

## Convex half-spaces

by

## Marek Lassak (Bydgoszcz)

**Abstract.** We study convex half-spaces (i.e., convex set with convex complements) of Euclidean space R<sup>n</sup>. It is proved that the family of all convex half-spaces of R<sup>n</sup> is a sequentially compact topological Fréchet space with respect to the set theoretical limit of sets Lim.

Our results are applied in the next paper of this issue.

Our terminology follows [4]. Let  $R^n$  denote the n-dimensional Euclidean space with the scalar product  $\langle v_1, v_2 \rangle$ . The symbols K',  $\bar{K}$ , ri K, int K denote, respectively, the complement of  $K \subset R^n$ , the closure of K, the relative interior of K, and the interior of K. The vector with origin x and the end-point y is denoted by  $v_{xy}$ . We use the following limits of sequences of sets: the inferior limit

$$\underset{i\to x}{\operatorname{Liminf}} A_i = \bigcup_{i=1}^{\infty} \bigcap_{j=i}^{\infty} A_j,$$

the superior limit

$$\limsup_{i\to\infty}A_i=\bigcap_{i=1}^\infty\bigcup_{j=i}^\infty A_j,$$

and (if  $\liminf_{i\to\infty}A_i=A=\limsup_{i\to\infty}A_i$ ) the limit  $\lim_{i\to\infty}A_i=A$ . Obviously, if  $A_i$ ,  $i=1,\,2,\,\ldots$ , are convex, then  $\liminf_{i\to\infty}A_i$  is convex and (if it exists)  $\lim_{i\to\infty}A_i$  is convex.

DEFINITION 1. We call a set  $K \subset \mathbb{R}^n$  a convex half-space if both K and its complement K' are convex sets. We call K and K' complementary convex half-spaces.

Obviously, all open half-spaces and closed half-spaces (in the usual sense), the empty set  $\emptyset$  and the set  $R^n$  are convex half-spaces of  $R^n$ . Also any semispace at  $x \in R^n$  (i.e., a maximal convex set which does not include x) is a convex half-space [1], [2].

For any  $x \in \mathbb{R}^n$  and for any unit perpendicular vectors  $v_1, \ldots, v_k$ , where  $1 \le k \le n$ , we define the following sets

$$B_{\mathbf{x}}(v_1, \ldots, v_k) = \bigcup_{i=1}^k \{ y \in \mathbb{R}^n; \langle v_j, v_{\mathbf{x}\mathbf{y}} \rangle = 0 \text{ for } j < i \text{ and } \langle v_i, v_{\mathbf{x}\mathbf{y}} \rangle > 0 \},$$

$$P_x(v_1, \ldots, v_k) = B_x(v_1, \ldots, v_k) \cup \{y \in \mathbb{R}^n; \langle v_j, v_{xy} \rangle = 0 \text{ for } j = 1, \ldots, k\}.$$

Writing  $B_x(v_1, \ldots, v_k)$  or  $P_x(v_1, \ldots, v_k)$  we shall tacitly assume that  $x \in \mathbb{R}^n$ ,  $1 \le k \le n$  and that  $v_1, \ldots, v_k$  are unit perpendicular vectors.

Let us recall that any cone excluding its vertex is called a blunt cone and any cone including its vertex is called a pointed cone.

The set  $B_x(v_1, ..., v_k)$  is a blunt cone with vertex x as the union of half-planes

$$H_i = \{ y \in \mathbb{R}^n; \langle v_i, v_{xy} \rangle = 0 \text{ for } j < i \text{ and } \langle v_i, v_{xy} \rangle > 0 \},$$

i = 1, ..., k, which are blunt cones with vertex x.

Let a and b be arbitrary points of  $B_x(v_1, \ldots, v_k)$ . There exist numbers  $g \le k$  and  $h \le k$  such that  $a \in H_g$  and  $b \in H_h$ . Let  $g \le h$ . Since  $b \in \overline{H}_g$  and  $a \in H_g = \text{ri } H_g$ , we have (see [4], Theorem 6.1, p. 45)

$$\{(1-\lambda)a+\lambda b: 0 \leq \lambda < 1\} \subset H_a \subset B_x(v_1,\ldots,v_k).$$

Therefore  $B_x(v_1, \ldots, v_k)$  is convex. Similarly,  $P_x(v_1, \ldots, v_k)$  is a pointed convex cone with vertex x.

From the obvious equalities

$$(B_x(v_1, ..., v_k))' = P_x(-v_1, ..., -v_k)$$

and

$$(P_x(v_1, ..., v_k))' = B_x(-v_1, ..., -v_k)$$

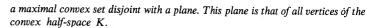
we infer that  $B_x(v_1, ..., v_k)$  and  $P_x(v_1, ..., v_k)$  are convex half-spaces.

The above considerations clarify the terms used in the next definition.

DEFINITION 2. The sets  $B_x(v_1, \ldots, v_k)$  and the set  $\emptyset$  will be called blunt convex half-spaces with vertex x. The sets  $P_x(v_1, \ldots, v_k)$  and the set  $R^n$  will be called pointed convex half-spaces with vertex x.

THEOREM 1. Convex half-spaces of R<sup>n</sup> have the following properties

- 1. Any two complementary convex half-spaces have the forms  $B_x(v_1, ..., v_k)$  and  $P_x(-v_1, ..., -v_k)$ , or the forms  $\emptyset$  and  $R^n$ .
- 2.  $B_x(v_1, \ldots, v_k) = B_y(v_1, \ldots, v_k)$  (respectively:  $P_x(v_1, \ldots, v_k) = P_y(v_1, \ldots, v_k)$ ) if and only if  $\langle v_i, v_{xy} \rangle = 0$  for  $i = 1, \ldots, k$ .
- 3. If K is a convex half-space, then any translate of K contains K or is contained in K (see [1])(1). More exactly:  $B_x(v_1, ..., v_k) \subset B_y(v_1, ..., v_k)$  (analogously:  $P_x(v_1, ..., v_k) \subset P_y(v_1, ..., v_k)$ ) if and only if  $y \notin B_x(v_1, ..., v_k)$ .
- 4. Two arbitrary convex disjoint sets can be supplemented to complementary convex half-spaces [3].
- 5. If a convex set C is the union of two convex disjoint sets, then the sets have the forms  $C \cap B_x(v_1, ..., v_k)$  and  $C \cap P_x(-v_1, ..., -v_k)$ , where  $x \in C$ , or the forms  $\Phi$  and C.
  - 6. A set K is a convex half-space if and only if one of the sets K, K' is



- 7. The sets of the form  $B_x(v_1, ..., v_n)$  are the only semispaces at x.
- 8. Any nonempty convex half-space is the convex hull of a sequence of points.

Proof. We show the first property. For n=1 it is obvious. Assume it holds for  $R^{n-1}$  and consider two complementary convex half-spaces A and A' of  $R^n$ . Since the cases  $A = \emptyset$  and  $A = R^n$  are trivial, we assume  $A \neq \emptyset$  and  $A \neq R^n$ . Consequently,  $\bar{A} \neq R^n$  because ri  $A = \text{ri } \bar{A}$  (Theorem 6.3 of [4], p. 46).

We shall show that  $\overline{A}$  is a closed half-space. Assume the contrary. Since A is convex,  $\overline{A}$  is convex too. Being convex and closed,  $\overline{A}$  is the intersection of a family of closed half-spaces ([4], Theorem 11.5, p. 99). Since  $\overline{A} \neq R^n$  and  $\overline{A}$  is not a closed half-space, the family contains closed half-spaces  $Q_1$  and  $Q_2$  such that  $Q_2$  is not a translate of  $Q_1$ . Hence  $A \subset \overline{A} \subset Q_1 \cap Q_2$  and  $A' \supset Q'_1 \cup Q'_2$ . Take  $a \in A$ . Since  $a \in Q_1 \cap Q_2$ , there exist  $a_1 \in Q'_1$  and  $a_2 \in Q'_2$  such that a lies in the segment joining  $a_1$  and  $a_2$ . From  $a_1 \in A'$ ,  $a_2 \in A'$  and  $a \notin A'$  we conclude that A' is not convex. The contradiction shows that  $\overline{A}$  is a closed half-space.

Similarly, A' is a closed half-space. Obviously,  $H = \overline{A} \cap \overline{A'}$  is the bounding hyperplane of  $\overline{A}$  and of  $\overline{A'}$ . Consequently,  $A = C_1 \cup (A \cap H)$  and  $A' = C_2 \cup (A' \cap H)$  where  $C_1$ ,  $C_2$  are open half-spaces bounded by H. From the inductive hypothesis we counclude that A and A' have the stipulated forms.

The other properties easily follows from the definition of sets  $B_x(v_1, \ldots, v_k)$  and  $P_x(v_1, \ldots, v_k)$ , and from the first property. Properties 2 and 3 are obvious. Recurrently, with the help of the classic separation theorem, we get property 4. It implies properties 5-7. The last property holds because any convex half-space is the union of a finite number of half-planes and since any half-plane is the convex hull of a sequence of points.

THEOREM 2. The family  $\mathcal{F}$  of all convex half-spaces of  $\mathbb{R}^n$  is a sequentially compact topological Fréchet space with respect to the limit of sets Lim.

Proof. Our theorem asserts that the following conditions hold:

- (1) if  $A_i \in \mathcal{F}$  for i = 1, 2, ... and  $\lim_{i \to \infty} A_i = A$ , then  $A \in \mathcal{F}$ ,
- (2) if  $A_i = A \in \mathcal{F}$  for i = 1, 2, ..., then  $\lim_{i \to \infty} A_i = A$ ,
- (3) if  $A_i \in \mathcal{F}$  for  $i=1, 2, \ldots$  and  $\lim_{i \to \infty} A_i = A$ , then for any subsequence  $A_{ij}$ ,  $j=1, 2, \ldots$ , we have  $\lim_{j \to \infty} A_{ij} = A$ ,
- (4) if the sequence  $A_i \in \mathcal{F}$ , i = 1, 2, ..., does not converge to  $A \in \mathcal{F}$ , then there exists a subsequence such that no subsequence of it is convergent to A,

<sup>(1)</sup> The question whether the inverse holds has been answered negatively by Dr. A. Prószyński with the help of the Zorn-Kuratowski lemma.

- (5) if  $A_{ij} \in \mathcal{F}$ ,  $\lim_{j \to \infty} A_{ij} = A_i$  and  $\lim_{i \to \infty} A_i = A$  for i, j = 1, 2, ..., then there are subsequences  $i_m$  and  $j_m$  such that  $\lim_{i \to \infty} A_{i_m j_m} = A$ ,
  - (6) any sequence of sets from  $\mathcal{F}$  contains a convergent subsequence.

It can be easily shown that conditions (2), (3) and (4) hold for arbitrary sets.

We shall show (1). Let  $A_i$ ,  $i=1, 2, \ldots$ , be convex half-spaces of  $R^n$  and let the limit  $\lim_{i\to\infty}A_i=A$  exist. Hence the limit  $\lim_{i\to\infty}A_i'=(\lim_{i\to\infty}A_i)'=A'$  exists. Since  $A_i$  and  $A_i'$ ,  $i=1, 2, \ldots$ , are convex, A and A' are also convex. Therefore, A is a convex half-space.

We shall prove (5). It results from (1) that the sets  $A_i$ ,  $i=1,\,2,\,\ldots$ , and the set A in (5) are convex half-spaces. Let  $A\neq\emptyset$  and  $A\neq R^n$ . By part 8 of Theorem 1 the set A is the convex hull of a sequence of points  $x_1,\,x_2,\,\ldots$  The complement A' is also the convex hull of a sequence of points  $y_1,\,y_2,\,\ldots$  Since  $\lim_{i\to\infty}A_i=A$ , there exists a number  $i_m$  such that  $A_{i_m}$  contains the points  $x_1,\,\ldots,\,x_m$  and does not contain  $y_1,\,\ldots,\,y_m$ . Since  $\lim_{j\to\infty}A_{i_mj}=A_{i_m}$ , there exists a number  $j_m$  such that  $A_{i_mj_m}$  contains the points  $x_1,\,\ldots,\,x_m$  and does not contain  $y_1,\,\ldots,\,y_m$ . Therefore

$$\begin{aligned} \{x_1, x_2, \ldots\} &\subset \lim_{m \to \infty} A_{i_m j_m}, \\ \{y_1, y_2, \ldots\} &\subset \lim_{m \to \infty} A'_{i_m j_m} = (\lim_{m \to \infty} A_{i_m j_m}). \end{aligned}$$

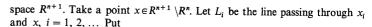
Since  $\lim_{m\to\infty} A_{i_m j_m}$  and  $(\lim_{m\to\infty} A_{i_m j_m})'$  are convex, the inclusions

$$\lim_{m \to \infty} A_{i_m j_m} \supset \operatorname{conv} \{x_1, x_2, \ldots\} = A,$$

$$(\lim_{m \to \infty} A_{i_m j_m})' \supset \operatorname{conv} \{y_1, y_2, \ldots\} = A'$$

hold. Thus  $\lim_{m\to\infty} A_{i_m j_m} = A$ . If  $A = \emptyset$  or  $A = \mathbb{R}^n$  the considerations are similar.

Finally, we recurrently show  $(6)(^2)$ . For  $R^1$  it is obvious. Assume (6) holds in  $R^{n-1}$  and consider the space  $R^n$ . The case where a sequence of convex half-spaces of  $R^n$  contains infinitely many of sets  $\emptyset$  or  $R^n$  is obvious. In the opposite case, select a subsequence  $A_i$ ,  $i=1,2,\ldots$ , of convex half-spaces different from  $\emptyset$  and  $R^n$ . Let  $x_i$  be a vertex of  $A_i$ ,  $i=1,2,\ldots$  The space  $R^n$  can be viewed as a hypersurface of an (n+1)-dimensional



$$C_i = A_i + L_i = \{a+b; a \in A_i, b \in L_i\}, i = 1, 2, ...$$

Obviously,  $A_i = C_i \cap R^n$ , i = 1, 2, ... Note that  $C_i$  is a convex half-space of  $R^{n+1}$  different both from  $\emptyset$  and  $R^{n+1}$  and that x is a vertex of  $C_i$ , i = 1, 2, ... Let  $u_i$  denote a unit vector of  $R^{n+1}$  perpendicular to the hyperplane bounding int  $C_i$  and directed towards int  $C_i$ . One can select a subsequence  $u_{ij}$ , j = 1, 2, ..., which converges (in the usual sense) to a unit vector u. Let  $G = B_x(u)$  in the notation of  $R^{n+1}$ . Obviously,

$$G \subset \underset{j \to \infty}{\operatorname{Lim}} \inf C_{i_j} \subset \underset{j \to \infty}{\operatorname{Lim}} \sup C_{i_j} \subset \overline{G}.$$

Consequently,

$$F \subset \underset{j \to \infty}{\operatorname{Lim inf}} A_{i_j} \subset \underset{j \to \infty}{\operatorname{Lim sup}} A_{i_j} \subset F \cup H,$$

where  $F = G \cap R^n$  and H is the bounding hyperplane of F. By the inductive hypothesis, a subsequence  $A_{ij_k}$ , k = 1, 2, ..., can be selected in such a way that the limit  $\lim_{k \to \infty} (A_{ij_k} \cap H) = K$  exist. Note that

COROLLARY 1. Let  $x \in \mathbb{R}^n$  any  $k \in \{1, ..., n\}$ . The families

$${B_x(v_1, ..., v_m); k \le m \le n}, {P_x(v_1, ..., v_m); k \le m \le n}$$

and the family of all convex half-spaces with the vertex x are sequentially compact topological Fréchet spaces with respect to the limit Lim.

COROLLARY 2. For any convex set  $C \subset \mathbb{R}^n$ , the family of all convex subsets D of C such that  $C \setminus D$  is also convex is a sequentially compact topological Fréchet space with respect to the limit Lim.

Theorem 3.  $\lim_{i \to \infty} B_x(u_i) = B_x(v_1, \ldots, v_k)$  (analogously:  $\lim_{i \to \infty} P_x(u_i) = P_x(v_1, \ldots, v_k)$ ) if and only if almost all vectors  $u_i$  are positive combinations  $u_i = \lambda_{i1}v_1 + \ldots + \lambda_{ik}v_k$  and  $\lim_{i \to \infty} (\lambda_{i,j+1}/\lambda_{ij}) = 0$ ,  $j = 1, \ldots, k-1$ .

Proof. The equalities  $\lim_{i\to\infty} B_x(u_i) = B_x(v_1, \ldots, v_k)$  and  $\lim_{i\to\infty} P_x(-u_i) = P_x(-v_1, \ldots, -v_k)$  are equivalent as the equalities of complementary sets. Therefore, we consider sequences of open half-spaces only. It is sufficient consider only the case where x=0.

For  $R^1$  the theorem is obvious. We assume that the theorem holds for  $R^{n-1}$ , and consider the space  $R^n$ .

1. Let  $\lim_{i\to\infty} B_0(u_i) = B_0(v_1, \ldots, v_k)$ . Denote by  $R^{n-1}$  the hyperplane

<sup>(2)</sup> The author thanks Dr. J. Cichoń for a considerable simplification of a previous version of the proof of (6).

bounding the half-space  $B_0(v_1)$ . We get

$$\lim_{i\to\infty}\left(R^{n-1}\cap B_0(u_i)\right)=R^{n-1}\cap \lim_{i\to\infty}B_0(u_i)=R^{n-1}\cap B_0(v_1,\ldots,v_k).$$

Let k=1. Then

$$\lim_{i \to \infty} (R^{n-1} \cap B_0(u_i)) = R^{n-1} \cap B_0(v_1) = \emptyset.$$

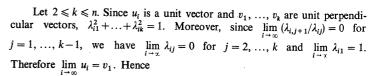
Since  $0 \in R^{n-1}$ , the sets  $R^{n-1} \cap B_0(u_i)$  are either open half-spaces of the space  $R^{n-1}$  or empty. If infinitely many of them are open half-spaces of  $R^{n-1}$ , then by Corollary 1 one can select a subsequence, with the nonempty limit Lim and therefore  $\lim_{i \to \infty} (R^{n-1} \cap B_0(u_i)) \neq \emptyset$ . The contradiction shows that almost all sets  $R^{n-1} \cap B_0(u_i)$  are empty. Hence for almost all numbers  $i = 1, 2, \ldots$ , the equality  $B_0(u_i) = B_0(v_1)$  and consequently the equality  $u_i = v_1$  hold. Let  $2 \le k \le n$ . Then

$$\lim_{n \to \infty} (R^{n-1} \cap B_0(u_i)) = R^{n-1} \cap B_0(v_1, \ldots, v_k) \neq \emptyset.$$

Hence almost all sets  $R^{n-1} \cap B_0(u_i)$  are nonempty. So almost all sets  $R^{n-1} \cap B_0(u_i)$  are open half-spaces of  $R^{n-1}$ . If  $R^{n-1} \cap B_0(u_i)$  is an open halfspace of  $R^{n-1}$ , then let  $u'_i$  denote a unit vector of  $R^{n-1}$  perpendicular to (n-2)-dimensional plane  $K_i$  bounding in  $R^{n-1}$  the half-space  $R^{n-1} \cap B_0(u_i)$ and directed towards the latter half-space. Since  $v_1$ ,  $u_i$  and  $u'_i$  are perpendicular to  $K_i$ , they lie in a 2-dimensional plane. Moreover,  $v_1$  and  $u_i'$ are perpendicular and the angle  $\prec (u_i, u_i)$  is acute. Hence there exist  $\lambda_{i1}$  and positive  $\gamma_i$  such that  $u_i = \lambda_{i1}v_1 + \gamma_i u_i'$ . From  $\lim_{i \to \infty} B_0(u_i) = B_0(v_1, \dots, v_k)$  we conclude  $\lim_{i \to \infty} u_i = v_1$ . Therefore  $\lim_{i \to \infty} \lambda_{i1} = 1$ ,  $\lim_{i \to \infty} \gamma_i = 0$  and almost all  $\lambda_{i1}$  are positive. Since almost all sets  $R^{n-1} \cap B_0(u_i)$  are open half-spaces of  $R^{n-1}$ , we can apply (omitting a finite number of them) the inductive hypothesis. We infer that almost all  $u_i'$  are positive combinations  $u_i' = \lambda_{i2}' v_2 + \ldots + \lambda_{ik}' v_k$  and (when  $k \ge 3$ ) that  $\lim_{i \to \infty} (\lambda'_{i,j+1}/\lambda_{ij}) = 0$  for j = 2, ..., k-1. Put  $\lambda_{ij} = \gamma_i \lambda'_{ij}$  if  $\lambda'_{ij}$ is defined. Therefore almost all  $u_i$  are positive combinations  $u_i = \lambda_{i1} v_1 + \gamma_i u_i'$  $= \lambda_{i1} v_1 + \ldots + \lambda_{ik} v_k \quad \text{and} \quad \lim_{i \to \infty} (\lambda_{i,j+1}/\lambda_{ij}) = 0 \quad \text{for} \quad j = 2, \ldots, k-1. \quad \text{Since}$  $v_1, \ldots, v_k$  are unit and perpendicular and since  $u_i'$  is unit,  $|\lambda_{i2}'| \leq 1$ . Hence  $\lim_{i\to\infty} (\lambda_{i2}/\lambda_{i1}) = \lim_{i\to\infty} (\gamma_i \, \lambda'_{i2}/\lambda_{i1}) = 0.$ 

2. Let almost all  $u_i$  be positive combinations  $u_i = \lambda_{i1} v_1 + \ldots + \lambda_{ik} v_k$  and let  $\lim_{i \to \infty} (\lambda_{i,j+1}/\lambda_{ij}) = 0$  for  $j = 1, \ldots, k-1$ .

If k=1, then  $u_i=\lambda_{i1}v_1$ , where  $\lambda_{i1}=1$ , and consequently,  $B_0(u_i)=B_0(v_1)$  for almost all numbers  $i=1,\,2,\,\dots$  Hence  $\lim_{i\to\infty}B_0(u_i)=B_0(v_1)$ .



(\*) 
$$B_0(v_1) \subset \liminf_{i \to \infty} B_0(u_i) \subset \limsup_{i \to \infty} B_0(u_i) \subset P_0(v_1).$$

Let  $R^{n-1}$  denote the hyperplane bounding the half-space  $B_0(v_1)$ . Since almost all combinations  $\lambda_{i1}v_1+\ldots+\lambda_{ik}v_k$  are positive, almost all combinations  $\lambda_{i2}v_2+\ldots+\lambda_{ik}v_k$  are also positive. Hence almost all sets  $R^{n-1}\cap B_0(u_i)$  are open half-planes of the plane  $R^{n-1}$ . Since the vector  $\lambda_{i1}v_1+\ldots+\lambda_{ik}v_k=u_i$  is perpendicular to the hyperplane bounding  $B_0(u_i)$  and since it is directed towards the side of  $B_0(u_i)$ , the vector  $\lambda_{i2}v_2+\ldots+\lambda_{ik}v_k$  is perpendicular to the (n-2)-dimensional plane  $K_i$  bounding the half-plane  $R^{n-1}\cap B_0(u_i)$  and directed towards it. Hence the vector  $u_i'=\alpha\lambda_{i2}v_2+\ldots+\alpha\lambda_{ik}v_k$  where  $\alpha=(\lambda_{i2}^2+\ldots+\lambda_{ik}^2)^{-1}$ , is unit, perpendicular and directed towards the side of  $R^{n-1}\cap B_0(u_i)$ . This is true for almost all numbers  $i=1,2,\ldots$  Obviously, almost all the combinations above are positive and  $\lim_{i\to\infty}(\alpha\lambda_{i,j+1}/\alpha\lambda_{ij})=0$  for  $j=2,\ldots,k-1$ . Hence, from the inductive hypothesis we conclude that the set  $\lim_{i\to\infty}(B_0(u_i)\cap R^{n-1})$  is equal (in the notation of  $R^{n-1}$ ) to  $B_0(v_2,\ldots,v_k)\subset R^{n-1}$ . This and (\*) imply

$$\liminf_{i\to\infty} B_0(u_i) = B_0(v_1, \ldots, v_k) = \limsup_{i\to\infty} B_0(u_i).$$

Therefore the limit  $\lim_{i\to\infty} B_0(u_i)$  exists and equals  $B_0(v_1,\ldots,v_k)$ .

The proof is complete.

It would be interesting to discuss decompositions of  $R^n$  onto m > 2 disjoint convex subsets.

## References

- [1] P. C. Hammer, Maximal convex sets, Duke Math. J. 22 (1955), pp. 103-106.
- [2] Semispaces and the topology of convexity, Proceedings of Symposia in Pure Mathematics, 7 (Convexity), pp. 305-316, Amer. Math. Soc., Providence 1963.
- [3] S. Kakutani, Ein Beweis des Satzes von M. Edelheit über konvexe Mengen, Proc. Imp. Acad. Tokyo, 13 (1937), pp. 93-94.
- [4] R. T. Rockafellar, Convex analysis, Princeton 1970.

Reçu par la Rédaction le 10. 3. 1980 Accepté par la Rédaction le 21. 9. 1981