using the fact that all these
mappings are of C*-class [4]. We will obtain:

degflsynn, = deg_, flsynn, = Y (+D)+ Zl(" =0,
i=1 i=

I

n n—1
deg” flsgntiy = deBe, flg s+ = 3 (+1)+ % (- =+1,
i=1 i=1

n—1 n
Y (+)+ Y (- = -1
i=1 i=1

All degrees deg fls, ~m, vanish but f is not DJ-homotopically trivial
It is important for the applications that the described homomorphism of

deg” flsyns, =948, fls,ni

[Sy, Sy] into X G,/ ® G, should be an injection. For a mapping f which
=1 =1

n=
has local degrees equal to O from Lemmas 1 and 2, there is a homotopy
fl »~  ~ 0 which is continuous on each sphere §,.
s,,n"glﬂ,‘
The problem whether it is possible to choose a homotopy which is
uniformly continuous, ie. whether the homomorphism is injective, is still

unsolved.
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