Convex half-spaces by ## Marek Lassak (Bydgoszcz) **Abstract.** We study convex half-spaces (i.e., convex set with convex complements) of Euclidean space Rⁿ. It is proved that the family of all convex half-spaces of Rⁿ is a sequentially compact topological Fréchet space with respect to the set theoretical limit of sets Lim. Our results are applied in the next paper of this issue. Our terminology follows [4]. Let R^n denote the n-dimensional Euclidean space with the scalar product $\langle v_1, v_2 \rangle$. The symbols K', \bar{K} , ri K, int K denote, respectively, the complement of $K \subset R^n$, the closure of K, the relative interior of K, and the interior of K. The vector with origin x and the end-point y is denoted by v_{xy} . We use the following limits of sequences of sets: the inferior limit $$\underset{i\to x}{\operatorname{Liminf}} A_i = \bigcup_{i=1}^{\infty} \bigcap_{j=i}^{\infty} A_j,$$ the superior limit $$\limsup_{i\to\infty}A_i=\bigcap_{i=1}^\infty\bigcup_{j=i}^\infty A_j,$$ and (if $\liminf_{i\to\infty}A_i=A=\limsup_{i\to\infty}A_i$) the limit $\lim_{i\to\infty}A_i=A$. Obviously, if A_i , $i=1,\,2,\,\ldots$, are convex, then $\liminf_{i\to\infty}A_i$ is convex and (if it exists) $\lim_{i\to\infty}A_i$ is convex. DEFINITION 1. We call a set $K \subset \mathbb{R}^n$ a convex half-space if both K and its complement K' are convex sets. We call K and K' complementary convex half-spaces. Obviously, all open half-spaces and closed half-spaces (in the usual sense), the empty set \emptyset and the set R^n are convex half-spaces of R^n . Also any semispace at $x \in R^n$ (i.e., a maximal convex set which does not include x) is a convex half-space [1], [2]. For any $x \in \mathbb{R}^n$ and for any unit perpendicular vectors v_1, \ldots, v_k , where $1 \le k \le n$, we define the following sets $$B_{\mathbf{x}}(v_1, \ldots, v_k) = \bigcup_{i=1}^k \{ y \in \mathbb{R}^n; \langle v_j, v_{\mathbf{x}\mathbf{y}} \rangle = 0 \text{ for } j < i \text{ and } \langle v_i, v_{\mathbf{x}\mathbf{y}} \rangle > 0 \},$$ $$P_x(v_1, \ldots, v_k) = B_x(v_1, \ldots, v_k) \cup \{y \in \mathbb{R}^n; \langle v_j, v_{xy} \rangle = 0 \text{ for } j = 1, \ldots, k\}.$$ Writing $B_x(v_1, \ldots, v_k)$ or $P_x(v_1, \ldots, v_k)$ we shall tacitly assume that $x \in \mathbb{R}^n$, $1 \le k \le n$ and that v_1, \ldots, v_k are unit perpendicular vectors. Let us recall that any cone excluding its vertex is called a blunt cone and any cone including its vertex is called a pointed cone. The set $B_x(v_1, ..., v_k)$ is a blunt cone with vertex x as the union of half-planes $$H_i = \{ y \in \mathbb{R}^n; \langle v_i, v_{xy} \rangle = 0 \text{ for } j < i \text{ and } \langle v_i, v_{xy} \rangle > 0 \},$$ i = 1, ..., k, which are blunt cones with vertex x. Let a and b be arbitrary points of $B_x(v_1, \ldots, v_k)$. There exist numbers $g \le k$ and $h \le k$ such that $a \in H_g$ and $b \in H_h$. Let $g \le h$. Since $b \in \overline{H}_g$ and $a \in H_g = \text{ri } H_g$, we have (see [4], Theorem 6.1, p. 45) $$\{(1-\lambda)a+\lambda b: 0 \leq \lambda < 1\} \subset H_a \subset B_x(v_1,\ldots,v_k).$$ Therefore $B_x(v_1, \ldots, v_k)$ is convex. Similarly, $P_x(v_1, \ldots, v_k)$ is a pointed convex cone with vertex x. From the obvious equalities $$(B_x(v_1, ..., v_k))' = P_x(-v_1, ..., -v_k)$$ and $$(P_x(v_1, ..., v_k))' = B_x(-v_1, ..., -v_k)$$ we infer that $B_x(v_1, ..., v_k)$ and $P_x(v_1, ..., v_k)$ are convex half-spaces. The above considerations clarify the terms used in the next definition. DEFINITION 2. The sets $B_x(v_1, \ldots, v_k)$ and the set \emptyset will be called blunt convex half-spaces with vertex x. The sets $P_x(v_1, \ldots, v_k)$ and the set R^n will be called pointed convex half-spaces with vertex x. THEOREM 1. Convex half-spaces of Rⁿ have the following properties - 1. Any two complementary convex half-spaces have the forms $B_x(v_1, ..., v_k)$ and $P_x(-v_1, ..., -v_k)$, or the forms \emptyset and R^n . - 2. $B_x(v_1, \ldots, v_k) = B_y(v_1, \ldots, v_k)$ (respectively: $P_x(v_1, \ldots, v_k) = P_y(v_1, \ldots, v_k)$) if and only if $\langle v_i, v_{xy} \rangle = 0$ for $i = 1, \ldots, k$. - 3. If K is a convex half-space, then any translate of K contains K or is contained in K (see [1])(1). More exactly: $B_x(v_1, ..., v_k) \subset B_y(v_1, ..., v_k)$ (analogously: $P_x(v_1, ..., v_k) \subset P_y(v_1, ..., v_k)$) if and only if $y \notin B_x(v_1, ..., v_k)$. - 4. Two arbitrary convex disjoint sets can be supplemented to complementary convex half-spaces [3]. - 5. If a convex set C is the union of two convex disjoint sets, then the sets have the forms $C \cap B_x(v_1, ..., v_k)$ and $C \cap P_x(-v_1, ..., -v_k)$, where $x \in C$, or the forms Φ and C. - 6. A set K is a convex half-space if and only if one of the sets K, K' is - 7. The sets of the form $B_x(v_1, ..., v_n)$ are the only semispaces at x. - 8. Any nonempty convex half-space is the convex hull of a sequence of points. Proof. We show the first property. For n=1 it is obvious. Assume it holds for R^{n-1} and consider two complementary convex half-spaces A and A' of R^n . Since the cases $A = \emptyset$ and $A = R^n$ are trivial, we assume $A \neq \emptyset$ and $A \neq R^n$. Consequently, $\bar{A} \neq R^n$ because ri $A = \text{ri } \bar{A}$ (Theorem 6.3 of [4], p. 46). We shall show that \overline{A} is a closed half-space. Assume the contrary. Since A is convex, \overline{A} is convex too. Being convex and closed, \overline{A} is the intersection of a family of closed half-spaces ([4], Theorem 11.5, p. 99). Since $\overline{A} \neq R^n$ and \overline{A} is not a closed half-space, the family contains closed half-spaces Q_1 and Q_2 such that Q_2 is not a translate of Q_1 . Hence $A \subset \overline{A} \subset Q_1 \cap Q_2$ and $A' \supset Q'_1 \cup Q'_2$. Take $a \in A$. Since $a \in Q_1 \cap Q_2$, there exist $a_1 \in Q'_1$ and $a_2 \in Q'_2$ such that a lies in the segment joining a_1 and a_2 . From $a_1 \in A'$, $a_2 \in A'$ and $a \notin A'$ we conclude that A' is not convex. The contradiction shows that \overline{A} is a closed half-space. Similarly, A' is a closed half-space. Obviously, $H = \overline{A} \cap \overline{A'}$ is the bounding hyperplane of \overline{A} and of $\overline{A'}$. Consequently, $A = C_1 \cup (A \cap H)$ and $A' = C_2 \cup (A' \cap H)$ where C_1 , C_2 are open half-spaces bounded by H. From the inductive hypothesis we counclude that A and A' have the stipulated forms. The other properties easily follows from the definition of sets $B_x(v_1, \ldots, v_k)$ and $P_x(v_1, \ldots, v_k)$, and from the first property. Properties 2 and 3 are obvious. Recurrently, with the help of the classic separation theorem, we get property 4. It implies properties 5-7. The last property holds because any convex half-space is the union of a finite number of half-planes and since any half-plane is the convex hull of a sequence of points. THEOREM 2. The family \mathcal{F} of all convex half-spaces of \mathbb{R}^n is a sequentially compact topological Fréchet space with respect to the limit of sets Lim. Proof. Our theorem asserts that the following conditions hold: - (1) if $A_i \in \mathcal{F}$ for i = 1, 2, ... and $\lim_{i \to \infty} A_i = A$, then $A \in \mathcal{F}$, - (2) if $A_i = A \in \mathcal{F}$ for i = 1, 2, ..., then $\lim_{i \to \infty} A_i = A$, - (3) if $A_i \in \mathcal{F}$ for $i=1, 2, \ldots$ and $\lim_{i \to \infty} A_i = A$, then for any subsequence A_{ij} , $j=1, 2, \ldots$, we have $\lim_{j \to \infty} A_{ij} = A$, - (4) if the sequence $A_i \in \mathcal{F}$, i = 1, 2, ..., does not converge to $A \in \mathcal{F}$, then there exists a subsequence such that no subsequence of it is convergent to A, ⁽¹⁾ The question whether the inverse holds has been answered negatively by Dr. A. Prószyński with the help of the Zorn-Kuratowski lemma. - (5) if $A_{ij} \in \mathcal{F}$, $\lim_{j \to \infty} A_{ij} = A_i$ and $\lim_{i \to \infty} A_i = A$ for i, j = 1, 2, ..., then there are subsequences i_m and j_m such that $\lim_{i \to \infty} A_{i_m j_m} = A$, - (6) any sequence of sets from \mathcal{F} contains a convergent subsequence. It can be easily shown that conditions (2), (3) and (4) hold for arbitrary sets. We shall show (1). Let A_i , $i=1, 2, \ldots$, be convex half-spaces of R^n and let the limit $\lim_{i\to\infty}A_i=A$ exist. Hence the limit $\lim_{i\to\infty}A_i'=(\lim_{i\to\infty}A_i)'=A'$ exists. Since A_i and A_i' , $i=1, 2, \ldots$, are convex, A and A' are also convex. Therefore, A is a convex half-space. We shall prove (5). It results from (1) that the sets A_i , $i=1,\,2,\,\ldots$, and the set A in (5) are convex half-spaces. Let $A\neq\emptyset$ and $A\neq R^n$. By part 8 of Theorem 1 the set A is the convex hull of a sequence of points $x_1,\,x_2,\,\ldots$ The complement A' is also the convex hull of a sequence of points $y_1,\,y_2,\,\ldots$ Since $\lim_{i\to\infty}A_i=A$, there exists a number i_m such that A_{i_m} contains the points $x_1,\,\ldots,\,x_m$ and does not contain $y_1,\,\ldots,\,y_m$. Since $\lim_{j\to\infty}A_{i_mj}=A_{i_m}$, there exists a number j_m such that $A_{i_mj_m}$ contains the points $x_1,\,\ldots,\,x_m$ and does not contain $y_1,\,\ldots,\,y_m$. Therefore $$\begin{aligned} \{x_1, x_2, \ldots\} &\subset \lim_{m \to \infty} A_{i_m j_m}, \\ \{y_1, y_2, \ldots\} &\subset \lim_{m \to \infty} A'_{i_m j_m} = (\lim_{m \to \infty} A_{i_m j_m}). \end{aligned}$$ Since $\lim_{m\to\infty} A_{i_m j_m}$ and $(\lim_{m\to\infty} A_{i_m j_m})'$ are convex, the inclusions $$\lim_{m \to \infty} A_{i_m j_m} \supset \operatorname{conv} \{x_1, x_2, \ldots\} = A,$$ $$(\lim_{m \to \infty} A_{i_m j_m})' \supset \operatorname{conv} \{y_1, y_2, \ldots\} = A'$$ hold. Thus $\lim_{m\to\infty} A_{i_m j_m} = A$. If $A = \emptyset$ or $A = \mathbb{R}^n$ the considerations are similar. Finally, we recurrently show $(6)(^2)$. For R^1 it is obvious. Assume (6) holds in R^{n-1} and consider the space R^n . The case where a sequence of convex half-spaces of R^n contains infinitely many of sets \emptyset or R^n is obvious. In the opposite case, select a subsequence A_i , $i=1,2,\ldots$, of convex half-spaces different from \emptyset and R^n . Let x_i be a vertex of A_i , $i=1,2,\ldots$ The space R^n can be viewed as a hypersurface of an (n+1)-dimensional $$C_i = A_i + L_i = \{a+b; a \in A_i, b \in L_i\}, i = 1, 2, ...$$ Obviously, $A_i = C_i \cap R^n$, i = 1, 2, ... Note that C_i is a convex half-space of R^{n+1} different both from \emptyset and R^{n+1} and that x is a vertex of C_i , i = 1, 2, ... Let u_i denote a unit vector of R^{n+1} perpendicular to the hyperplane bounding int C_i and directed towards int C_i . One can select a subsequence u_{ij} , j = 1, 2, ..., which converges (in the usual sense) to a unit vector u. Let $G = B_x(u)$ in the notation of R^{n+1} . Obviously, $$G \subset \underset{j \to \infty}{\operatorname{Lim}} \inf C_{i_j} \subset \underset{j \to \infty}{\operatorname{Lim}} \sup C_{i_j} \subset \overline{G}.$$ Consequently, $$F \subset \underset{j \to \infty}{\operatorname{Lim inf}} A_{i_j} \subset \underset{j \to \infty}{\operatorname{Lim sup}} A_{i_j} \subset F \cup H,$$ where $F = G \cap R^n$ and H is the bounding hyperplane of F. By the inductive hypothesis, a subsequence A_{ij_k} , k = 1, 2, ..., can be selected in such a way that the limit $\lim_{k \to \infty} (A_{ij_k} \cap H) = K$ exist. Note that COROLLARY 1. Let $x \in \mathbb{R}^n$ any $k \in \{1, ..., n\}$. The families $${B_x(v_1, ..., v_m); k \le m \le n}, {P_x(v_1, ..., v_m); k \le m \le n}$$ and the family of all convex half-spaces with the vertex x are sequentially compact topological Fréchet spaces with respect to the limit Lim. COROLLARY 2. For any convex set $C \subset \mathbb{R}^n$, the family of all convex subsets D of C such that $C \setminus D$ is also convex is a sequentially compact topological Fréchet space with respect to the limit Lim. Theorem 3. $\lim_{i \to \infty} B_x(u_i) = B_x(v_1, \ldots, v_k)$ (analogously: $\lim_{i \to \infty} P_x(u_i) = P_x(v_1, \ldots, v_k)$) if and only if almost all vectors u_i are positive combinations $u_i = \lambda_{i1}v_1 + \ldots + \lambda_{ik}v_k$ and $\lim_{i \to \infty} (\lambda_{i,j+1}/\lambda_{ij}) = 0$, $j = 1, \ldots, k-1$. Proof. The equalities $\lim_{i\to\infty} B_x(u_i) = B_x(v_1, \ldots, v_k)$ and $\lim_{i\to\infty} P_x(-u_i) = P_x(-v_1, \ldots, -v_k)$ are equivalent as the equalities of complementary sets. Therefore, we consider sequences of open half-spaces only. It is sufficient consider only the case where x=0. For R^1 the theorem is obvious. We assume that the theorem holds for R^{n-1} , and consider the space R^n . 1. Let $\lim_{i\to\infty} B_0(u_i) = B_0(v_1, \ldots, v_k)$. Denote by R^{n-1} the hyperplane ⁽²⁾ The author thanks Dr. J. Cichoń for a considerable simplification of a previous version of the proof of (6). bounding the half-space $B_0(v_1)$. We get $$\lim_{i\to\infty}\left(R^{n-1}\cap B_0(u_i)\right)=R^{n-1}\cap \lim_{i\to\infty}B_0(u_i)=R^{n-1}\cap B_0(v_1,\ldots,v_k).$$ Let k=1. Then $$\lim_{i \to \infty} (R^{n-1} \cap B_0(u_i)) = R^{n-1} \cap B_0(v_1) = \emptyset.$$ Since $0 \in R^{n-1}$, the sets $R^{n-1} \cap B_0(u_i)$ are either open half-spaces of the space R^{n-1} or empty. If infinitely many of them are open half-spaces of R^{n-1} , then by Corollary 1 one can select a subsequence, with the nonempty limit Lim and therefore $\lim_{i \to \infty} (R^{n-1} \cap B_0(u_i)) \neq \emptyset$. The contradiction shows that almost all sets $R^{n-1} \cap B_0(u_i)$ are empty. Hence for almost all numbers $i = 1, 2, \ldots$, the equality $B_0(u_i) = B_0(v_1)$ and consequently the equality $u_i = v_1$ hold. Let $2 \le k \le n$. Then $$\lim_{n \to \infty} (R^{n-1} \cap B_0(u_i)) = R^{n-1} \cap B_0(v_1, \ldots, v_k) \neq \emptyset.$$ Hence almost all sets $R^{n-1} \cap B_0(u_i)$ are nonempty. So almost all sets $R^{n-1} \cap B_0(u_i)$ are open half-spaces of R^{n-1} . If $R^{n-1} \cap B_0(u_i)$ is an open halfspace of R^{n-1} , then let u'_i denote a unit vector of R^{n-1} perpendicular to (n-2)-dimensional plane K_i bounding in R^{n-1} the half-space $R^{n-1} \cap B_0(u_i)$ and directed towards the latter half-space. Since v_1 , u_i and u'_i are perpendicular to K_i , they lie in a 2-dimensional plane. Moreover, v_1 and u_i' are perpendicular and the angle $\prec (u_i, u_i)$ is acute. Hence there exist λ_{i1} and positive γ_i such that $u_i = \lambda_{i1}v_1 + \gamma_i u_i'$. From $\lim_{i \to \infty} B_0(u_i) = B_0(v_1, \dots, v_k)$ we conclude $\lim_{i \to \infty} u_i = v_1$. Therefore $\lim_{i \to \infty} \lambda_{i1} = 1$, $\lim_{i \to \infty} \gamma_i = 0$ and almost all λ_{i1} are positive. Since almost all sets $R^{n-1} \cap B_0(u_i)$ are open half-spaces of R^{n-1} , we can apply (omitting a finite number of them) the inductive hypothesis. We infer that almost all u_i' are positive combinations $u_i' = \lambda_{i2}' v_2 + \ldots + \lambda_{ik}' v_k$ and (when $k \ge 3$) that $\lim_{i \to \infty} (\lambda'_{i,j+1}/\lambda_{ij}) = 0$ for j = 2, ..., k-1. Put $\lambda_{ij} = \gamma_i \lambda'_{ij}$ if λ'_{ij} is defined. Therefore almost all u_i are positive combinations $u_i = \lambda_{i1} v_1 + \gamma_i u_i'$ $= \lambda_{i1} v_1 + \ldots + \lambda_{ik} v_k \quad \text{and} \quad \lim_{i \to \infty} (\lambda_{i,j+1}/\lambda_{ij}) = 0 \quad \text{for} \quad j = 2, \ldots, k-1. \quad \text{Since}$ v_1, \ldots, v_k are unit and perpendicular and since u_i' is unit, $|\lambda_{i2}'| \leq 1$. Hence $\lim_{i\to\infty} (\lambda_{i2}/\lambda_{i1}) = \lim_{i\to\infty} (\gamma_i \, \lambda'_{i2}/\lambda_{i1}) = 0.$ 2. Let almost all u_i be positive combinations $u_i = \lambda_{i1} v_1 + \ldots + \lambda_{ik} v_k$ and let $\lim_{i \to \infty} (\lambda_{i,j+1}/\lambda_{ij}) = 0$ for $j = 1, \ldots, k-1$. If k=1, then $u_i=\lambda_{i1}v_1$, where $\lambda_{i1}=1$, and consequently, $B_0(u_i)=B_0(v_1)$ for almost all numbers $i=1,\,2,\,\dots$ Hence $\lim_{i\to\infty}B_0(u_i)=B_0(v_1)$. (*) $$B_0(v_1) \subset \liminf_{i \to \infty} B_0(u_i) \subset \limsup_{i \to \infty} B_0(u_i) \subset P_0(v_1).$$ Let R^{n-1} denote the hyperplane bounding the half-space $B_0(v_1)$. Since almost all combinations $\lambda_{i1}v_1+\ldots+\lambda_{ik}v_k$ are positive, almost all combinations $\lambda_{i2}v_2+\ldots+\lambda_{ik}v_k$ are also positive. Hence almost all sets $R^{n-1}\cap B_0(u_i)$ are open half-planes of the plane R^{n-1} . Since the vector $\lambda_{i1}v_1+\ldots+\lambda_{ik}v_k=u_i$ is perpendicular to the hyperplane bounding $B_0(u_i)$ and since it is directed towards the side of $B_0(u_i)$, the vector $\lambda_{i2}v_2+\ldots+\lambda_{ik}v_k$ is perpendicular to the (n-2)-dimensional plane K_i bounding the half-plane $R^{n-1}\cap B_0(u_i)$ and directed towards it. Hence the vector $u_i'=\alpha\lambda_{i2}v_2+\ldots+\alpha\lambda_{ik}v_k$ where $\alpha=(\lambda_{i2}^2+\ldots+\lambda_{ik}^2)^{-1}$, is unit, perpendicular and directed towards the side of $R^{n-1}\cap B_0(u_i)$. This is true for almost all numbers $i=1,2,\ldots$ Obviously, almost all the combinations above are positive and $\lim_{i\to\infty}(\alpha\lambda_{i,j+1}/\alpha\lambda_{ij})=0$ for $j=2,\ldots,k-1$. Hence, from the inductive hypothesis we conclude that the set $\lim_{i\to\infty}(B_0(u_i)\cap R^{n-1})$ is equal (in the notation of R^{n-1}) to $B_0(v_2,\ldots,v_k)\subset R^{n-1}$. This and (*) imply $$\liminf_{i\to\infty} B_0(u_i) = B_0(v_1, \ldots, v_k) = \limsup_{i\to\infty} B_0(u_i).$$ Therefore the limit $\lim_{i\to\infty} B_0(u_i)$ exists and equals $B_0(v_1,\ldots,v_k)$. The proof is complete. It would be interesting to discuss decompositions of R^n onto m > 2 disjoint convex subsets. ## References - [1] P. C. Hammer, Maximal convex sets, Duke Math. J. 22 (1955), pp. 103-106. - [2] Semispaces and the topology of convexity, Proceedings of Symposia in Pure Mathematics, 7 (Convexity), pp. 305-316, Amer. Math. Soc., Providence 1963. - [3] S. Kakutani, Ein Beweis des Satzes von M. Edelheit über konvexe Mengen, Proc. Imp. Acad. Tokyo, 13 (1937), pp. 93-94. - [4] R. T. Rockafellar, Convex analysis, Princeton 1970. Reçu par la Rédaction le 10. 3. 1980 Accepté par la Rédaction le 21. 9. 1981