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Convex half-spaces
by
Marek Lassak (Bydgoszcz)

Abstract. We study convex half-spaces (ie., convex set with convex complements) of
Euclidean space R". It is proved that the family of all convex half-spaces of R” 1s a sequentially
compact topological Fréchet space with respect to the set theoretical limit of sets Lim.

Our results are applied in the next paper of this issue.

Our terminology follows [4]. Let R" denote the n-dimensional Euclidean
space with the scalar product {v,, v,>. The symbols K’, K, ri K, int K-
denote, respectively, the complement of K < R", the closure of K, the relative
interior of K, and the interior of K. The vector with origin x and the end-point y
is denoted by v,,. We use the following limits of sequences of sets: the
inferior limit

Liminf 4, = U ) 4,
i=~x i=1 j=i

the superior limit
Limsup 4; = [} U 4;,

i=x i=1 j=i
and (if Liminf 4; = A4 = Lipi sup A4;) the limit Lim 4; = 4. Obviously, if 4,

i=1,2,..., are convex, then Liminf 4; is convex and (if it exists) Lim 4;
i~ i~

is convex. ]

DermNiTIoN 1. We call a set K < R" a convex half-space if both K and
its complement K' are convex sets. We call K and K’ complementary convex
half-spaces.

Obviously, all open half-spaces and closed half-spaces (in the usual
sense), the empty set () and the set R" are convex half-spaces of R”. Also any
semispace at xeR” (i.e., a maximal convex set which does not include x) is
a convex halfsspace [11, [2]. .

For any xeR" and for any unit perpendicular .vectors vy, ..., v, where
1 €k < n, we define the following sets :

P .
B,(vy, ..., 00 = U {veR" {v;, v,,> =0 for j <i and (v, v,,> > 0},
i=1 .

P.(vy, ..., ) = B,(vy, .., 5) O{yeR"; {vj, v =0 for j=1,...,k}.
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Writing B, (v, ..., 1) or P,(vy, ..., v,) we shall tacitly assume that
xeR" 1<k <n and that vy, ..., v, are unit perpendicular vectors.

Let us recall that any cone excluding its vertex is called a blunt cone
and any cone including its vertex is called a pointed cone. )

The set B (vy, ..., 0;) is a blunt cone with vertex x as the union of half-
planes )

H; = {yeR"; {vj, v,,> =0 for j <i and (v, v, > 0},
i=1,..., k, which are blunt cones with vertex x.
Let a and b be arbitrary points of B,(vi, ..., v). There exist numbers
g <k and h<k such that acH, and beH,. Let g < h. Since beH, and
acH, =ri H,, we have (see [4], Theorem 6.1, p. 45)
{(1-Aa+2b; 0<A<1} < H,cB,(vy, ..., 1y).

Therefore B,(v,, ..., t;) is convex. VSimilarly, P.(vy, ..
convex cone with vertex x. .
From the obvious equalities

(Bulvy, ..., v)) = Px(—v;,...‘, —1)

., D) is a pointed

and .
(Px(v-la cees Uk))' =B, (~vy, ..., =)

we infer that B, (v, ..., ) and P, (vq,..., 1) are convex half-spaces.
The above considerations clarify the terms used in the next definition.

DeriNiTION 2. The sets B, (v4, ..., ) and the set @ will be called blunt
convex half-spaces with vertex x. The sets P.(vf, ..., v,) and the set R” will be
called pointed convex half-spaces with vertex x. '

Tueorem 1. Convex half-spaces of R" have the Jollowing properties

1. Any two complementary convex half-spaces have the forms
B, (vy, ..., v) and P (—vy, ..., —v),0r the forms Q and R". .

2. B,(v1, ..., ©) = By(vy, ..., ;) (respectively: P vy, ..., 1) = Py(vy, ...
) if and only if <v,v,>=0for i=1,... k

3. If K is a convex half-space, then any translate of K contains K or is
contained in K (see [1)(*). More exactly: B, (v,, :
(analogously Px(v1a wens vk) < Py(vls sers vk)) !f and OYIka ify¢Bx(v1: seey Uk)-

4. Two arbitrary convex disjoint sets can be supplemented to complementary
convex half-spaces [3]. :

5. If a convex set C is the union of two convex disjoint sets, then the sets
have the forms C N B.(vy, ..., v) and CAP,(~v,, ..., —y), where xeC, or
the forms @ and C. ’

6. A set K is a convex half-space if and only if one of the sets K, K’ is

- (*) The question whether the inverse holds has been answered

negatively b 5-
szyniski with the help of the Zorn—Kuratowski lemma. s Y by Dr. A Pré

< 0) € By(og, ..., 1)
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a maximal convex set disjoint with a plane. This plane is that of all vertices of the
convex half-space K.

7. The sets of the form B,(vy, ..., v,) are the only semispaces at x.

8. Any nonempty convex half-space is the convex hull of a sequence of
points.

Proof. We show the first property. For n =1 it is obvious. Assume it
holds for R"™* and consider two complementary convex half-spaces 4 and A’
of R". Since the cases 4 = Q) and A = R” are trivial, we assume 4 # @ and
A # R". Consequently, 4 # R" because ri 4 =t1i A (Theorem 63 of [4],
p. 46).

We shall show that 4 is a closed half-space. Assume the contrary. Since
A is convex, A is convex too. Being convex and closed, 4 is the intersection of
a family of closed half-spaces ([4], Theorem 11.5, p. 99). Since 4 # R" and 4
is not a closed half-space, the family contains closed half-spaces Q; and Q,
such that Q, is not a translate of Q;. Hence Ac A=Q,nQ, and A’
> Q4 UQj. Take ae A. Since acQy N Q,, there exist a, €0} and a,eQ} such
that g lies in the segment joining a, and a,. From a, €4/, a,e A’ and a¢ A’
we conclude that A’ is not convex. The contradiction shows that A4 is
a closed half-space.

Similarly, A’ is a closed half-space. Obviously, H = A n A’ is the bound-
ing hyperplane of A and of A’. Consequently, A =C, U(4nH) and A’
= C, U(4’ "H) where C;, C, are open Half-spaces bounded by H. From
the inductive hypothesis we counclude that 4 and A’ have the stipulated

forms. :

The other properties easily follows from the definition of sets
B.(vy, ..., v) and P,(vy, ..., v), and from the first property. Properties 2

.and 3 are obvious. Recurrently, with the help of the classic separation

theorem, we get property 4. It implies properties 5-7. The last property holds
because any convex half-space is the union of a finite number of half-planes
and since any half-plane is the convex hull of a sequence of points.

THEOREM 2. The family 7 of all convex half~spaces of R" is
a sequentially compact topological Fréchet space with respect to the limit of
sets Lim.

Proof. Our theorem asserts that the following conditions hold:

(1) if A;eF fori=1,2,... and H{EAi=A, then Ae7,

2)if ;=A€7 fori=1,2,..., then }11.21 A=A,

3)if 4,7 fori=1,2,...and Iﬂgl A; = A, then for any subsequence

A

ioJ=1,2,..., we have Lim 4;, = A4,
j : FREI

(4) if the sequence A;€7;i=1, 2, ..., does not converge to 4e 7, then

- there exists a subsequence such that no subsequence of it is convergent to 4,
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(5) if A;e7, Lim A;;=4; and LimA;=A for i,j=1,2,..., then
jimw i—oo
there are subsequences i, and j, such that ”]:JLI‘Ix)l A =4,

(6) any sequence of sets from 7 contains a convergent subsequence.

It can be easily shown that conditions (2), (3) and (4) hold for arbitrary
sets. ) ’

We shall show (1). Let 4;, i =1, 2, ..., be convex half-spaces of R" and
let the limit Lim 4; = 4 exist. Hence the limit Lim 4] = (Lim 4;) = A’ exists.

Since 4; and A4}, i=1,2,..., are convex, A and A’ are also convex.
Therefore, 4 is a convex half-space.

We shall prove (5). It results from (1) that the sets 4;, i =1, 2, ..., and
the set A in (5) are convex half-spaces. Let 4 # @ and A s R" By part 8§ of
Theorem 1 the set 4 is the convex hull of a sequence of points x;, x,, ...
The complement 4’ is also the convex hull of a sequence of points y;, y, ...
Since EI;] A; = A, there exists a number i,, such that 4;, contains the points

Xy, ... X, and does not contain y,,..., y,. Since Lim AimjzA,m, there
Einded

exists a number j, such that 4, wim cOntains the points x, ..., x,, and does
not contain y,, ..., y,. Therefore

] 3 .
{X1, X3, ...} = '%lr;l A s

1092, ) < Lim 4], =(Lim 4, , ).

Since L.,_],Ig A; it and (’%113 4;,;,) are convex, the inclusions
}.‘_1}2 Ay, 2000V {X1, X5, ...} = 4,
(,,173.’2 4; 5 Y 2conv {y;, y,, ..} =A'

hold. Thus '{43'12 Ay, =A I A=Q or A=R" the considerations are

similar.

Finally, we recurrently show (6)(%). For R! it is obvious. Assume (6)
holds in R""! and consider the space R". The case where a sequence of
convex half-spaces of R" contains infinitely many of sets () or R” is obvious.
In the opposite case, select a subsequence A, i=1,2, ..., of convex half-
spaces different from @ and R". Let x; be a vertex of A4, i = 1,2,... The
space R* can be viewed as a hypersurface of an (n+1)-dimensional

(*) The author thanks Dr. J. Cichos for a considerable simplification of a previous version
of the proof of (6).
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space R"*'. Take a point xeR"*1 \R", Let L, be the line passing through x;
and x, i=1,2,... Put

Ci=A+L; = {a+h; aed, beL,), i=1,2,...

Obviously, 4; =C;nR" i=1,2,... Note that C; is a convex half-space of
Rt different both from ¢ and R"*! and that x is a vertex of C,i=1,2,...
Let u;, denote a unit vector of R"*! perpendicular to the hyperplane
bounding int C; and directed towards int C;. One can select a subsequence u;j,
j=1,2,..., which converges (in the usual sense) to a unit vector u.
Let G = B, () in the notation of R"*!. Obviously,
G < Liminf C;, = Limsup C;, < G.
j=o joe 4
Consequently,
Fc Lilll}ian;j < Limsup Aij c FUH,
where F = GN R" and H is the bounding hyperplane of F. By the inductive
hypothesis, a subsequence A,-J.k, k=1,2, ..., can be selected in such a way that the
limit Lim(4;, nH) = K exist. Note that

koo Tk
Liminf 4;; = Liminf (4;, nF)u Liminf (4;, nH)=F UK.
k= 13 k~c Jk k=00 Tk
Similarly, Limsup A;, = F UK. Thus the limit Lim 4; exists.
Kk~ I k= Uk
CoroLLary 1. Let xeR" any ke ll, ..., n}. The families

{Be(Ogs oo Op)s k<M R}, (Po(vg, .oy 0); KSm< 0}

and the family of all convex half-spaces with the vertex x are sequentially
compact topological Fréchet spaces with respect to the limit Lim.
CoROLLARY 2. For any convex set C < R", the family of all convex subsets
D of C such that C\D is also convex is a sequentially compact topological
Fréchet space with respect to the limit Lim.
THEOREM 3. .111»31 B, (u;) = B,(vy, ..., v) (analogously: {,_{1;101 P (u) =

P.(vy, ..., 0) if and only if almost all vectors u; are positive combinations
U = Aoy +.. At and Lim (A ;4 /4;) =0, j=1,..., k-1
. . i+

Proof. The equalities Lim B, (4;) = B,(vy, ..., ) and L_im P.(—u)

= P,(~vy, ..., —1) are equivalent as the equalities of complementary sets.
Therefore, we consider sequences of open half-spaces only. It is sufficient
consider only the case where x = 0.

For R! the theorem is obvious. We assume that the theorem holds for
R !, and consider the space R™

1. Let Llf;? Bo () = By(vy, ..., ;). Denote by R"! the hyperplane
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bounding the half-space B,(v,). We get

i~

Lim (R"? N By(u)) =R""! A Lim By (u;) = R"! N By(vy, ..., 1y).
Let k =1. Then
Lim (R** By () = R™* A By (o) = D.

Since 0eR"™7, the sets R"™' ~ B, (u;) are either open half-spaces of the space
R™™! or empty. If infinitely many of them are open half-spaces of R""?,
then by Corollary 1 one can select a subsequence, with the nonempty limit Lim
and therefore {.,_igx(R"“ N Bo(w)) # @. The contradiction shows that almost all

sets R"™! n By (u;) are empty. Hence for almost all numbers i = 1,2,..., the
equality By (4;) = B, (v;) and consequently the equality u; = v; hold.
Let 2< k< n Then

Lim (R"* nBo(w)) = R*™* " By oy, ..., 1) % .

Hence almost all sets R"" 1N B,(y) are nonempty. So almost all sets
R"™* By (u;) are open half-spaces of R*1. If R"! A By () is an open half-
space of R"%, then let u, denote a unit vector of R"! perpendicular

to (n—2)-dimensional plane K; bounding in R™! the haif-space R""* B, (u;) .

and directed towards the latter half-space. . Since vy, u; and u are
perpendicular to K;, they lie in a 2-dimensional plane. Moreover, v; and u;
are perpendicular and the angle « (i, u)) is acute. Hence there exist Ay and
positive y; such that u; = 4,0, +yu. From ng Bo(u) = By (v, ..., 1) we

conclude llirg u; = v;. Therefore ]im 41 =1, lim y, = 0 and almost all Ay are
positive. Since almost all sets R* A B, (u,) are open half-spaces of R" !, we
can apply (omitting a finite number of them) the inductive hypothesis. We
infer that almost all u are positive combinations U =X v3+...+ A v, and
(when k > 3) that llllg A jer/l)=0for j=2, .. k—1. Put Ay = vy if A

is defined. Therefore almost all u; are positive combinations U = Ayy Oy +y,u)
=Xy +...+ 20 and }}}2 (ijed/li) =0 for j=2,... k-1 ‘Since

vy, ..., U are unit and perpendicular and since u; is unit, |2,] < 1. Hence

Hm (a/A) = lim (2 dyy) = 0,

2. Let almost all g, be positive combinations u; = L, v, +...4+ 4.0, and
let Hm (4;4a/A) =0 for j=1,..., k—1. i = A Uyt Ay |

I k=1, then u,=lyv,, where 4, =1, and consequently, B, (u;)

= By (vy) for almost all numbers i =1, 2, ... Hence Lim B, (). = By (v,).
(g
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Let 2 < k < n. Since y; is a unit vector and v, ..., v, are unit perpendi-
cular - vectors, Aj+...+1% =1. Moreover, since lim (4;;41/4;) =0 for
j=1,..., k=1, we have h;m Aj=0 for j=2,..,k and lim 4, =1.
Therefore lim u; = v,. Hence
() Bo(vy) = Liminf B, (;) = Limsup By (u) <= Py (v,).
Let R""! denote the hyperplane bounding the half-space B, (v,). Since

almost all combinations A; vy +...+ 2,0, are positive, almost all com-
binations A;;v,+...+4,v, are also positive. Hence almost all sets

v R"" 1N By(u) are open half-planes of the plane R""!. Since the vector

A0y +...+ Ay vy = u; is perpendicular to the hyperplane bounding Bp(u;)
and since it is directed towards the side of By (u;), the vector A;; v, +.. A A v
is perpendicular to the (n—2)-dimensional plane K; bounding the half-plane
R"'nBy(4) and directed towards it. Hence the vector U = ol vy+...
. tady vy, where o =(A3+...+43)"%, is unit, perpendicular and directed
towards the side of R"™*~ By(u). This is true for almost all numbers
i=1,2,... Obviously, almost all the combinations above are positive and
.‘132 (0 j41/ad) = O for j =2, ..., k—1. Hence, from the inductive hypothesis

we conclude that the set Lim (By (4;) n R !)is equal (in the notation of R*~!) to
By(vs, ..., v) = R* 1. This and (+) imply
Liminf B () = Bo (03, -, 1) = Limsup By ().
—® i-» o

Therefore the limit Lim Bo(w;) exists and equals By(vy, ..., 13).

The proof is complete.

It would be interesting to discuss decompositions of R" onto m > 2
disjoint convex subsets.
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