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Families of convex sets closed under intersections, homotheties
and uniting increasing sequences of sets
by
Marek Lassak (Bydgoszcz)

Abstract. Modifying a condition in a characterization of the family of all convex sets
of Euclidean space, we study some variants of generalized convexity.

The considerations of this paper concern the n-dimensional Euclidean
space R Let e denote the metric of R". Our terminology follows [11], [13]
and [10]. Particularly, we use the definitions, symbols and properties of
convex half-spaces given in [10].

Analogically to the proof of Theorem 12 in [8], we can prove the
following characterization of classic convexity in R” (the characterization is
also a special case of the first part of Theorem 26).

The family of all convex sets in R” is identical with the smallest family %
of sets which contains the Euclidean unit ball B, = {x; e(x, 0) < 1} and
fulfils the following conditions:

(M) ¢ is multiplicative (i.e. closed under arbitrary intersections),

(U) € is closed under uniting increasing sequences of sets,

(H) % is closed under homotheties J? with arbitrary centres a and
positive coefficients A.

Modifying the condition “% is the smallest family which contains B,”,
we study some variants of generalized convexity.

In the first part we consider properties of an arbitrary family of convex
sets fulfilling conditions (M), (U) and (H). In the second part % is the smallest
family which contains a given family of convex half-spaces and fulfils
conditions (M), (U) and (H). In the last part we discuss the following
reinforcement of condition (U):

(U*) € is closed under uniting families of sets linearly ordered by
inclusion.

Here are examples of families of convex sets fulfilling conditions (M), (U)
and (H).

ExampLE 1. The family of d-convex sets. A set D < R" is said to be
d-convex (where d denotes the metric induced by a fixed norm in R") if for
any aeD, beR", ceD, the equality d(a, b)+d(b, c) =d(a, ¢) implies beD.
The bibliography and properties of d-convexity are presented in [1].
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ExampLE 2. The family of B-convex sets. A set is called B-convex fif,
containing any finite number of points, it also contains the intersection of all
closed balls (in the sense of a fixed norm in R”) containing those points [8, 9].
At the end of this paper we shall show that the family of B-convex sets is
identical with the smallest family of sets which contains the unit ball B and
fulfils conditions (M), (U) and (H).

1. Arbitrary families of convex sets satisfying conditions (M), (U) and
(H). Let % denote in this section an arbitrary family of convex sets of R"

which fulfils conditions (M), (U) and (H). The sets from the family % will be

called ¥-convex.

The following theorem shows that the family ¥ is closed under some
operations (see also part 1 of Theorem 4).

TueoreM 1. If C is €-convex, then the following sets are €-convex: any
translate of C, the closure C, the affine hull aff C, the relative interior ri C, the
interior int C, C—L={c—1; ceC, leL}, where L is an arbitrary direction of
recession(*) of C. If the sets C;, i=1, 2, ..., are G-convex, then(?) Lirilinf C;

and Lim C;, if it exists, are %-convex.
=0

Proof. We first notice that the translation by a vector w is the
composition J20J2 of two homotheties, where v,, = —2w. Therefore
¢-convexity of the translate C+w follows from (H).

We shall show the remaining properties for C # @ only, because for ()]
they are obvious.

Since the relative interior of any nonempty convex set is nonempty, we
can assume that there exists a point aeri C. Obviously, J2(C)e® for 1 > 0.

The equality C = ﬂ J%(C) implies that Ce%. From aff C = G J*(C) and
1>

m=1

IO cJAC)=...,, we get aff Ce¥. Since 11C = U Ji-im(C) and

JImW(C)c JIT1B(C) ..., we have ri Ce¥. Hence 1nt C belongs to %.
Let L= {ib; 1> 0}, b # 0, be a direction of recession of C. Obviously,
C—L= |J (C—A4b). Since the inclusion C—A;b = C—1,b holds if and only
AzZ0

if 4, <4,, we have C—L= U (C—mb). Hence C—L is %-convex as the
m=0

union of the increasing sequence of sets C~mbe¥, m = 0,1,...

() Le. L is such a half-line wuh the vertex O that L+a < C for arbitrary aeC (see [11]
p. 61). ’

G LmnnfC U ﬂ Cj, lesupC = ﬂ U C;, if L!mme C = Limsup C;, then

i=1j=i i=1 j=i

Lim C; = C ime
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Since C;e¥, i=1,2,..., we have () C;e%. From the inclusions
j=i

NCe N\ Ci=12,.. we get |J ) Ce®, ie that Liminf C

j=i j=i+1 i=1 j=i i~
is %-convex. If the limit le C; exists, then L1m C = Lunmf C;e%.

THEOREM 2. The set R" is %-convex. The empty set (D is %-convex (with
only one trivial exception when % = {R"}). If there exists a bounded nonempty
%-convex set, then any one-point set is %€-convex.

Proof. The set R" is ¥-convex as the intersection of the empty family
of ¥-convex subsets of R".

Let % 5 {R"}. Therefore a ¥-convex set A # R" exists. Let b¢ A. For
arbitrary xeR" the translate A+, is ¥-convex and x¢(4+v,,). Hence the
set (| (A+vy) =@ is %-convex.

xeR"

Let there exist 2 bounded nonempty %-convex set C. Let xeri C. Since

=0 Ji(0),

the one-point set {x} is %-convex. Consequently, any one-pomt set is
%-convex as a translate of {x}.

DeriNrTion 1. We denote by @-conv A the intersection of all sets from
the family ¥ which contain a given set 4 and we call it the €-hull of A.
Obviously, €-conv A is the smallest ¥convex set containing A.

THEOREM 3. The %-hull of an arbitrary set A = R" has the following
properties (where xe R" and 2 > 0):

JA(%-<onv A) = €-conv JA(A),
aff ¥conv A = %é-conv aff 4,
if A is an open set, then the set ¥~conv A is also open.

%-conv A o F-conv A,
int ¥<onv A > é-conv int A,

Proof. The inclusion %-convA > A implies the ones J2(%-conv A)
5 J%4(A4), %-conv A o A, aff $conv A >aff 4, int ¥-conv A >int A. By
(H) and Theorem 1 the left sides of the inclusions are %-convex. So

JA(%-conv A) > G~onvJA(4), €convA > F~conv 4, aff @-conv A > G-conv A4,
and int ¥-conv 4 > $¥-conv int A.

Now, we shall show the inclusion JZ(%-conv A) = @-conv JA(A).
Obviously, J%(4) = €-conv JA(4). So

A =T (JE(4)) = TH*(#-conv JE(4)).

The right side of the inclusion is %-convex by condition (H). Hence
@-conv A < JL*(¥~conv J(4)). Therefore

Ti(@conv A) < JA(J1* (#-eeqy JA(4))) = F~conv JE(A).

2 — Fundamenta Mathemat. 120.1
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If A is open, then from int #-conv 4 > %-convint A and from A
=int A we get int ¥-conv A > ¥-conv 4. Hence ¥-conv- 4 is open.

The proof is complete.

The intersection of all cones with the (included or excluded) vertex x
which contain a given set A is called the induced cone of A with the vertex x
and is denoted by cone, A. Obviously, cone, 4 is the smallest cone with the
vertex x which contains 4 and

cone, 4 = |J {x+Ai(y—x) for all 1> 0}.
yed

Obviously, xecone, 4 if and only if xeA.

DerFmviTion 2. If a cone is %-convex, then we call it a @-cone. We
denote by ¥-cone, 4 the intersection of all #cones with the vertex x which
contain a given set A = R" and we call it the induced #-cone of A with the
vertex x.

Obviously, ¥-cone, A4 is the smallest #-cone with the vertex x which
contains A.

TueoREM 4. Here are some properties of €-cones:

L. If C is G-convex and if Cu {x} is convex (particularly: if xeC), then
the induced cone cone,C is €-convex.

2. If {x}U%<conv A is convex (particularly: if xe%-conv A), then
cone, €-conv A > ¥-conv cone, 4.

3. If K is a cone with a vertex x, then ¥-conv K is a @-cone with the
vertex x.

4. The equality ¥-cone, A = $-conv cone, A holds for arbitrary A < R"
and xeR".

Proof. 1. From xeCu {x} and from the convexity of C U {x} we get
(Culx) cTi(Cuixh ...
Since J7{{x}) = {x}, we have
BRCui) =T uix}, m=1,2,..

Hencc JL(C) = J2(C) = ... because xeJi(C)ifand only if xeC, m =1, 2, ...
Since Ce%, we have J7(C)e¥, m=1, 2, ... Thus by the previous inclusions
oK

we have that ) J7(C) is ¥-convex.
m=1
Now, we shall show that cone, C < G JZ(C). Let uecone,C. If u = x,
m=1

then uecone, C implies ueC = |J J™(C). Let u # x. There are yeC and
m=1

A> 0 such that u = Jf+l(y—x). Let k > A be a natural number.
x+k{y—x)€J5(C). Since JE(C)u {x} =JL{CU{x}) is convex,
{x+70-%); 0<y <k} < JE(C) U {x).

Obyviously,
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Since u = x+A(y—x) and 0 < 1 < k, we have ueJ*(C). Hence ue G J(C).
m=1

20
Consequently, cone,C < () J7(C).
m=1
The inverse inclusion is obvious. Therefore

0
cone,C = |J J¥(C)
m=1
and consequently cone,C is %-convex. .

2. By the first part of the proof the set cone,%-conv A is -convex.
Hence the inclusion cone, %-conv 4 > cone, 4 implies that cone, ¢-conv A
> %-conv cone, A. )

3. If K is a cone with a vertex x, then JA(K) = K for any 1> 0. Hence
by Theorem 3 we get

J(#conv K) = $~conv JA(K) = ¥conv K

for any 1 > 0. Therefore ¥-conv K is a %-cone with the vertex x.
4. By the previous part of the proof #-conv cone, A is a %¥-cone with
the vertex x. Hence %-cone, cone, A = ¢-conv.cone, A and consequently

%-cone, A = ¥-cone, cone, A = ¥<onv cone, A
< ¥conv ¥-cone, A = ¥-cone, 4.

Therefore %-cone, A = #-conv cone, A4.
LemMma 1. For any convex set A < R" we have
A=) {cone.4; xeR"and the set 4 U {x} is convex}.

Proof. In the proof we denote by [a, b] the closed segment joining the
points a, b and by (a, b) the open segment joining a and b.

We can assume A # @ and A4 # R" because for the sets @ and R" the
lemma is obvious. It is sufficient to show that for arbitrary y¢ 4 there is an
x€R" such that AU {x} is convex and that y¢cone,A.

Case 1. The set AU {y} is convex. We put y =x. Since y =x¢4,
we have yé¢cone, A. Obviously, 4 U {x} is convex.

Case 2. There exists xe 4 such that (y, x) " 4 = . Such a point xe A4
will be called visible from y¢A. Since x is visible from y and since A is
convex, we have y¢cone, A. Moreover, 4 U {x} is convex because xeA.

Case 3. Cases 1 and 2 do not hold. In other words: AU {y} is not
convex and no point of the set 4 is visible from y. Since AU {y} is not
convex, and since A is convex, there exists ze A such that (z, y)\A4 # Q.
Since A4 is convex and no point of A is visible from y, for a point xe(z, y) we
have (x,z) = 4 and {x+A(y—x); 120} "4 = D. Hence y¢cone, A.

At the end we shall show that A U {x} is convex. By the convexity of A
it is sufficient to show the inclusion (v, x) = A for any veA.
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If v lies on the line L through x and z, then (v, x) = [v, z] U(z, x) = A.

Now, let v¢ L. Since v is not visible from y, thus (y, ) N4 # D. Let
te(y, ) nA. Obviously, [t,v] = A. The construction implies that there
exists a point we(z, ) n(x, v). From the inclusions [v, w] =4 and
(w, x) c conv ((x, z) U {t}) = 4 we get (v, ) = 4.

DeriNiTIoN 3. A family # = & will be called an intersection basis of the
family € (or shortly: an intersection %-basis) if any set from ¢ is an
intersection of sets from 4.

By Lemma 1 and by the first part of Theorem 4 we get

THEOREM 5. The family of all €-cones is an intersection €-basis.

Let W < R" be a closed convex body. By a regular point of W we
understand any point x of the boundary bd W such that there exists exactly
one hyperplane supporting W at x. The closed half-space bounded by the
hyperplane and containing W will be denoted by W(x).

THEOREM 6. If X is a regular point of a €-convex closed body W, then the
closed half-space W(x) is €-convex.

Proof. Obviously, W(x) = cone, W. From Theorem 1 and the first part
of Theorem 4 we infer that W(x) is ¥-convex.

THEOREM 7. Any -convex closed body W is an intersection of €-convex
closed half-spaces. More exactly: W = (| {W(x); x is a regular point of W}.

Proof. If W =R" then Wis the intersection of the empty family of
closed half-spaces.

Let W #R". Let z¢W. From int W+ @ we get (bd W) J(int W)
#@ for a number A, 0<i<1 Since J(int W) is open, the set
(bd W)~ J2(int W) is open in bd W, ie. it is open in the sense of the induced
topology in bd W. Since the set of regular points of W is dense in bd W ([2],

p. 88), there exists a regular point xe(bd W)nJ, (int W). From

JY*(x)eint W < int W(x) and 1/1 > 1 it follows that z¢ W(x). Since z¢ W
was an arbitrary point, W o () {W(x); x is regular point of W}. The inverse
inclusion is obvious.

THEOREM 8. Any %-convex closed set is the intersection of a family of
%-convex planes and %-convex closed half-planes.

Proof. Let 4 be a ¥convex closed set. If 4 = aff 4, then the theorem
is obvious. Let A # aff A. By Theorem 1 the set aff A is #-convex. The
family &, of %-convex subsets of the space aff 4 is a family of convex sets
which fulfils ‘the conditions (M), (U), and (H). Therefore we can apply
Theorem 7 to the family ;. We find that A4 is an intersection of #,-convex
(thus ¥-convex) closed half-planes of the plane aff A.

In the next theorem we give an analogue of the-classical separation
theorem: two opposite closed half-spaces bounded by a separating hy-
perplane (in the classical theorem) are replaced by two closed @-cones.

e ©
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THEOREM 9. If for %-convex sets C and D the equality 1i CnriD =@
holds, then there exist closed @-cones S > C and T > D such that riSnri T
= (). More exactly: there exist two %-cones as above which have a common
vertex (if aff C naff D s Q) or which are planes (if aff C naff D = Q).

Proof. Since the closure of any #-convex set is #-convex (and aff G
= aff G), it is sufficient to consider only the case where C and D are closed.

If aff C naff D = @, then we put § = aff C and T'= aff D. By Theorem 1
the planes S and T are %-convex. So they are %-cones.

If aff Cnaff D # @, then we consider two cases. Put

e(C, D) =inf {e(c, d); ceC and deD}.
Case 1; e(C, D) = 0. If a point xe C n D exists, then we take the cones
S =cone,C and T =cone,D. They are %¥-convex, closed, have x as

a common vertex, $ > C and T > D. Suppose ri S ~ri T # Q. Then there
exists a ray

L={x+4a; A>0}criSnri T.
Since L = 1i § = ri cone, C = cone, 1i C, there exists a 4; > 0 such that
{x+da; 0<i<M}criC.
Analogously, there exists a A, >0 such that
{x+4a; 0<A<}criD.

Hence 1i C nr1i D # @. The contradiction with the assumptions implies that

TSN T=0.

If CAD=0, then we recurrently define the following sets. Let
Co=C, Dy =D. There exists (see Lemma 4 in [9]) a common direction
L, of recession of C, and Do. If CouynDy = @, then we put
C, = Ce—1—Lg, Dy = Dy_1 — Ly, where L; is a common direction of recession
of C,.; and D,_, which is perpendicular to directions Ly, ..., L. We will
show that such a direction exists. Let IT,_, be the orthogonal complement of
the smallest subspace which contains Ly, ..., L,_. Hence thesets C,—y N 11—
and D, nII,_, are closed, nonempty, disjoint and

e(Cymy NIy, Dy NI y) = 0.

So they have a common direction L, of recession (see Lemma 4 in [9]).
Obviously, L, is perpendicular to Ly, ..., Ly and it is a common direction
of recession of C,_; and D,_;.

For some number m < n there exists a point xe C,, N D,,. By Theorem 1
the sets C,, and D,, are ¥-convex. Since L,, is a direction of recession of the
two sets C,,_;, D—; and since C,,—y "D,y = @, we have

(Cm—l'—'Lm) r\(Dm—l_'l‘m) = Q)
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Hence 1i C,, n1i D, = @. Moreover, C,, and D,, are closed. We have
shown that the assumptions of the theorem and of the first part of Case 1
are fulfilled for the sets C,>C and D, o D. Hence S=cone,C, and
T = cone, D,, are the required %-cones.

Case 2; e(C, D) > 0. Let ceri C. If a minimum 121 exists such that
e(J3(C), D) =0, then the assumptions of the theorem and Case 1 hold for
JA(C) and D. Hence there exist closed %-cones S and T with a common
vertex such that S 2 J*(C)>C, To D, tiSnti T# Q.

If e(J*(C), D) > 0 for any 1 > 1, then e(aff C, D) > 0. Let deri D. Since
aff C~aff D = (), there exists a minimum y > 1 such that e(aff C, J3(D))
=0, The assumptions of the theorem and Case 1 are fulfilled for aff C and
J3(D). So there exist closed ¥-cones § and T with a common vertex such
that Soaf Co>C, T>Ji(D)>D, ri Snri T=0.

THEOREM 10. %-convex convex half-spaces have the following properties:

L. If Belvy,...,0)€%, then B,(vy,...,v)e® and P.v, ..., )€,
i=1,...k ,

2 If Pi(vy,...,0)€%, then B,(vy,...,v)e¥ and P,(vy, ..., v) e,
i=1,.., k

3. This is a special case of the preceding properties.

4. The family of all -convex convex half-spaces is compact in the sense
of the limit of sets Lim.

5. The family of %-convex blunt convex half-spaces with a fixed vertex x
is compact in the sense of the limit Lim. This is also true in the cases where we
replace the word “blunt” by “pointed” or if we omit the word.

Proof. 1. Any translate of %-convex set B,(vy, ..., ;) has the form '
B,(vy,...,v) and it is @-convex. Consequently, B.(vy, ..., ), where -

1 <i<k, is ¥-convex as the union of the increasing sequence of %-convex

sets B, (v1, ..., D), where v,,, = (1/m)v;, m=1, 2, ... The set P.(vy,...,0),
where 1<i<k is %-convex as the intersection of . #-convex sets
B, (vy, .-, vy), where v,, = —(l/m)v;, m= 1,2,...

2. The argumentation is similar.

3. This is a special case of the preceding properties.

4. The conclusion holds for classic convexity (see Theorem 2 in [10]).
By Theorem 1 the family of ¥-convex sets is closed with respect to the limit
Lim. These two facts imply that the family of ¥-convex convex half-spaces is
a closed subfamily of the family of all convex half-spaces. Hence the family of
%-convex convex half-spaces is compact as a closed subfamily of a compact
family.

St T]his property results from the preceding property and from Corollary
1 in [10].

Let us recall that a convex subset F of a convex set A4 is called a face
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of A if, for any aeA and beA, from
(l—x)a+ab; 0 <a<1}nF#Q
it follows aeF and beF (see [11], p. 162).

TueoreM 11. The family € is closed under symmetries with centre O if
and only if € is closed under homotheties J* with arbitrary coefficients A #0
and arbitrary centres a. For such family € some additional properties hold:

1. Any face of an arbitrary 6-convex set is €-convex (with the exception
of the trivial case € = {R"}). ‘

2. The bounding (k—1)-dimensional plane of any %-convex k-dimensional
half-plane is %-convex, 1 <k < n.

3. The complement of an arbitrary %-convex convex half-space is also
-convex (with the exception of the trivial case € = {R"}).

4. The hyperplane supporting a $-convex closed body at a regular point
is %-convex.

Proof. Let % be closed under symmetries with centre 0. Moreover, by
Theorem 1, the family % is closed under translations. Hence & is closed
under symmetries with arbitrary centres acR". The homothety JZ, where 1
< 0, is the composition of the homothety J; * where —A >0, and of the
symmetry with the centre a. Hence by (H) we infer that % is closed under
homotheties J?, where 1 # 0.

The inverse implication is obvious.

1. Let F be a face of a %-convex set K. If F = @, then by Theorem 2
the face F is %-convex. Let F # @. Consequently, ri F #@. Let xeri F.
First we shall show three equalities: FnJ;!(F)=KnJ;'(K),
aff(FnJ;'(F))=affl F, F =K naff F.

Let peK nJ; Y (K). If p = x, then peF nJ;1(F). Let p# x and let r be
the point symmetric to p with respect to x. Obviously, reK. Since F is a face
of K and peK, reK, xeF, we have peF and reF. Hence peF and
peJ;1(F). Therefore FnJ;'(F)>KnJ: (K). The inverse inclusion is
obvious.

The sets ri F and 1i J7 ! (F) are open in aff F and contain the point x.
Therefore the set ri F ~ri J71(F) is nonempty and open in aff F. So

aff F = aff(ti F nri J; 1(F)) caff(FnJH(F)) cafl F.

Hence the second equality bolds.
Let yeKnaff F. If y=x, then yeF. Let y#x. Since xeri F and
yeaff F, there exists a zeri F such that

xe{(l~a)y+oz; 0 <o <1}

Thus from yeK, zeK and xeF we get yeF. Hence Knaff F<F. The
inverse inclusion is obvious.
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The three equalities imply that F = K A aff(K nJ; ' (K)). From Ke%
we get J;1(K)e%. Thus by (M) and Theorem 1 the face F is #-convex.

2. It is a special case of property 1.

3. %-convex convex half-spaces can have only the forms @, R,
B(vy, ..., 0) of Pi(vy, ..., ) (see [10], Theorem 1).

Since % # {R"}, by Theorem 2 the complementary sets @ and R" are
%-convex.

Let B, (vy, ..., y)€%. By Theorem 10 the set P,(vy, ..., 1) is ¥-convex.
Thus the set J;!(P,(vs, ..., v)) = Po(—vy, ..., =0 = R"\B,(vy, ..., 1) is
also %-convex.

Analogically, P,(vy, ..., ) €% implies R*\P (vy, ..., 0 )€%.

4, This follows immediately from property 2 and from Theorem 6.

2. Families fulfilling conditions (M), (U), (H) and generated by convex
half-spaces. In this section we shall use definitions, properties and symbols of
convex half-spaces from [10]. We denote by ¢ a family of convex half-spaces
of R* and by % the smallest family of sets which contains ¢ and fulfils
conditions (M), (U) and (H).

The above definition of % is correct. Indeed, the intersection of an
arbitrary number of families fulfilling conditions (M), (U) and (H) is a family
for which the conditions also hold. Moreover, there exists in R" at least one
family containing ¢ and fulfilling conditions (M), (U), (H), namely the
family of all convex sets in R". Therefore % exists as the intersection of all
families of subsets of R" containing ¥ and fulfilling conditions (M), (U), (H).
We also infer that any set from € is convex.

More important are the cases where % is a family of closed half-spaces
and where ¢ is a family of open half-spaces. In the first case ¥ is identical
with the smallest family which fulfils condition (U) and contains the family of
H-convex sets (see [1]) generated by ¢ in R

The following notation will be useful. If ¥ is an arbitrary family of
subsets of R", then ¥"; denotes the family of all translates of sets from ¥".
Analogically, ¥y denotes the family of all intersections of sets from ¥, ¥,
denotes the family of all unions of increasing sequences of sets from ", and
¥, denotes the family of sets ¥._1‘1£ A4;, where A;ev",i=1,2,...

TueoreM 12. If, starting from the family 4, we create in turn all trans-
lates, all intersections, all unions of increasing sequences of sets and again all
intersections, then we get the family 6. In other words: Grpyy =%. The
equality %yya = € also holds. '

) 0 o
Proof. If Lim 4, exists, then Lim 4; = Liminf 4, = |J ) Aj;. Hence
i—oo . i i~ i+ i=1 j=i
¥, < ¥ wy for an arbitrary family 7. Consequently, %r; < Frppn. From
the definition of ¢ and Theorem 1 we get the inclusion Dy = %.
Therefore to prove the theorem it is sufficient to show the inclusion

* ©
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% = Yrpu, ie. it is sufficient to show that %, is a family of convex sets
containing ¢ and fulfilling conditions (M), (U) and (H).

Obviously, @1y > % and %y, is multiplicative. Since the sets from %
are convex and since the family of all convex sets is closed under trans-
lations, intersections and the limit Lim, the sets from %, are also convex.

Note that any homothetical image (with an arbitrary centre and
a positive coefficient) of an arbitrary convex half-space is equal to a translate
of the convex half-space. Hence condition (H) holds for the family %r.
Consequently, (H) holds for %7, and also for %y ,,.

Finally we shall prove (U) for the family 1., Let V= (J V;, where
i=1

VieGrim, Vic Vipy, i=1,2,... We can assume V # R" since the case
V = R" is trivial. Let x¢ V. Since V;e %1y and x¢V], there exists a Z,e %y,
such that x¢Z;, o ¥V, i =1, 2, ... All members of the family %, are convex
half-spaces as limits Lim of sequences of convex half-spaces ([10], condition
(1) in Theorem 2). Therefore the sets Z;, i =1, 2, ..., are convex half-spaces.
From the sequence Z;, i=1, 2, ..., a subsequence Zij, j=1,2,..., can be
selected such that the limit }_{rg Zij = Z exists ([10], condition (6) in The-

~orem 2). Moreover, Z €%, ([10], condition (5) in Theorem 2). Obviously,

x¢Z > V. Thus V is the intersection of sets from the family %r;. So
VeGrium-

Remark 1. Each stage in Theorem 12 is necessary. For any of the
three first stages an example can easily be found. Example 3 will show that
the last stage cannot be omitted even in the case where % is the family of all
open half-spaces of the space R The family %, = %, is identical with the
family of sets called evenly convex sets ([4], see also [7]). € = Frpun is the
family of all convex sets because %rpyy contains the Euclidean ball B,
(compare the beginning of this paper). Example 3 will show that @y # €.

ExampLE 3. We shall construct a convex set T < R? which is not the
union of an increasing sequence of evenly convex sets (evenly convex sets in
R? are the intersections of open half-spaces of R2). Let C denote the Cantor
set and let E denote the set of the end-points of the removed segments in the
construction of C. We put

p, =(cos 2md, sin 2n)) = R?  for O0<A<I.

Let D= {p,; AeC}, F ={p;; AeE}, G=D\F. If acE and beE are the
end-points of a removed segment, then let P, denote the union of the one-
point set {3(p,+p,)} and of the open half-space containing the point (0, 0)
and bounded by the line through p, and p,. Obviously, P, is convex.
Therefore the intersection T of all such P, is also convex.

Suppose T= () T, where =T, and T, are evenly convex,
i=1
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i=1,2,... We shall show that TnF =@, i=1,2,... Suppose the con-
trary, ie. suppose T, N F # @ for an index k. Let p,e T, 7 F. Obviously, ¢ is
an end-point of a removed segment in the construction of C. Let d be the
other end-point of this segment. Hence §(p,+p)eT So $(p.+p)eT; for
an index j > k. From p,e T, we get p.€T;. Since p,e Tj, 3(p.+p) € T; and Tj is
the intersection of a family of open half-spaces, we have

%%(pc+pd)+%pce Ti < T

On the other hand, $-3(p.+p)+3p.¢ Py > T The contradiction implies
TAF=0,i=1,2,...

From TnF =0 and FuUG=D we get TnD=TnG;, i=1,2,...
Since F is dense in D and since TnD=TnG is a closed subset of
G =D\F, the set TN G is nowhere dense in D, i = 1, 2, ... Moreover, the

©

equality G = U (T A G) holds because G < T = U T<lUT

=1 i=1
one-point subset of F is nowhere dense in D and F is countable. Thus

. Also any

p=FuG=U {f}uU TG
feF i=1

is the union of countably many sets which are nowhere dense in D. This
contradicts the Baire theorem because D is a complete space as a closed
subset of R2.

Therefore the convex set T cannot be the union of an increasing
sequence of evenly convex sets,

The following theorem is of practical value for the description of %-
convex half-spaces and %-convex sets. For instance compare Example 4.

Tueorem 13. If all convex half-spaces from ¢ are blunt, then € = %ypy,
where L denotes the creating of the limits Lim of sequences of convex half-spaces
with a common vertex.

Proof. By Theorem 12 we have € = %y1y. S0 ¥ < Gy © Gppy = €.
Therefore it is sufficient to show that conditions (M), (U) and (H) hold

for the family %y;.). Condition (M) is obvious. Condition (H) can be shown
in the same way as in Theorem 12.

We shall show that (U) holds. Let V = U » where Ve %y, and

Vic ¥V fori=1,2,... Let x¢ V. Since Ve gn ‘M there exists a set Z¥e Yy,
such that x¢Z¥ oV, z—l 2, ... Since Z¥ belongs to %y, it is a blunt
convex half-space, i=1,2,. (compare [10], Corollary 1). If Z; is such a
translate of the blunt convex half-spacc Z¥ that x is a vertex of Z,, then the
mclusnon Zf = Z; holds ([10], part 3 of Theorem 1). Consequently,
x¢Z;> ¥ for i=1,2,... From the sequence Z;, i=1, 2, . ., we choose
a subsequence Z.,j=1, 2 ., convergent to a convex half-space Z with the
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vertex x (see [10], Corollary 1). Since Z,e%,., we have Z €%y (see [10],
condition (5) in Theorem 2). Obviously, x¢Z = V. Hence Vebru-

Tueorem 14. The family %1, and the family of all €-convex convex half-
spaces are intersection ¢-bases. If at least one nonempty convex half-space
belongs to ¥, then the above families are identical.

Proof. Obviously, %y, is an intersection basis of %y, By Theorem 12
we have 9p,y =%. So %y, is an intersection %-basis.

Sets from %y are ¥~convex convex half-spaces. The family of %-convex
sets (by Theorem 1) and the family of convex half-spaces (by Theorem 2 in
[10]) are closed with respect to the limit Lim. Therefore sets from %, are
%-convex convex half-spaces. Thus the family of all %-convex convex
half-spaces is also an intersection %-basis.

To end the proof it is sufficient to show that if at least one nonempty
convex half-space belongs to ¥, then any %-convex convex half-space G
belongs to %r,. From Theorem 1 in [10] we infer that G can have only the

forms B, (v, ..., ), Pc(vy, ..., 1), R" or Q.

Let G =B,(v,,...,)e%b. Since B.(vy,...,v)€F =% and
X¢B,(vy, ..., 1), there exists a set S€%y, such that x¢S o B,(vy, ..., 1,).
Therefore S as a convex half-space can have only the forms § = B, (v, ..., v))
or S=P.(vy,...,v), where k<I<n, and where x¢S > B,(vq,..., ).
Consequently, S1 cS8, ..., where S, =S+(1/m)v,, m —-1 2,. (compare
[10], part 3 of Theorcm 1). Moreover, S,e%,, =1, 2 . and

B.(vy, ..., ) = U Sp.- Since ¥y, is closed under the limit Lim, (U) holds

for %;,. Thus B (vl, e )EYL.

Let G=P.(vy,...,v0)e¥. By Theorem 10 the set B, (vq, ..., 1)) is
%-convex. By the preceding part of the proof, B,(vy, ..., v,)€%rL. Let T,
=B, (v;,..., ), Wwhere v, =—(I/muv, m=1,2, o Obviously,
P.(vy,...,00= () T,. Since T, T, >..., we have ()| T,=Lim T,.

m=1 m=1 m= o0
Now, from T,e%;, we get P.(vy,...,0)E% .. Consequently, Ge%r,
(compare [10], condition (5) in Theorem 2).

If G =R"e¥, then Ge%;,. Indeed, 4 contains at least one nonempty
convex half-space H; thus G =R” can be obtained as the limit Lim of
a sequence of translates of H.

If G=0Q¢c%, then ¥ +# {R"}. Let Ac% and 4 # R". The set G = () can
be obtained as the limit Lim of a sequence of translates of A.

TueoreM 15. The family of all %-convex blunt convex half-spaces is an
intersection %6-basis. More exactly: if Ce% and x¢C, then a %-convex blunt
convex half-space with the vertex x contains C.

Proof. Let P (vy, ..., 1) be a ¥-convex pointed convex half-space. By
Theorems 10 and 1 the half-spaces B,(v, ..., v,) and B, (v1, ..., v are
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#-convex, where v, = —(1/m)v,, m=1,2,... Obviously, P,(v1,..., 0
= [ By, (v1, ‘..,b,‘)'t‘ Moreover, the set R" is the intersection of empty
fan';il; of #-convex blunt convex half-spaces. Therefore any %-convex pointed
convex half-space is an intersection of #-convex blunt convex half-spaces.
From Theorem 14 we infer that the family of all #-convex blunt convex half-
spaces is an intersection %-basis. '

Let Ce% and x¢C. If C# @, then by the previous part there exists
B, (vs, ..., v) €% such that x¢B,(vy, ..., v) = C. Since x¢B,(vy, ..., 1), We
have B,(vy, ..., 1) 2 By(py, ..., ;) (see [10], part 3 of Theorem 1). Hence
B (vy, ..., vy) is the required %-convex blunt convex half-space. If C = @,
then @ is the required #-convex blunt convex half-space.

It is known ([6], Theorem 1.5) that the smallest intersection basis of the

- family of convex sets in R" consists of all semi-spaces, i.e. sets of the form

B.(vy, ..., v,) (the set R" is also added in [6], we omit the set R” because we

understand it as the intersection of the empty family of semi-spaces of R").
We generalize the result to the family of #-convex sets:

TuroreM 16. The family o of all maximal €-convex blunt convex half-
spaces from all those with a fixed vertex x (for all xeR") is the smallest
intersection €-basis.

Proof. First, we shall show that </ is an intersection %-basis. In
connection with Theorem 15 it is sufficient to prove that any $-convex blunt
convex half-space A is an intersection of sets from <. If A€, then this is
obvious. Let Aeé\&. If A has the form B,(vy, ..., v), then there exist
a number k,i <k <n, and unit vectors v;.y,

are perpendicular and that B,(vy, ..., v)e«/. We notice that

Bx(vlv sy vi) = Ol me(vh LERE Uk))

where v, =My, m= 1,2,... Since B, (v,...,v0)ed, m=1,2,..,
B,(vy, ..., 7;) is an intersection of sets from . If A = (), then a maximal
blunt convex half-space with a vertex x has the form @ or B (uy, ..., u).
The first case is obvious. In the second case 4 = @ is the intersection of
%-convex blunt convex half-spaces B, (uy, ..., u)€sZ, where Dyy, = —Muy,
m=1,2,...

We shall now show that &/ is the smallest ¥-basis. It is sufficient to

show that &/ < # for an arbitrary %-basis 4. Let Z< ./ be a blunt convex
half-space with a vertex x. Since x¢Z, there exists a Ce4 such that x¢C
> Z. By Theorem 15 there exists a #¥-convex blunt convex half-space T with
the vertex x such that T > C o Z. Since Z is a maximal blunt convex half-
space with the vertex x, we have T=C = Z. Hence Ze #.

Remark 2. In commection with Theorem 16 let us notice that
B,(vy; ..., v)e if and only if B.(vy,...,v)e% and if (when k <n)

..., U such that vy, ..., 1 -

* ©
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B, (vy, ..., %, U4 1)¢% for any unit vector Uy+y perpendicular to vy, ..., v,.
This results from Theorem 10. Moreover, O e+ if and only if € ={0Q, ;%"}.

TueoreM 17. For arbitrary A = R" and xeR" we have: xe%é-cone A if
and only if xe@<onv A. If xeb<convA and cone, A = cone, C xthen
xe%-conv C.

Proof. Let xe%-conv A. Since %-cone, A is ¥-convex and contains 4,
we have %-cone, A o @-conv A. Hence xe%-cone, A.

Let x¢%~conv A. By Theorem 15 there exists a ¥~convex blunt convex
half-space T with the vertex x such that T > %~conv A. Since T is a %-cone
with the vertex x and x¢ T, we have x¢®%-cone, A.

Let xe%-conv A and cone, 4 = cone, C. The equality implies €-cone, 4
= @-cone, C. From the first part of the theorem and from xe%<onv 4 we
get xe%-cone, A = %-cone, C. By the first part of the theorem x &%-conv C.

TueoreM 18. A hyperplane is €-convex if and only if both closed half-
spaces bounded by it are €-convex.

Proof. Let H be a hyperplane and let G and F be the opposite closed
half-spaces bounded by H.

If GeE¥ and Fe¥, then H=F N Ge¥%.

Let He®%. Let x¢G. Consequently, x¢ H. By Theorem 15 there exists
B, (v, ..., v) €% such that B (vy, ..., s,) > H. From Theorem 10 we infer
that P, (v,)e%. Obviously, v, is perpendicular to H. Hence G is a translate of

. Py(vy). So G is ¥-convex. Analogically, Fe%.

It is known ([S], pp. 225-226) that the family of all hypersubspaces of
R" is compact in the sense of the topological limit of sets Lt. An analogous
property holds for the family of #-convex hypersubspaces.

TueorEM 19. The family H# of all ¥-comvex hypersubspaces of R" is
compact in the sense of the topological limit of sets Lt.

Proof. Since # is a subfamily of the compact family of all hy-
persubspaces, it is sufficient to show that # is closed with respect to the
limit Lt. Let H;e#,i=1,2,...,and let H= Lt H,. Let G; and F; be two

opposite closed half-spaces bounded by H;, i=1,2,... Since H;e%, by
Theorem 18 we get G;e% and F;e%,i=1, 2, ... It is possible to select from
the sequence G, a subsequence G;,, j =1, 2, ... convergent, in the sense of
the limitlLim, (see [10], Corollary 1). Let G = },_1’1021 G,-j and

F = R"\G = R"\Lim G;, = Lim (R"\G,) = Lim F, .
jow o jow J jow Y

From H = Lt H; ; we infer that the sequence of the normal vectors of H
J=w

(directed to the sides of G,,) converges to one of the normal vectors of H.
Consequently, H is the bounding hyperplane of G and of F (compare
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Theorem 3 in [10]). Moreover, by Theorem 1 the sets G and F, and
consequently the sets G and F, are ¥convex. Thus from Theorem 18 we get
He%. Hence He . :

Remark 3. Some theorems, for instance 15, 18 and 19, are also true for
any %-convex subspace R™ = R". This results from the fact that the family of
all ¥-convex subsets of R™ is the smallest family of sets which fulfils
conditions (M), (U), (H) and contains a family %, of convex half-spaces of
R™ As 9, we can take the family of all #convex convex half-spaces of R™.
Indeed, intersections of #-convex convex half-spaces of R" with R™ are
%-convex convex half-spaces of R™. Thus by Theorem 14 all $-convex subsets
of R™ are intersections of %-convex half-spaces of R™.

The vector v, of the convex half-space B,(vy, ..., 1) or P,(vq, ..
will be called the first vector of the convex half-space.

THEOREM 20. If' 9 is the family of all open [analogically: all closed] half-
spaces of R", then € is the family of all convex sets in R". Generally: € is the
family of all convex sets in R" if and only if the set of the first vectors of
convex half-spaces from % is dense in the set of all unit vectors of R".

Proof. Let % be the family of all open half-spaces of R". Then ¥, con-
tains all sets of the form B,(vy,...,v,) (see Theorem 3 in [10]). Before
presenting Theorem 16 we said that the sets form an intersection basis of
the family of all convex sets. Hence % is the family of all convex sets.

Now, let ¢ be an arbitrary family of convex half-spaces of R" and let W
be the set of all first vectors of the half-spaces from %. Assume that W is
dense in the set W of all unit vectors of R™. Let B, (v;) be an arbitrary open
half-space. There exists a sequence vTeWy, m=1, 2, ..., convergent to v,.
Since there exists a $-convex convex half-space with the first vector v7 and
with a vertex x,, m=1, 2, ..., by Theorems 10 and 1 the open half-space
B, (v7) is €convex, m=1, 2, ... From the sequence B, (v]), m=1, 2, ..., it
is possible to select a convergent subsequence whose limit Lim has the form
B.(uy, ..., ) (see Corollary 1 in [10]). By Theorem 1 we have
B, (uy, ..., )€%. By Theorem 10 the open half-space B,(u,) is ¥-convex.
Moreover, u; = v, (see Theorem 3 in [107). Hence B, (v,)e%. Therefore any
open half-space of R" is ¥-convex. From the first part of the theorem we
infer that € is identical with the family of all convex sets.

Particularly, ¢ can be the family of all closed half-spaces in the above
considerations.

If Wy is not dense in W, then there exists a vector v; € Wwhich is not the
limit of a sequence from W. Therefore the family %, and so the families Yy,
%y, and Yy do not contain convex half-spaces with the first vector vy.
Consequently, %7y =% (compare Theorem 12) is not the family of all
convex sets of R". :

Uy

A family ¥ will be called generated by a family & of subsets of R"
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[analogically: by a set Z] if % is the smallest family which fulfils conditions
(M), (U), (H) and contains & [analogically: Z].

Tueorem 21. The following conditions are equivalent: € is generated by
a family of open half-spaces, % is generated by a family of closed half-spaces,
€ is generated by an open convex body, € is generated by a closed convex
body.

Proof. It is known ([13], Theorems 1.16 and 1.17, p. 13) that W = W
=1nt W for any closed convex body W and that 4 = int A = int 4 for any
open convex body 4. Obviously, int W is an open body and A4 is a closed
body. Moreover, from Theorem 1 we infer that We% implies int We% and
A€e% implies Ac%. Hence the last two cases of the theorem are equivalent.
Analogously, the first two cases are equivalent. Therefore it is sufficient to
show the equivalence of the second and the last cases.

If % is generated by a closed convex body K, then it is also generated by
the family of such closed half-spaces as in Theorem 7.

Now, let & be generated by a family of closed half-spaces G;, AeA. Let
B, be the Euclidean unit ball. By G} we denote the minimum translate of G,
which contains B,, AeA. Put K = () G%. Let 4y denote the family generated

AeA
by K. Since K €%, so 6 = %. It follows from the smoothness of B, and from
the construction of K that the bounding hyperplane of G¥ supports K at
a regular point. In virtue of Theorem 6 the half-space G¥ is $x-convex, e A.
Thus all half-spaces G,;, A€ A, are $x-convex. Consequently, ¥ < %. Hence
we get the equality 4 = %Y. Therefore the family % is generated by the closed
convex body K.

ExampLE 4. Let the family % be generated by the open convex cone
8 = {(x1, X3, x3); x}+x} <x3 and x3 > 0} = R3.
Consequently, % is also generated by the family
% = {x, cos a+x, sin a+x;3 > 0; 0 <« < 21}

of open half-spaces. From Theorems 13 and 16 of this paper and from
Theorem 3 of [10] it results that the smallest intersection -basis o consists
of all blunt convex half-spaces B, (vy, v5, v3) such that

0, = ((cos @)/n/2, (sin 0)//2, 1/,/2),

v, =(—sina,cos a,0) or v,=(sina, —cos a, 0),

v3 = (—(cos 0)/y/2, —(sin @)/y/2, 1/./2),

where 0 < a < 2m.
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TreoreMm 22. If € is closed under symmetries with centre 0, then

1. If R* = R™ are %-convex subspaces, then for any integer I such that
k <1< m, there exists a %-convex subspace R' such that REcR' < R™

2. Any %-convex plane of dimension k <n can be supplemented to
a ¥-convex plane of dimension k+1.

3. If for %-convex sets C and D the condition 1i C Ari D = holds, then
there exist closed @-cones S = C and T > D with a common vertex such that
riSnri T=0.

Proof. 1. By Theorem 15 and Remark 3 the set R* is the intersection
of a family of ¥-convex blunt convex half-spaces of R™ Let A be a member
of the family. Obviously, 4 is a %-convex closed half-space of R™. By
Theorem 11 the (m—1)-dimensional bounding plane H of A is ¥-convex.
Obviously, the subspace R™™?, being the translate of H is %-convex. From
AS5R*we get R™ ! SR~ If I=m—1, then R™' is the subspace we are
looking for. If I < m—1, then we repeat this procedure a proper number of
times. After m—! times we get the required subspace R

2. This follows from part 1 for m =n, [ = k+1 and from the fact that ¢
is closed under translations.

3. The case where aff Cnaff D # (@ follows from Theorem 9. Let
aff C ~aff D= @. We put T =aff D and P, = aff C, where k is the dimen-
sion of aff C. By the preceding property there exist #-convex planes
P, c P, ... c P, = R" Let mbethe smallest number for which P, " T’ # Q.
Hence P, N T = (. There exists a translate S,,_; = P, of P,,_; such that

Sp_1 N T+ ®. Let x€S,,-, n T Let § be a half-plane of P, which is bounded .

by S,-; and contains P,_;. By Theorem 18 and Remark 3 the cone § is
%-convex. Obviously, the cones S and T have x as a common vertex,
are closed and %-convex. Moreover, 1i SNri T=Q, S> P, 2af C>C
and T>D.

3. Domain finite families. Definition 1 of %-hull is correct for any
multiplicative family € of subsets of an arbitrary set X (not necessarily
X c R%. It is known ([12], see also Theorem 1.2 in [3], p. 45) that for such
a family % condition (U¥) defined at the beginning of this paper is equivalent
to the condition

(F) $conv A = |J{#<onv F; F = 4 and F is finite} for any 4 < X.

Any multiplicative family € of subsets of X fulfilling condition (F) or,
which is equivalent, condition (U*) will be called (after [6]) a domain finite
family.

family
%p=1{A; AcX and ¥conv G < A for any finite G = A}

is the smallest domain finite family containing €. The equality %p-conv K

LemMa 2. Let € be a multiplicative family of subsets of a set X. The

©
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= %-conv K holds for any finite K < X. The Jamily € is domain finite if and
only if it satisfies the condition

(F)) if A= X and if €-conv G < A for any finite G = A, then A.e‘é.

Proof. We first prove the last part of the lemma.

Assume that ¢ is domain finite. Let 4 < X and let the inclusion
%-conv G < 4 hold for any finite subset G = A. Let ae%-conv A4. Since ¥ is
domain finite, ae%-conv F for a finite F = A. Obviously, ¥-conv F c A.
Hence ae A. Therefore %-conv A c 4, and consequently 4 = ¥conv 4&¥.
Thus (F,) holds for the family %.

Assume that ¥ satisfies condition (F;). Let G = {g4, ..., g,,} be a finite
subset of the set

U{%-conv F; F = 4 and F is finite}.

There exists a finite set F; = A such that g;e%é-convF;, i=1,...,m. So
%-conv G = $-conv () F;={J{%-convF; FcA-and F is finite}.
i=1 .
Analogically, for G = . From (F,) we get that the set

U{%-conv F; Fc A and F is finite}

belongs to %. Hence the set is equal to ¥-conv 4 because it contains A and
is contained in' ¥-conv A. Therefore ¢ is domain finite.
Now, we consider the family %r. Let K; €%, AcA. Let G be a finite
subset of {) K,. Since G = K; and K, €%y, we have ¥-conv G = K, Ae 4.
Aed

Hence %-conv G = | K,. Consequently, | K;e%;. Therefore the family
Aed Aed :

%y is multiplicative and the %p-hull is defined.

If K = X is finite, then by the definition of ¥y and by the inclusion
K < %pconvK we get 6-conv K « ¢-conv K. The inverse inclusion results
from % = %p. Hence ¥p-conv K = $-conv K.

’ Let A = X and let %z-conv G < A for any finite G < A. Since G is finite,
%pconv G = F-conv G. Hence %conv G c A. Therefore Ae%p. Thus the
family %, satisfies (F,), and consequently it is domain finite.

Finally we shall show that %y is the smallest domain finite family
containing %. Let & > % be a domain finite family of subsets of the set X.
Obviously, the family # satisfies condition (F;). Therefore Frc< &.
Moreover, ¥r — Fr because ¥ < &. Hence 6y = F.

THEOREM 23. Let € be a family of convex sets of the space R" which
fulfils conditions (M), (U) and (H). Then the following properties hold for the
Jamily € = {A = R"; €-conv G < A for any finite G < 4}.

3 — Fundamenta Mathemat. 120.1
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1. 4y is a family of convex sets fulfilling conditions M), (U), (H).

2. For any denumerable set D = R" we have €p-conv D = ¢-conv D.

3. The following kinds of €-convex and @g-convex sets are identical:
convex half-spaces, convex half-planes, planes, closed sets, relatively open sets,
open sets.

Proof. 1. Let A be an arbitrary set of the family %y. Let a4, bed.
From the definition of %y we get A D %~conv {a, b}. Since all sets from ¢
are COnvex,

%conv {a, b} > {(1—w)a+ab; 0<a < 1}.

Thus A is convex. :

Condition (M) is shown in Lemma 2.

By Lemma 2 the family %5 is domain finite. Hence (U*) and con-
sequently, (U) hold for the family €.

Let A%z Let G be a finite subset of J}(4), where 1> 0. Then JYA(G)
is a finite subset of A. Since A%, so €-conv JY*(G) = 4. By the equality
in Theorem 3 we get

%-conv G = JA(JL(B-conv G)) = JA(6<onv JY*(G)) = JE(4).

Hence J%(4)e%;. Consequently, (H) holds for the family €.

2. Since € = %y, we have %-conv D = Gp-conv D for any D = R". We
shall show the inverse inclusion for the case where D is countable.

Let D = {x;, X5, ...}. Let

%
S = %pconv {xq, ..., x;}.

i=1
Since the set {x, ..., X;} is finite, from Lemma 2 we get
G-conv (X, ..., X;} =Fpconv {Xy, ..., X}, P=1,2 ...

Thus from (U) we get Se€%. Since € = %p, so Se%r. Now, the inclusion
§ 5 D implies that S > %p-conv D. The inverse inclusion is obvious. Hence
S = %pconv D. Since S€%, we have %p-conv De%. Consequently, from
D < %pconv D we get $-conv D = @p-conv D.

3. Since € < @y, it is sufficient to show that €x-convex sets of the given
form are €-convex.

Any convex half-space is the convex hull of a sequence of points ([10],
part 8 of Theorem 1). Hence any %-convex convex half-space is #-hull of
a sequence of points. Consequently, by the preceding part of the theorem any
@p-convex convex half-space is %~convex.

Analogically, %p-convex half-planes and planes are %-convex.

By property 1 of the theorem all theorems of the first part of the paper
can be applied to #y-convexity. From Theorem 7 we conclude that any
@p-convex closed set C is an intersection of %p-convex closed planes and
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half-planes. Since the planes and half-planes are #-convex, C is %-convex.

Let A be a relatively open and %p-convex set. By the first part of the
theorem A is convex. Hence A =r1i A (see [11], Theorem 63, p. 46). By
Theorem 1 applied to @p-convexity we get 4 e@p. Since 4 is closed, Ae%. It
follows by Theorem 1 that ri Ae%. Hence A€%. :

Particularly, any open %p-convex set is é-convex.

TueoreM 24. Any family € of convex sets of R* satisfying conditions (M),
(U) and (B) is domain finite.

Proof. We shall first show that any %convex come ScR? is
@-convex. As a convex cone with a vertex x (included or excluded) § is the
convex hull of one ray, two rays, or a sequence of rays with the vertex x. It
can also be empty or an one-point set. Any ray with the vertex x (included
or excluded) is the convex hull of a sequence of points. Hence S is the convex
hull of a countable set D. Since ¥p-convex sets are convex and since Se¥%r,
we have

§ = %p-conv § = ¥p-conv (conv D) = €rconv D.

By Theorem 23, part 2, we get the equality § = %-conv D. Consequently, the

eone S is #-convex.

From the first part of Theorem 23 it results that Theorem 5 can be
applied to the family . Hence any #p-convex set K = R? is the intersection
of a family of @p-convex cones. It was shown above that the cones are
@-convex. Therefore K 15 %-convex. Hence % o %;. Since the inverse in-
clusion is obvious, % = %5. By Lemma 2 the family % is domain finite.
Therefore % is domain finite.

The following example shows that in R3 (and in R" for n > 3) there exist
no domain finite families of convex sets satisfying conditions (M), (U)
and (H).

ExaMpLE 5. We shall construct a family £ of convex sets which fulfils
conditions (M), (U), (H) and does not satisfy condition (F,). We use the
notation of Example 4. Let & be a family of cones in R? which are unions of
the cone S (as in Example 4) and of countably many rays, with the included
vertex x, lying in the boundary of §. Let #r be the family of all translates of
cones from &. Put @ = € U Py, where % is the family defined in Example 4.

Obviously, the sets from & are convex.

Now, we shall show that (U) holds for the family 2. Let V€ &, where
VeV, for i=12,... A subsequence Vij, j=1,2,..., can be selected
such that all its sets belong to the family € or that all its sets belong to the
family &p. If Vije‘g, j=1,2,..., then

v=U ¥%=U Ve¥c2.
i=1 j=1 7
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Let V €¥r, j=1,2,... If almost all cones of the subsequence have
a common vertex, then

v=U%=U Wesrca.

In the opposite case

where X, is the vertex of V ,j=1,2,... From the form of the %-basis .o/ (in
Example 4) we get V. \{x }e% j —1 2, ... Therefore Ve¥ = 2. Hence
condition (U) holds for the family 9.

We shall show that the family & satisfies condition (M). Let " = 2. If
all sets from 4 are cones which belong to %y and have a common vertex,
then A € ¥y = Z. We now assume the contrary case. By the preceding
case we can assume that those sets from # which are cones from &r have
different vertices. We replace in #" any cone Ke4 n % which contains
another cone from " N &1 by the cone K \{x}, where x is the vertex of K.
Obviously, K\{x}e%¥. Denote the new family by #. From the construction
we infer that .% contains (besides some sets from %) only those cones from
&r which have different vertices and that no inclusions hold between the
‘cones. Moreover, A =& Let ¥ nLr=1{S,, led}. If ||4]| =0, then
NA =NLeb <. If ||4] >1 then

N S,= ﬂ (S:\{x; )%,
ded
where x; is the vertex of S;, Aed. So VL e¥ c %, and NA € 2. For ||4]|
=1 the family & Ny contains only one cone S. Let K = ((Z\{S}).
Obviously, K€%, Se¥r, VL =KnS. If ScK, then N¥ =SSPy <.
" Suppose the inclusion S < K does not hold. Since Ke%, so K is an
intersection of sets of the intersection basis &/ (as in Example 4). Therefore,
for, a set Zes/ such that Z o K, the inclusion S =Z does not hold.
Consequently, from the forms of Se.%; and Zeo/ we get SNZ
=(S\{t)nZ, where t is the vertex of S. Hence

NZ =SnK=(S\{thnkK.

Since S\{t}e% and Ke%, we have 1 L<cZ. So A €%. Therefore 7 is
multiplicative.

For any homothety with a positive coefficient the image of an arbitrary
ray is a translate of the ray. Hence it is also true for an arbitrary cone.
Therefore (H) holds for the family &7. Obviously, (H) holds for the family %.
Thus (H) is satisfied for the family 9.

Finally we shall show that (F,) does not hold for the family 2. Let 4
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=S\ L, where L = bd § is a ray with the vertex 0 excluded. For any Me.of
such that M > 4 we have M o L. Hence A ¢%. Moreover, A ¢ &. Therefore
A¢9. On the other hand, for any finite G 4 the set P-conv G is a subset
of a cone from the family & < ¥ < 2. So 9-conv G < A. Consequently,
condition (F;) does not hold for the family 2. By Lemma 2 the family 2 is
not domain finite.

LemMA 3. Let S be a dense subset of a convex relatively open set T < R".
If, for a convex half-space A, the inclusion A > S holds, then the inclusion
A>T also holds. .

Proof. For n=1 the lemma is obvious. We assume that it is true in
the spaces R, ..., R"! and consider the space R™

If aff T=R", then T is an open body, and consequently T =int T
=int T (see [13], Theorem 1.16, p. 13). Analogically, int A =int A.
Moreover, S = T because § is dense in T. Consequently,

AointA=int Aoint S=int T=T.

If aff T s R" then A naff T is a convex half-plane of the plane aff T By
the inductive hypothesis we get Anaff T> T Hence A>T

TueoreM 25. The smallest family € of sets which contains a given family
of convex half-spaces and. fulfils conditions (M), (U) and (H) is domain finite.

Proof. It is sufficient to prove the equality ¥ = % because by Lemma
2 the family % is domain finite. Obviously, ¥ < ¥r. We shall show the
inverse inclusion.

In the trivial case % = {R"} we have % = {R"}. Below we assume that
% contains a set different from the set R"

Let Ce%p. By Theorem 2 the sets @ and' R" are %-convex, and so we
consider only the case where C # R" and C # . To prove Ce% it is
sufficient to show that for any x¢C there exists a ¥-convex set ¥ > C such
that x¢V. '

We shall first prove that x ¢ %-cone, C. Suppose the contrary. Owing to
the first part of Theorem 23 we can apply Theorem 4, part 4, to the family
%r. We get

#p-cone, C = €p-conv cone, C.

Since (F) holds for % and since xe%p-conv cone,C, there exist points

Xg, ..., Xyecone, C such that xe%p-conv {x,, ..., X,,}. From Lemma 2 we
get

Gp-cony {Xq, ..., X} = G-cOnV {X;, ..., X,,}.
Therefore xe%-conv {xy, ..., X,}. Since x;,..., x,econe,C, there exist

Ay >0, ..., Ay > 0 such that
X =x+A(x;—x)€C, ..., Xp =X+ Ap(xy—x)eC.
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Obviously, cone, {Xi, ..., X = cone, {x, ..., x,,}. Hence Theorem 17 im-
plies xe%-conv {x}, ..., X,}. By Lemma 2 we have

@-conv (X}, ..., Xp} = Gpconv {x1, ..., X}

Consequently, xe%p-conv {xi, ..., x,}. Since C is %p-convex and
{x}, ..., Xt} = C, we have €p-conv {x}, ..., X} = C. Thus xeC. This con-
tradicts the assumption x¢C. Hence x ¢ $p-cone, C.

We now denote the cone #p-cone, C by G.

Recurrently, we shall define finite or infinite sequences of #-convex blunt
convex half-spaces B; and blunt convex cones G;.

We define B, and G,. From Theorem 1 applied to the family € we get
ti Ge%p. Consequently, from the last part of Theorem 23 we get i Ge%.
Since x¢1i Ge%, by Theorem 15 there exists a €-convex blunt convex half-
space B; o ti G with the vertex x. If By G, then B, is the required set ¥,
which ends the construction. In the opposite case we put G, = G\B;. So G,
=(R"\B;) " G. Since B, is a convex half-space with the vertex x, R"\B; is
also a convex half-space with the vertex x. Hence R"\B; is a convex cone
with the vertex x. Since G is a blunt convex cone with the vertex x,
G, =(R"\By)nG is also a blunt convex cone with the vertex x. From G,
= G\B, and from B; >1i G we get G, N1i G = @, and consequently G, lies
in the relative boundary of G.

We define B, and G,. We assume that the sets By, ..., Bi_; and
Gy, ..., G;—y are defined. Let

z

gy = i (Gil N...N Gik)’

where 1 <k <i—1and 1 <i; <...<i <i—1. Since the space R" is separ-
able, in any nonempty set Z; . there exists a dense countable set S, .
Let S be a countable dense subset of ri G. Let T; denote the union of S and
of all sets S;, ;- Since T; is countable, by Theorem 23 the equality ¥-conv T;
= @pconv T; holds. From G €%y we get G = €pconv T;, ie. G o ¥-conv T;.
Since x¢G, we have x¢é-conv T,. By Theorem 15 there exists a $-convex
blunt convex half-space B; > $-conv T; with the vertex x. If B; = G, then B,
is the required set V. In the opposite case we put G;= G\B;. Since
G; =(R"\B;)n G, we can show analogically (as for G,) that G; is a blunt
convex cone with the vertex x. Since B; o T;, we infer from Lemma 3 that B;
contains ri G and all sets Z;,_,. From G; = G\B,; and from B; > ri G we get
G;nri G =, and consequently G; lies in the relative boundary of G.
Moreover, G;NZ;,. i, = O for any Z; . .
" Tf in the above construction B;\G # @, i=1, 2, ..., then the sequences
B,, By, ... and G;, G3, ... are defined.
We shall show that the intersection of any n cones from the sequence
Gy, Gy, ... is empty. We suppose the contrary, ie. we suppose

* ©
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Gy, N...0Gy, # O, where 1 <i; <...<i,. Let d; denote the dimension of
the set G;; n...N sz, j=1, ..., n. Since the convex set G;_ lies in the relative
boundary of the convex set G, we have d; < n. From the construction of the
sets Gy, G, ... it follows that the convex set G;, N ... G;, lies in the relative
boundary of the convex set G; n...nG;_,. Hence d;<d;.; for
j=2,...,n. Moreover, d,>0 because G;l N... ”Gi,, # (. Therefore
n>dy>..>d, >0 Hence d, =0, ie. dim G n...0G; = 0. Since the set
G, n...n G;, is convex, it is a one-point set. But, on the other hand,
G;, N...NG;, cannot be one-point because it is the intersection of blunt
convex cones with the common vertex x. The contradiction implies that the
intersection of any n cones from the sequence Gy, G, ... is empty.

Thus from G;=G\B;, i=1,2, ..., we conclude that any point of G
belongs to all sets By; B,, ..., with the exception of at most n—1 of them.

Hence for any point aeG there exists an integer i, such that aeB; for
i > i,. Therefore G = Liim 7inf B;. Consequently, C = Limgl;nf B,. Since B;e%,

- Fpge)

i=1,2,..., by Theorem 1 the set Liminf B; is %-convex. Moreover, from
x¢B;, i=1,2,..., we get x¢Liminof B;. Hence Liminf B is the required
i—wm i—w

set V.
The proof is complete.

Finally, we get a theorem concerning B-convexity (see Example 2). The
last part of the theorem gives the solution of a problem from [9].

TueorEM 26. The following families of subsets of R" are identical with the
family €y of all B-convex sets: 1) the smallest family fulfilling conditions (M),
(U), (H) and containing the unit ball B, 2) the smallest family satisfying
conditions (M), (U), (H) and containing all closed half-spaces of the form B(x)
[analogically: all open half-spaces of the form int B(x)], 3) the smallest family
Sulfilling conditions (M), (U), (H) and containing all closed balls.

Proof. 1. The family of all B-convex sets fulfils conditions (M), (U), (H)
and contains the unit ball B. Moreover, the intersection of any number of
families of sets fulfilling conditions (M), (U), (H) and containing B is also
such a family. Thus there exists the smallest family " satisfying conditions
(M), (U), (H) and containing B.

Obviously, 2 is a subfamily of the family of B-convex sets.

-On the other hand, let A be a B-convex set. Owing to Theorem 21 we
can apply Theorem 25 to the family 4. Therefore 2" is domain finite. Thus
by Lemma 2 condition (F;) holds for /" Let G be a finite subset of A. Since
any closed ball belongs to ., the set J'-conv G is a subset of the
intersection of all closed balls containing G. Thus by the B-convexity of 4 we
have A -conv G < A. From (F,) we conclude that Aef".

2. This results from the first property and from the proof of Theorem
21.
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3. Let 4 denote the family of all open B-convex half-spaces. By the
preceding part of the theorem %j is the smallest family which satisfies con-
ditions (M), (U), (H) and the inclusion €5 > %. From Theorem 13 we get %,
=%ppu. Since ¥y =%, 9, is an.intersection basis of the family ;.
Consequently, we can repeat the proof of Theorem 18 in [9] for any natural
number n. We get the last conclusion of Theorem 26.

The proof is complete

The author would like to express his gratltude to Professor J. J.
Charatonik for valuable remarks concerning the final redaction of this and
of the preceding paper [10], which were both presented on December 10, 1979,
at the Topological Seminar in Wroctaw.
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Solenoids and inverse limits of sequences
of arcs with open bonding maps

by

P. Krupski (Wroctaw)

Abstract. The class " of inverse limits of sequences of arcs with open bonding maps is
characterized as the class of chainable continua with property K, with one or two end-points
and with arcs as proper subcontinua. Also it is proved that each monotone image of X, where X
is from A" or from the class of solenoids, is homeomorphic to X.

Introduction. Let us denote by " the class of inverse limits of sequences
of arcs with open bonding maps. '

In this paper we establish some analogies between solenoids and class
A, Next, we give a characterization of continua from %  as chainable
continua with property K, with one or two end-points and with arcs as
proper subcontinua. This answers Problem 2 in [7] and corresponds to the
characterization "of solenoids in [7]. Finally, it is shown that a monotone
image of X from X is homeomorphic to X and that the same holds for
solenoids. Thus both of these classes provide examples of the continua which
J. J. Charatonik asks about in [4].

Preliminaries. By a continuum we mean a compact, connected, metric
nondegenerate space. Denote by I the interval [0, 1]. For each integer 5 > 1
let w, denote the map of I onto I such that w,(i/s) = 0 if i is even, w,(i/s) = 1
if i is odd, where 0 < i < s and w is linear on each interval [i/s, (i+1)/s) for
0<i<s.

It is known from [9, Lemma 1, page 453 and Theorem 7, page 455] that
class o is topologically equal to the class of inverse limits of sequences
{I,f), where, for each i, f; =w, for some s. So, each continuum KeJ is
determined by a sequence of natural numbers (sy, S, ...) such that K
=invlim {I, w, }. We will denote such K by K(s;, 55, ..}

A chain (c1rcu1ar chain) is a finite collection of open sets {U,, ..., U,}
such that U;nU; # @ if and only if [i—j| < 1 (fi—jl <1 ori=1and j=m).
A subchain of a chain % between links U; and U; will be denoted by #(, j).

A chain %* ={U%, ..., U,%,} refines a chain %' = (U}, ..., U}} if there
is a function a: {1, ..., m}— , k} such that U? = Uy, for every i.

A chain %2 is of type s m a cham @ if U refines ¥ and if there is
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