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Upniversally measurable spaces: an invariance theorem
and diverse characterizations

by
Rae M. Shortt (Houghton, Mich)

Abstract. This article proposes two new developments: firstly, a proof of the invariance of the
universal measurability (um,) property over all metrizations generating the same Borel structure;
thus, while the property has hitherto only been stated for metric spaces, this invariance (Theorem 1)
allows for its application to a large class of measurable spaces (those we shall term “separable”);
secondly, we exhibit several characterizations of these wm. separable spaces: Theorem 2 generalizes
a result of Sazonov on perfect probabilities ; Theorem 3 regards the behaviour of measures on the
product of a wm. and a standard space; Theorem 4 involves the existence of certain types of
conditional probabilities ; finally, Theorems 5 and 6 address the problem of the existence of laws with
given marginals.

By separable space we mean a measurable space (X, %) with # countably
generated and containing singletons. We shall often suppress the notation of a o-
algebra, calling the space X alone and indicating its measurable structure with
B = B(X). If Ais a subset of a measurable space (X, %), we shall always
consider A as a measurable space with #(4) = {4 N B: Be#}; under this
convention, a subset of a separable space is again separable. Separability is also
preserved under the taking of countable products.

If X is a separable metric space with Borel g-algebra 4, then (X, %) is a
separable space. Furthermore, there is a well-known technique due to
Marczewski ([13] and [14]) by which one may introduce metrics on separable
spaces compatible with the measurable structure:

Lemma L. If (X, 4) is a separable space and € is a countable subset of %,
there is a metric d on X such that:

1) (X, d) is a totally-disconnected metric space with compact completion
(X, d) is totally bounded and therefore separable), .

2) & is the Borel a-algebra for (X, d); we say “d is a metric for (X, &)”
whenever this happens, : :

3 the elements of € are “clopen” (both closed and open in (X, d)), and

4) if € generates. B, then € is a base for the topology of (X, d).

A separable space (X, %) is standard if there is a metric d for X such that
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(X, d) is a complete separable metric (i.e. Polish) space. The isomorphism types
of standard spaces have been completely classified by cardinality: every
standard space X is isomorphic either with a finite set, the integers or to the
Cantor discontinuum according as the cardinality of X is finite, countably
infinite, or uncountable. See Cohn [6], p. 275.
Ll:MMA 2. Let X be a separable space; then:
1) if S < X with (S, #(S)) standard, then Se#(X),

2) if X is standard, the standard subsets of X are precisely the elements of

AB(X), and
3) the collection of standard subsets of X is closed under countable unions and
intersections.

Proof. See Cohn [6], pp. 275-276.

Now for some basic terminology from elementary measure theory (details
are to be found in many standard texts e.g. Halmos [8]). If (X, 4, P) is a finite
measure space, denote inner and outer measurefor P by P, and P*, respectively.
If 4 = X, we use the notations 4, and 4* to indicate (not necessarily unique)
elements of # such that A, < A < A* and P(4,) = P, (A4), P(4*) = P*(4); A*
is called a measurable cover for A. A subset A of X is P-completion measurable if

P, (A) = P*(A); A is universally measurable (u.m.) in (X, %) if it is P-completion
mcasurable for every probability measure P on (X, 4).

Suppose that /1 X — Y is a measurable function between measurable spaces
(X, #) and (Y, /) and that P is a finite measure on (X, ). We define the image
measure f(P) on (Y, /) by the rule f(P)(4) = P(f~*(4)). Given any A = X and
a finite measure P on (4, %(A)), define P, the measure induced by P on X by the
tule P(B) = P(B N A).If P is defined on a product X x Y, the measure P, on X
defined by Py(4) =P(AxY), AeB(X), is the marginal of P on X.

We shall use the terms “probability measure” and “law” interchangeably. If
§ is a Hausdorff topological space, a law P on (the Borel subsets of) S is tight if
for every & > 0, there is a compact K with P(K) > 1—¢. A separable metric
space (S, d) is universally measurable (u.m,) if it is universally measurable in its
completion §. If the Borel structure on S is standard, Lemma 2 implies that S is
Borel in § and so is um. ‘

Lemma 3. A separable metric space (S, d) is u.am. if and only if every law P on
S is tight.

Proof. Straightforward ; for details seec e.g. Varadarajan [20], p. 224,

Thus the u.m. property of (S, d) depends on the metric d only through its
topology; in fact, rather more is true.

THEOREM 1. Let X be a set and let d, and d, be separable metrics on X
generating the same Borel o-algebra. Let Y, and Y, be completions of X for these
respective metrics; then X is um. in Y, if and only if it is um. in Y,.

Proof. Assume that (X, d,)is u.m. and consider the identity map from X
to itself. By the Lavrentiev-Kuratowski Theorem (Kuratowski [107, p. 436), this
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extends to a Borel isomorphismg: E, — E, between Borel subsets E, of ¥; and
E, of Y,, each containing X. Let h: E, — Y, be g with extended range (h(x)
=g(x) for xeE,). Let P, be any law on Y,: we claim that X is P,-completion
measurable in Y,. If P}(X) =0, this is evident; assuming P¥(X)> 0, let Q, be
the restriction of P, to Borel subsets of E, (Q,(B) = P,(B) for Be B(Y,),
B < E,) and let h(Q,) be the image measure on Y;. Since P¥(X) >0, P,(E;) >0
and h(Q,)/P,(E,) is a law on Y;. Because (X, d,) is um, X is completion
measurable for this law in Y; ; thus there are Borel subsets 4 and B of ¥; with
A< X < B and h(Q;)(A) = h(Q;)(B). Then h™'(A) and h~*(B) are Borel
subsets of Y, with h™!(4) € X = h™'(B); finally, P,(h™*(4)) = Q,(h™'(4))
= h(Q2)(4) = h(Q;)(B) = 0z (h™*(B)) = P, (h™"(B) N E;) = P, (h™* (B)).

Thus the u.m. property is invariant under choice of metric, depends only on
Borel structure, and is therefore properly an attribute of separable measurable
(not metric) spaces. We shall call a separable space X u.m. if there is a metric d
for X for which (X, d) is wum.; this property is preserved under the taking of
countable products.

LemMa 4. A separable space X is um. if and only if for every law P on X,
there is a set Se%(X) with (S, B(S)) standard and P(S)=1.

Proof. Assume that X is um. let d be a metric for X and let X be the
completion of X for d. Given a law P on X, let P be the law induced by P on X.
Since X is u.m. in X and P*(S) = 1, there is a set S e & (X) with § < X and P(S)
= P(S) = 1. The relative structure on § is standard by Lemma 2,

Conversely, if Q is a law on X, then either Q*(X)=0, and X is Q-
completion measurable or P = Q*/Q*(X) is a law on X. If Se#(X) with
(S, #(8)) standard and P(S) = 1, then by Lemma 2, § € #(X) and @ (S) = Q*(S)
= Q*(X), and again X is Q-completion measurable. m

One characterization of u.m. subsets of the reals has been known for a
while : our invariance result (Theorem 1) allows us to generalize it to measurable
spaces: say that a separable space X is P-perfect if P is a law on X such that for
all real-valued Borel-measurable functions f: X — R, the image set f (X) is f (P)-
completion measurable ; equivalently (Sazonov [18], p. 222), whenever E < R
with f~'(E)e#(X), then E is f(P)-measurable.

THEOREM 2. A separable space X is P-perfect for all laws P on X if and only
if X is um.

Proof. Each separable X is Borel isomorphic with a subset X' of the real
line R. By a result of Sazonov [18], p. 245, X' is Q-perfect for all laws Q on X" if
and only if X" is wm. in R; the former occurs if and only if X is P-perfect for all
laws P on X, while the latter holds (via Theorem 1) if and only if X is a2 um.
space. =

Before embarking on other characterizations of w.m. spaces, we review a
basic property of analytic and co-analytic spaces. A subset A of a separable
space X is analytic if it is the measurable image of a standard space ; a separable
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space X is co-analytic if it is isomorphic with the complement of an analytic set
in some standard space.

LemMa 5. Let A be a subset of a separable space X. If (A, #(A)) is either
analytic or co-analytic, it is a u.m. space and is universally measurable in X.
" Proof. See Cohn [6], p. 281 (8.4.3).

The following reveals a Fubini-type theorem for u.m. spaces and will prove
useful in other characterizations.

TreOREM 3. Let X be a fixed uncountable standard space; a separable space
Y is um. if and only if every law P on X x Y has the following property: if P,
is the marginal of P on X, and A < X is such that P}(A) =1, then
P*(AxY)=1.

Proof. Suppose that Y is u.m.; taking P, as the marginal of P on Y, we
choose a standard subset § < Y with P,(S) = P(X xS) = 1. Now given U > 4 x ¥,
Ue#A(XxY), the set (X x N\U)N(X xS)e#(X xS) and so is standard;
define B = X \p((X x Y)\U) n(X x5)), where p: X x Y— X is projection onto
the first co-ordinate; then 4 < B. Now X \B is the measurable image of a
standard ‘space, and so B is co-analytic and, by Lemma 5, P,-completion
measurable in X, Choose Ce%(X) with C = B and P (C) = P¥(B) > P¥(A)
=1; then since C xS < U, P(U) = P(C ><S) P, (C) =1, proving P*(4 x Y)
=1 as desired.

Suppose that Y is not u.m. and let d be a metric for Y with completion Y.
Now X and Y are Borel-isomorphic (since Y is not wm, it must be
uncountable), and we identify X with Y. Put D = {(y, y): yeY} < ¥x Y, the
graph of the identity map from Y to ¥; hence De #(¥x Y). Also, f: Y~ ¥x Y
defined by f () = (y, ) is a Borel isomorphism of Y onto D, Since Y is not u.m.
in ¥, there is a law Q on Y with Q4 (Y) < Q*(Y); define a new law Q, on by
00(B) = Q(B N (Y*\Y,))/Q(Y*\Y,); then Q¥(Y) =1 and (Q0)y (Y) = 0. Since
Qf is a law on Y, we may put P =f(Q%) and obtain a law on ¥x Y whose
marginal P; on ¥ is just Qq; taking 4 = ¥\ Y gives P*(4) = 1, but P* (AxY)
=0, since (AxY)NnD=0. n

We now examine the connexion between um. spaces and the existence of
certain conditional probabilities.

BrackweLLs THEOREM. Let P be a law defined on a u.m, space X and let o/
be countably generated sub-c-algebra of #B(X). Then there is a real-valued
Junction P(x, B) defined for xe X and Be&%(X) such that

1) for fixed Be%(X), P(x B) is an sf-measurable function of x,

2) for fixed xeX, P(x,) is a law on B,

3) for every Ae s, Be.@ (X), j'P(x, B)dP(x) =

4
4) there is a set N e o/ with P(N) =
and Aesf.

P(AnB), and
0 such that P(x, A) =1 for xe A\N
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Proof. One is to be found in Blackwell [3], Theorem 5; although stated
there for analytic sets, the only property of these spaces made use of is that under
any metrization, every law P on X is tight, something we know to be true for
u.m. spaces (Lemma 3 and Theorem 1).

The function P(x, B) satisfying conditions 1 —4 of the preceding theorem
we term a proper conditional probability of P given < ;it is a strengthening of the
notion of regular conditional probability in which only conditions 1—3 are
assumed; information about regularity is to be found in several monographs:
Breiman [5], Bauer [1], for example; condition 4 is treated in Blackwell and
Ryll-Nardzewski [4] and Musiat [16]. If X —Y is a measurable function into
another separable space Y, taking & =f~!(#(Y)) = {f " *(B): Be&(Y)} gives
a proper conditional probability of P given f. We are now ready for another
characterization of u.m. spaces:

TuoeorReM 4. Let X be anuncountable standard space. A separable space Y is
u.m. if and only if every law on X x Y has a proper conditional probability given
p: X xY— X, the projection map p(x, y) = X.

Proof. If Y is u.m, then so is X x Y and Blackwell’s theorem applies.
Conversely, if Y has the property described in the theorem, we shall see that
Theorem 3 implies that Y is u.m. So let P be any law on X x Y with proper
conditional probability P((x, y), B} given p. For each fixed Be#(X x Y),
P((x, y), B)is p~!(#(X))-measurable, is constant on each set {x} x Y, x€ X, and
so is a function of x alone. We write P(x, B) = P((x, y), B). If P, is the marginal
of P on X, and 4 = X has Pf(4) =1, we wish to prove P*(AxY)=1. If
AxYcUe#B(XxY), let B={x: P(x,U)=1}; then BeH(X). There is, ac-
cording to part 4 of Blackwell's Theorem, a set Ne Z(X) with P(N x7Y)

=P,(N)=0 and P(x,CxY)=1 for CeH(X) and xeC\N; then
AN (X\N) < B. Finally,

P(U)=P((X\N)xY)nU) =

=P, (BA(X\N)>PHAN(X\N)=1. =

Finally, we come to the “marginal problem” ; before beginning, information
about universally null spaces is required. A law P on a separable space X is -
continuous if P({x}) = 0 for each xe X. A subset N of a separable space X is
universally null in X if for every continuous law P on X, P*(N) = 0. A separable
space X is universally null if there are no continuous laws on (X, %(X)). Clearly,
universally null spaces are uam. It is also easy to prove that a subset 4 of X is
universally null in X if and only if (4, %#(4)) is a universally null space. The
existence of such spaces was first established under the assumption of the
continuum hypothesis by Lusin '[12]. This assumption was removed by
Marczewski and Sierpinski [15]. Compare also Darst [7] and Kuratowski [10],
p. 502, where the set Z in Theorem 7 is universally null.

[ P(x, U)dPy(x)
X\N
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Lemma 6. If Q is a continuous law on a separable space X, then there is a
subset H < X with Q,(H)=0"and Q*(H) = 1.

Proof. By Lemma 1, we may assume that X is a subset of the unit interval
I = [0, 1] under the relative Borel structure ; then the law @ induced by Q on I is
again continuous. There is a Borel isomorphism h of I onto I such that h(Q) = 4,
where A is Lebesgue measure on I ; this follows, for example, from Halmos and
von Neumann [9], Theorem 2 or Royden [17], p. 337. Hence O*(h™*(Y))
=2%(Y) for all Y I, if Y< h(X), then Q*(h™'(Y)) = A*(Y).

From Sierpinski [19], Théoréme 2, there are disjoint subsets ¥; and Y, such
that ¥, U ¥, = h(X) and such that A*(Y;) = A*(¥;) = A*(h(X)) = 1. Hence
Q*(h (M) =Q*(h (X)) =Q*(X) =1; set H=h"'(Y}). m

Say that a triple (X, Y, Z) of separable spaces has property (V) if whenever
P,, and P, are laws on X xY and YxZ, respectively, having a common
marginal P, on Y, there is a law P on X x Yx Z with marginals P,, and P,,.

LemMa 7. If X, Y, and Z are all um., then (X, Y, Z) has property (V).

Proof. Since X xY and YxZ are u.m. there are respective proper
conditional probabilities P, and P, of P,, and P,, given the projection maps
py: XxY—-Y and p,: YxXZ — Y (Blackwell's Theorem). Then a law P on
X xYxZ may be defined with

P(4xBxXC) =[Py (y, AX V) P,(y, YxC)dP,(y)
B

for Ae#(X), BeB(Y) and Ce#(Z): (cf. Berkes and Philipp [2], Lemma A.l;
for the case of an arbitrary (finite) number of factors, Vorob’ev [21] has results
for discrete distributions). m

Another characteriz‘ation of uw.m. spaces is forthcoming, this time using
property (V):

TuEOREM 'S. A triple (X, Y, Z) has property (V) for all separable Y and Z if
and only if X is um.

Proof. Suppose that X is u.m. and that the prospéctive marginals P,,, P,

and P, are given. Choose metrics for ¥ and Z with completions ¥ and Z. Let
Py, P,. and P, be the induced laws on X x ¥, ¥x Z and ¥. Then P,, and P,, have
a common marginal P, on ¥. By Lemma 7, there is a law P on X x ¥x Z with
marginals P,, and P,.. Now P},(YxZ) =1, so that Theorem 3 applies to show
that = P*(X xYxZ)=1. Thus Q=P* is a law on XxYxZ
It is easy to check that P,, and P, are the marginals of Q,

N Conversely, if X is not u.m., then choose a metric for X with completion
X. As in the proof of Theorem 3, there is a law Q on X with 0*(X) =1 and
0,(X)=0; also, if D ={xx: xeX}<cXxX and D,={(x, x):
xeX\X} = X x(X\X), then D;e#B(XxX) and D,e(Xx(X\X); if
Sir XX xX and fp: (X\X)> X x(X\X) are defined by the rule
Ji() =(x, %), f2(x) ={x, x), they are Borel isomorphisms onto their images D,
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and D,. Put P, =f£,(Q* on X xX and P, =/f,(Q*) on X x(X\X); then P,,
and P,, have a common marginal Q on X, but there is no law P on X xX x
x(X\X) with P,, and P, as marginals: if there were, P(Dy x(X\X))
=P, (D)) =1 and P(X xDy)= P, (D;)=1, but (Dy X(X\X)) N (X x Dy)
=0. = ‘

THeoREM 6. A triple (X, Y, Z) has property (V) for all separable X and Z if
and only if Y is universally null.

Proof. Assume that (X, Y, Z) has property (V) for all X and Z, but that Y
is not universally null. By virtue of Lemma 6, there is a continuous law P on Y
and a subset H of Y with P*(H) =1 and P, (H) =0. Put &/ =(4(Y), H), the
o-algebra generated by #8(Y) and the set H; then &/ consists of all sets of the
form (A, f\H)Q(Az N(Y\H)), Ay, A;€%(Y), and the rule

0((4y A H)U (4, n(Y\H))) = aP(A)+(1 —0) P(4), 0<a<l,

defines an extension of P to a law Q on (Y, &), (see Y.0§ and Marczewski [11],
Theorems 2 and 4). Suppose 0 < a; < o, < 1and let Q; and Q, be extensions of
this form taking o = a for O, and a = a, for Q,. Now take X = Z = (Y, &),
and consider the product X x YxZ.

Define

D, ={(y, y): yeY}= XxY,
Dy ={(y,)): yeY} = YxZ,
Dy ={(y,y»): yeY} c X xYxZ

and fanctions f,: (Y, ) =Dy, fa: (Y, o) =Dy by fi()) =£2() =(», )) and
fi: (Y, )= Dy by f3(0)=(,», ) Then D, and D, are members of
o x B(Y), #(Y)x.« and f, f, and f; are isomorphisms of (Y, ) onto Dy, D,
and D,. Consider also the laws f;(Q;) on X x ¥ and f,(Q,) on YxZ: these have
a common marginal on ¥, namely P, but there is no law R on X x Yx Z with
marginals f,(Q,) and f,(Q,): if there were, a; = 0, (H)=/1(Q)(HxY)
= R(HxYxZ) = R((HxYxZ) D) =R({(X x Yx Hyn D3) = R(X x Yx H)
= (Q)YxH)=Q,(H) =05, a contradiction. .
" Now assume that Y is universally null ; then for any separable X and law P
on X x Y, there is a countable set C < Y such that if p(P) is the marginal of P on
Y, p(P)(C) = 1 and p(P){y} > Ofor each yeC. Then if ye ¥ and Be B(X x Y),

if yeC,
if y¢C

Bn(X P(X
PO, B)={£EB)0( x {yDYPX x {y})

defines a proper conditional probability of P given the projection map p:
X xY— Y. As in the proof of Lemma 7, the existence of such a P(y, B)

establishes property (V). =
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Many thanks are due Prof. Richard M. Dudley for helpful conversations
and comments, and E. Grzegorek, who improved the original statement of
Lemma 6.
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Correction to my paper “Topological contraction principle”
(Fundamenta Mathematicae 110 (1980), pp. 135-144)

by

Pedro Morales (Sherbrooke)

The implication (ii) =>(iv) of Theorem 4.1 is false. The proof was taken
from an erroneous argument of Meyers [15, p. 74]. Claiming a counter-
example, Dr. F. Guénard first pointed out the error to me. Subsequently, the
paper “A converse to the principle of contracting maps” by V. 1. Opoitsev
[Russian Math. Surveys 31 (1976), pp. 175-204] confirmed this and also
afforded me a means of correction. We give a corrected version of Theorem
4.1.

Let X =(X, %) be a uniform space and let fi X — X. If u is a fixed
point of f, we say that u is stable if, for every Ue%, there exists V
= V(U)e% such that f™(V [u]) = U[u] for every n=1, 2, 3,... This means
that the set {f™: n=1, 2, 3,...} is equicontinuous at u. Using the arguments
of the first and second paragraphs of the proof of Lemma 2.1 (where the
hypothesis is merely that f is contractive) we show easily that, if f is
contractive, then the set {f™ n=1, 2, 3,...} is uniformly equicontinuous, so
every fixed point of f is stable. If u is a fixed point of f and li,r'n S"(x) =u for

all xe X, we say that u is iteratively realizable. The corrected version of
Theorem 4.1 is the following: ‘

4.1, TueoreM. Let X be a compact Hausdorff space. For a continuous
Sfunction f: X — X the following statements are equivalent:

(i) f is an occasionally small contraction.

(i) f has one and only one fixed point which is stable and iteratively
realizable.

(iii) The filter with base % = {f"(X): n=1, 2, 3,...} converges.

Proof. (i)=(ii). This follows from Theorem 1.1 and the preceeding
remark.

(ii) == (iii). Let u be the fixed point of f and let # be the filter on X
generated by 4. Using a refinement of the argument of Opoitsev in his
Lemma 2.2, p. 182, we will show that & —u.
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