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then {NeY: Va> w3l <al codes N} is the complement of a set of first
category in the Cantor set Y.

5.3. What is the exact distribution of the values of the functions F,? In
particular, is the type {x > F,(n): new}u{C,(x): ncw} consistent?

54. For X M= PA we define the closure of X in the usual way:
becl(X) iff, for each geAut(M), if VxeXg(x) = x then g(b) =b.

Conjecture. There exist two consistent extensions 4y, 4, of the type
Iy (cf. the proof of Theorem 3.2) such that, for each countable and
recursively saturated M= PA, if b, realizes 4, in M then cl(M[b]) = the
Skolem closure of (M [b]u {b}) and if b, realizes 4, in M then cl(M[b]) 2
the Skolem closure of (M [b]u {b}).

5.5. Conjecture (Smorynski [11]). Let. M= PA be countable and
recursively saturated, and let by, b, M. If (M, M [b,]) is elementary equivalent
to (M, M [b,]) then M(b,) is isomorphic with M (b,).

The author would like to thank Roman Kossak for fruitful discussions.
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On locally contractive fixed-point mappings

by
~ Ljubomir Cirié¢ (Beograd)

Abstract. Let (M, d) be a metric space and T a selfmapping on M. Suppose that for each
ueM there exists a sphere S(u, r(u)) such that x, yeS(u, r(v) with x #y implies a(Tx, T))
<d(x,y) and Tx, TyeS(v, r(v)) for some ve M. Furthermore, suppose that {T"x} contains a
convergent subsequence for some x & M. Under these assumptions our main result states that the
set of fixed or periodic points of Tis non-void. This generalizes one result of M. Edelstein for &-
contractive mappings. A fixed point theorem for corresponding mappings on Hausdorfl uniform
spaces is stated also.

Introduction. Let (M, d) be a metric space and T a selfmapping on M. A
mapping Tis said to be locally contractive on M if for each ue M there exists
a sphere S(u, r()={x: d(u, x) <r(w}, r()>0, such that d(Tx, T})
< d(x, y) holds for all x, yeS (1, r(u)) with x # y. If there exists ¢ > 0 such
that r(u) > ¢ for all ue M, then Tis called e-contractive. M. Edelstein in [3]
proved that if lim T"x =ueM for some x&M, then an g-contractive map-
ping has fixed or periodic points. On compact spaces locally contractive
mappings are s-contractive, and therefore have fixed or periodic points.
However, M. Edelstein in [3] and S. Naimpally in [4] have constructed
examples which show that if M is not compact, then locally contractive
mappings may be without fixed or periodic points, even though lim T"x

. i~+o0
=ueM for some xeM.

Our aim is to present a subclass of locally contractive mappings which
need not be s-contractive, but still have fixed or periodic points in the case
that {T"x} contrains a convergent subsequence for some xeM.

DeFNTION. A mapping T of a metric space M into itself is said to be
well locally contractive if for each ueM there exists S(u, r(u) such that
x, yeS(u, r(u)) with x # y implies

d(Tx, Ty) <d(x,y)
for some veM.

and Tx, TyeS(v, r(v)

1. Now we shall prove the following result. ‘
TueoreM 1. Let T be a well locally contractive selfmapping on a metric
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space M. If {T"x}, xe M, contains a convergent subsequence {T"x} then u
= lim T"x is a periodic point of T.

i+

Proof. Let x in M be such that limT"x = u for some ue M. We may
" suppose that T"x # T*x for all positive integers r and s, since otherwise the
theorem follows immediately. Choose fixed positive integers p and k such
that

) TPx, T"**xeS(u, r ()
with d(TPx, T?**x) < r(u). We shall show that T*u = u.
As Tis well locally contractive, (1) implies that for n = p+1 we have
d(T"x, T"*x) = d(TT?x, TTP *x) < d(T?x, TP**x)
and TP*'x, TP*'**xeS(v, r(v)) for some ve M. This again implies that
d(TTP*ix, TTPH1+ky) < d(TP+x, TP* 1ty
and TP¥2x, TP*2*kx e §(w, r(w)) for some weM, and so
d(T™x, T"**x) < d(T?x, T?**x)  for n=p+2.
If we proceed in this manner we conclude that (1) implies
) d(T"x, T""*x) < d(T"x, T?**x) for all n> p. -
Since a’ locally contractive mapping is continuous and Lm Thix =u, it
follows from (2) that e
. d(u, T u) < d(TPx, TP**x).
Thi; and d(T"x, TP*%%) < 4r(w) imply T*ueS(u, 4r ().
ssume now that T*u # u. Then
u, T'ueS(u, §r(w)
implies, similarly as (1) implies (2), that
@ A(T™, Ty < d(u, Th)
Now we shall show that

for all n.

@ T'xeS(u, $r@) with n> p implies T"*kx, T% %y e §(u, r(u)).

Let d(u, T")

1
et ¢ <3r(u) and n > . Theg by (2) and by triangle inequality we

d(u, T""*) < d(u, T"x)+d(T"x, T"**x) < Ir(W)+d(T?x, TP k)
d(u, T" 55 < d(u, T"4)+d(TORx, Tlr0hy)
<d(u, T"*9+d(Trx, Tr+ksy, -
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Hence, as d(T?x, TP**x) < 4r(u), we obtain that
d(u, T *x) <3r@); d(u, T""2x) <r().

Thus we have proved (4).
Now, as lim T"x = u, we may suppose that each n; is chosen such that

i—o

n, > p and

Trix €S (u, §r (W)
Then, by (4), for any fixed n;, we have

Tritkx, T 2*xeS(u, r(w).
This implies, similarly as (1) implies (2), that
d(T"x, T* *x) < d(T%*kx, T®*9*y)  for all n> n+k.
Hence, as d(u, T"ﬂu) is a cluster point of {d(T"x, T"**x)};Z 0,
d(u, Thu) < d(T™ *x, T™*%*x).

But this and lim T"x = u imply the following relation:

i~

d(u, T4 < md(T™**x, T"+x) = d(T*u, T?*u)
i~roo

which contradicts (3) for n = k. Therefore, our assumption that Tu#u — is
not correct and so u is a fixed {in the case k = 1) or periodic point of T The
proof is complete.

It is clear that each e-contractive mapping is also well contractive. So we
have

CoroLLArY 1 (Edelstein [3, Th. 2]). Let M be a metric space, T an -
contractive selfmapping on M and let tim Tix =ue M for some xeM. Then u
is a periodic point.
 The following example shows that our Theorem 1 do in fact improve
the Edelstein’s result.

Exampie. Let M, ={(x,1/¥): x> 1}, My = {(x, —1/%): x> 1} and
put M = M, UM,. Define on M cR* a mapping T by

1 x+1 2 ‘ 1 x+1 2
ol WY (e d T —_— ) = = ).
T(x’x) < 2’ x+1) an (x, x) ( 2 x+1)
If for any u = (x, 1/x) and v = (x, —1/x) we take, for instans, r(u) =r(v) = 1/x,
then it is easy to see that Tis well locally contractive. Since for each zeM

. the sequence {T"z} contains the convergent sub-sequence {T*"z}, we may

apply our Theorem and u = (1, 1) and T = (1, — 1) are periodic points of T.
However, Edelstein’s theorem is not applicable, as Tis not e-contractive
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for any ¢> 0. Indeed, for any & >0 there are points x = (a, 1/a) and
y =(a, —1/d) with a > 2/¢ (and a # 1) such that

d(Tx, Ty) > d(x, ),
although d(x, y) =2/a <e.

Note that T'is not also the Bailey’s mapping (6) of [1, p. 101], since for
the above chosen x and y in M the relations

d(x, y) > d(Tx, B) > d(T?x, T*) > ... >d(T", T"y) > ...
hold, although d(x, y) <s.
2. Now we are going to present sufficient conditions for the existence of
a fixed point of well locally contractive mappings.
We remember that a metric space M is said to be convex provided x
and y in M implies there exists z in M such that d(x, z) = d(z, y) = 4d(x, y).
THeorREM 2. If T'is a well locally contractive selfmapping on a complete

convex metric space M and if for some x in M a subsequence of {T"x} is
contained in a compact subset of M then T has a unique. fixed point.

Proof. By Theorem 1 there exists some u in M such that T*u = u for
some k > 1. Assume that Th # u. Since M is a complete convex space there
exists a metric interval [u, Ti] in M. Therefore, there exists ¢ > O such that
x, y in [u, Ti] and d(x, y) <e imply that x, y in S(z, r(2)) for some z in
[u, Tu]. Now let

U= Xg, Xy, eeey Xpp= TU

be a finite sequence of elements in [u, Ti] such that
m
d(u, T) = Zld(x,_l, x) and d{x;_y, x)<e(G=1,2,...,m).
j=

Since x;-1, X;€8(z, r(2)) for some ze[u, Tu] and Tis well lodally contract-
ive, we have

d(Thoy, T <d(x2p, %) (=1, 2,

Hence, as T*u = u, we obtain

Loy M),

d(u, ) = d(T*u, T*TW) < Y, d(T*x,_,, Th)
Jj=1

m

< jzl d(xj- 1 xj) = d(uv Tu):

which is absurd. Therefore, Tit = u. The uniqueness of a fixed point follows
by the same arguments. This completes the proof. ‘

Note that for e-chainable metric: spaces M Edelstei
following result: f : liein 131 peoved the
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TueorEM A. Let M be an c-chainable metric space, T an e-contractive
selfmapping of M and let lim T"x =ueM for some xe M. If u has a compact
spherical ‘neighborhood K [u, r] of radius r = & then u is a unique fixed point.

For well locally contractive mappings a similar result is not valid.
Indeed, in our example the space M is e-chainable for any &> 0 and for each
z =(x, 1/x) in M the sequence {T"z} contains a convergent subsequence.

Also u=(1, 1) (and v = (1, —1)) has a compact neighborhood K [u, r] for any

_r<-co, but Tis a fixed point free.

TueoreM 3. Let T be well locally contractive on M. If for some xeM a
certain subsequence of {T"x} is contained in a compact subset of M and
)] ' inf d(T"x, T"*'x) =0,

n>0
then the set of fixed points of Tis non-void.

Proof. By (5) we inay choose p such that d(T"x, TP 1x) < 4r(u) and
following the arguments given in the proof of Theorem 1 (for k=1) we
obtain Tu = u. ‘

CoroLLARY 2. Let T be well locally contractive on M. If lim Trix =ueM
for some xeM and T is asymptotically regular at x (ie. }im d(Tx, T"'x)
= (), then the set of fixed points of T is non-void.

Note that in Theorem 3 a well locally contractive mapping T can not be

replaced by a mapping T which satisfies the following conditions: T is _ *

continuous and
© d(T™x, T™) < d(x, )

holds for some subsequence {m} of positive integers (and x # y), even if
S(u, r(w) =M for all ueM. To show this, we shall use Bailey’s counter
example X from [1], pages 103 and 105. If Bailey’s X we replace by M
= X\{(0, 0)}, then for every xeM with x # (1/i, 0), iel, the sequence {T"x}
contains a convergent subsequence in M and T satisfies (5) on M. The
condition (6) is also satisfied, as Bailey’s condition (5) of [1] implies (6)-
However, T has not fixed neither periodic points in M. ‘

. 3. Now we shall show how fixed-point theorems of § 2 can be extended
to Hausdorff topological spaces, whose topology can be generated by the
family of pseudometrics.

Let X be a nonempty set and & a nonempty family of pseudo-metrics on
X such that the collection {S,(x,r): xeX,0<r < 400} forms a base for a
Hausdorff topology for X, where S,(x, 7) is the open sphere of p-radius r
about x (see Kelley [4]). It is known that a set X has the structure which can be
such described iff X with a certain uniformity is a Hausdorff uniform space,
or iff X with a certain topology is a Hausdorff completely regular space.
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Note also that a sequence {x,} in X converges to u iff it converges to u in p-
) topolc;gy fﬁr a]{@pe@’, or equivalently, the numbers p(x,, u) converges to
zero for all pe?. For x, yeX, x # y iff there exists some pe# such
p{x, y) > 0. : ! -
Now we shall present an extended form of Theorem 3.

THEOREM 4. Let X be a Hausdorff topological space and # a Jamily of
pseud_cwfmetrics which generate the topology on X. Let T: X —X be
mapping such that for each ueM and ped there exists an open s hera
Sy (u, r, () such that x, yeS,(u, r,(u) with p(x, y)> 0 implies wphere

p(Tx, ) <p(x,y) and Tx, TyeS,(v, r,(v)
Jor some veX. If lim T"ixeM for some xe M and
i—+ oo

) inf p(T", T"*1x) = 0

n>0
holds for every pe P, then the set of fixed point of T is non-void.

Proof. Let p be any member of 2. If i

. If in the proof of Theorem 1
rep{ztif:e d (x, y) by p(x, y) and r(u) by r,(), then by (7) we may chooscwz
positive Integer m such that p(T™x, T™"'x) < 4r,(u) and (as lLim T"x = u)

T™x, T"*'xe§,(u, r,(u). e

(mFollgvgng 'argqments given iI} the proof of Theorem 1 we obtain that
p g, u) = 0. Since pe# was arbitrary, it follows that p(Tu, u) = 0 for all
pe?. Therefore, Tt =u and the proof is complete. ’

'
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Weak-chainability of tree-like continua and
the combinatorial properties of mappings

by

T. A. Moebes (Houston, Tex.)

Abstract. In 1951, R. H. Bing mentioned the question of the existence of atriodic tree-like
continua which are not chainable. In 1972, W. T. Ingram constructed an example of an atriodic
tree-like continuum with positive span which is not chainable. A. Lelek introduced the notion of
weak chainability and characterized it by the property of being a continuous image of a
chainable continuum. A. Lelek introduced the concept of span and proved chainable continua
have span zero. The question of Ingram’s example of 1972 mentioned above being weakly
chainable was mentioned by W.T. Ingram in 1976.

We present a theorem in this paper that gives sufficient conditions for a continuum
expressed in terms of inverse expansions in finite trees mnot to be weakly chainable. Since
Ingram’s example given in 1972 was obtained as an inverse limit on simple triods, our theorem
is applied to show that this example is not weakly chainable. The argument given is not span
dependent but' does, however, depend upon the combinatorial properties of the bonding maps
of the inverse system in question.

1. Introduction. In 1972, W. T. Ingram [1] constructed an example of an
atriodic. tree-like continuum with positive span. This example in [2] answered
the question mentioned by R. H. Bing [1] of the existence of -atriodic tree-
like continua which are not chainable. A. Lelek [4] introduced the notion of-
weak chainability and characterized it by the property of being a continuous
image of a chainable continuum. A, Lelek [5] introduced the concept of span
and proved chainable continua have span zero (p. 210). The question of the
continuum given in [2] being weakly chainable was mentioned by W.T.
Ingram in [3]. In this paper we give a theorem that gives sufficient
conditions for a continuum expressed in terms of inverse expansions in finite
trees not to be weakly chainable. Since the continuum given in [2] was
obtained as an inverse limit on simple triods, our theorem is applied to show
that the example given in [2] is not weakly chainable. The argument given is
not span dependent. The argument does, however, depend upon the com-
binatorial properties of the bonding maps of the inverse system in question.
The bonding maps between consecutive factor spaces do not necessarily have
to be identical for the main theorem in this paper to apply.

This paper makes use of the results given in 1963 by J. Mioduszewski
[6] for a compact metric space to be a continuous image of another one
expresséd in terms of inverse expansions in polyhedra. This paper also makes
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