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CoROLLARY 3.6. Let (X, T) be a point-transitive flow where X is a sphere,
real or complex projective space, or lens space (of dimension greater than one),
and Tis a connected abelian Lie group. Then (X, T) satisfies all conclusions of
Theorem 2.15 and Proposition 3.5.
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Connectivity properties in hyperspaces
and product spaces

by -
Charles Dorsett (College Station, Tex.)

Abstract. In this paper connectedness, local connectednesg, and point-wise Jocal connected-
ness and connectedness im kleinen in hyperspaces of product spaces and product spaces of
hyperspaces are investigated and the relationships between these comnectivity properties in
hyperspaces of product spaces and product spaces of hyperspaces are determined. In order to
include as many spaces as possible, the results in this paper are stated and proved for Rg and R,
topological spaces. .

1. Introduction. One of the earliest results about connectivity properties
in hyperspaces, due to Wojdyslawski [7] in 1939, is that for a metric
continuum (X, T), (2%, E(X)) is locally connected (Lc.) iff (X, T) is lc. Since
1939 mathematicians have continued the investigation of connectivity prop-
erties in hyperspaces. In this paper connectivity properties in hyperspaces of
product spaces and product spaces of hyperspaces are investigated. In order
to include as many spaces as possible, the results in this paper are stated and
proved for weak topological spaces. Listed below are definitions and
theorems that will be utilized in this paper.

DeFinition L1 A space (X, T) is R, iff for each 0e Tand x€0, {x} =0
[11.

DeriNrTioN 1.2. A space (X, T) is Ry iff for each pair x, yeX such that
m ;ém, there exist disjoint open sets U and V such that {x} = U and
yeviil

DerinmioN 1.3, Let (X, T) be a space, let 4 < X, and define 2%, C(X),
K(X), 8(A), and I(A) as follows: 2¥ = {F = X] F is nonempty and closed},
C(X)={Fe2X F is connected}, K(X)= {Fe2X| F is compact}, S(A)
= {Fe2¥ F <A}, and I(4) = {Fe2X| FnA+# Q}. Then the Vietoris top-
ology on 2%, denoted by E(X), is the smallest topology on 2¥ which satisfies the
conditions that if GeT, then S(G)eE(X) and I(G)e E(X) [6].

Tueorem 1.1. The product of an arbitrary family of nonempty topological
spaces is Ro iff’ each factor space is Ro 4]

TueoreM 1.2. If (X,T) is Ry, then (X, T) is Rq [S].

TugoreM 1.3. If (X, T) is Ry, then the following are equivalent: (a) X is
connected, (b) 2% is connected, and (c) K(X) is connected [2].
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TuaeoreM 1.4. If (X, T) is Ry, and BeC(X), then 2¥ is lc. (connected im
kleinen (c.i.k)) at B iff for each UeT such that B < U, there exists an open
connected set V such that B < V< U “(for each UeT such that B < U, the
component of U containing B contains B in its interior) [2].

TueoreM 1.5, If (X, T) is Ry and M e?2X, then the following are equival-

ent: (a) X is Lc. (cik) at each element of M, (b) 2% is lc. (c.ik) at each .

 element of C(M), (c) 2% is Lc. (c.ik) at each element of K(M), (d) K(X) is Lc.
(cik) at each element of K(M), (¢) K(X) is Lc. (c.i.k) at each element of

{x}| xeM}, and (f) 2% is Lc: (cik) at each element of {{x}| xeM} [2].

TueoreM 1.6. If (X, T) is Ry, and C is a component of X, then the
following are equivalent: (a) 2¥ is Lc. at C, (b) C is closed open in X, and (c) 2¥
is cik. ar C [2].

TueoreM 1.7. If (X,T) is Ry and C e K(X)NC(X), then 2X is Lc. (c.ik.) at
C iff K(X) is lec. (c.ik) at C [2].

TreoreM 1.8. If (X, T) is Ry, BeK(X), and 2¥ or K(X) is lLc. (c.ik) at
each component of B, then 2X’and K(X) are lc. (cik) at B [2].

TreOREM. 1.9. The product of an arbitrary family of nonempty topological
spaces is R, iff each factor space is R, [5].

TueoreM 1.10, If (X, T) is R, and AeK(X), then the following are
equivalent: (a) 2X is Lc. at A, (b) 2X is Lc. ar each component of A, (c)ifCisa
component of A -and UeT such that C c U, then there exists an open
connected set V such that C = V< U, (d) K(X) is Lc. at each component of A,
and () K(X) is Lc. at A [3].

TueoreM 1.11. If (X, T) is locally compact R, and AeK(X), then the
Jollowing are equivalent: (a) K(X) is c.ik. at A, (b) K(X) is cik. at each
component of A, (c) for each component C of A, if Ue T'such that C < U, then
the component of U containing C contains C in its interior, (d) 2X is cik. at
each component of A, and (¢) 2% ‘is cik. ar A [3]. R

2. Connectivity properties and fprodbét sﬂacéé; The first résult follows
from Theorem 1.1 and Theorem 1.3. ‘

Cororrary 2.1. If (X,, T,) is nonempty and R, for all ac A, then the
Jollowing are equivalent: (a) (X,, T,) is connected for all ae A, (b) 2‘“){1 is
connected, (¢) K([]X,) is connected, (d) [] 2™ is connected, and (e) TIkx,)
is connected. aEA “ ' “

THEOREM 2.%.XF or each ne A let (X,, T,) be a nonempty R, space and ler
C,eC(X,). If 24 “is Le. (cik)at []C,, then EZX“ is Le. (cik) at {W,},.,,

acd
where
C, ifa€F,
Wo=i% Geer

icm°®
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and Fe.of = {B < Al B> {acA| X, is not connected}}. and {ne A| X, is not
connected} Is finite.
Proof. For each feA let Py: J] X, — X, be the projection function.
Il X, aeAd .
Consider the case that 2°*4 “is le. at [T C.. Let fe4 and let Oe T; such that

agAd

C; = 0. For each aeA let

B = 0 if o = ﬂ,
=TX,  if a#p.
Then [] C, <[] B,, which is open in [] X,, and by Theorem 1.4,

agA o€l aed

there exists an open connected set ¥ such that [ C, =7 <[] B,. Then

aeAd acA
Cy = Py(#) =0, where Py (¥ is' open connected. Hence, by Theorem 14,
2" is lc. at C,. Also, since P, (") = X, except for finitely many ae4, then
F, = {xeA| X, is not connected} is finite. Let Fe.dx. For eachacA—F, X,
is a closed open component and by Theorem 1.6, 2°* is lc. at .?(a = W,, for
each aeF, 2™ is lc. at X, = W,, and for each ochA—Fl, X, is connected
and b; Theorem 1.3, 2% is connected. Therefore 2* is lc. at W, for all o €A
and 2™ is connected except for finitely many a4, which implies [12™is

aeAd
lc. at {W,}eea- .
By a similar argument, the theorem follows for cik.
THEOREM 2.2. For each o € A let (X,, T,) be nonempty R, and let M, 2™,
Then the following are equivalent: (a) X, is lc. (cik) at each element of M,
for all ue A and X, is connected exceiztfor finitely many a € A, (b) Dg{ X, is Le.

X,
(cik) at each element of [| M,, {c) 24 " s lec. (c.ik) at each element of
acd

(1 ™l xeM, for all aed}, @ K([] X, is le (cik) at each

aed xed

element of {[] Tx}| % €M, for all acA}, (e) K] X,) is le. (cik) at
aed agd

1 X,
each element of K(I] M), (© 2 " s le. (cik) ar each element of
aed

K] M., (1;)‘2“‘2"(m is Le. (cik) at each element of C(JI M), () [] 2%«

xgAd aeAd aed

: . X,
is Le. (c.ik) at each element of {{W.}ieal Wae C(M,) for all aeA}, (i) I;[AZ *

is.le. (c.i.k.) at each element of {1K Y aedl Ko€ K(M,) for all e A}, (j) TI 2% .is le.

aed

(cik) at each element of {~{ET},,EAI x,eM, for all ozeA}, k) TIK(X,)

aecAd
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is L. (cik) at each element of {{K,}ueal K, K(M,) for all ac A}, and (1)
[TK (X, is Le. (cik) at each element of -{{{x,}f Yeeal X€M, for all aeA}.
zed :

Proof. Consider the statement of the theorem for lc. The straight-
forward proof that (a) and (b) are equivalent is omitted. By Theorem 1.5 (b)
through (g) are equivalent and by Theorem 2.1 (g) implies (h). .

(h) implies (i): For each aeA let K,eK(M,). Let fed and let
CzeC(Mp). For each a # f§ let x,&M,. For each ¢4 let

~ { C, ifa=p,
o (o) ifa#p.
Then for each acd, W,eC(M,) and [] 2% is lc. at {W,}4eq» Which implies

aed
2% s lc. at W, for all xed and 2™ is connected except for finitely many

acA. Thus 2™ is lc. at each element of C(M;) and by Theorem 1.5 2% s
Le. at each element of K (M), which implies 2% is 1c. at K. Therefore 2% i
Le. at K, for all aeA and 2™ is connected except for finitely many ac4,
which implies [] 2" is e, at {Kataea-

aed

(i) implies (j): Since {{{x,}}sedl X,€M, for all ueA} = Ky peal
K,eK(M,) for all aed}, then []2™ is lc. at each element of
aed

{{{xm}},EAI x,e M, for all aeA}.
() implies (k): For each a4 let K‘,eK(M;), Let BeA and let x,eM,.
For cach o # B let x,e M,. Then [] 2 is Lc. at {{x,} }ses, Which implies 2**
' acd

is Lc. at {x,} for all ue A4 and 2" is connected except for finitely many ac4.

Hence 27 is lc. at each element of {{x}| xeM,} and by Theorem 1.5 K (X,)
isxl.c. at each element of K (Mg), which implies K (X, y) is'le. at K. Also, since
27% is connected except for finitely many «e 4, then by Theorem 1.3 K (X,) is
connected except for finitely many o €4. Therefore K (X,) is Le. at K, for all
x€d and K(X,) is connected except for finitely many a A, which implies
TIK(X,) is le. at {K,}oey-

aed

(k) implies (): Since {{{} Juesl X€M, for all aed}c {{K,}ud
K.eK(M,) for all ged}, then [JK(X,) is lc. at each element of

o aed
{{{x,}},ml x, €M, for all aeA}.
() implies (a): Let feA4 and let XgeMj,. For each a # f let x,eM,.

Then [T K(X,) is 1. at {{x} },es, which implies K (X,) is Le. at {x,] for all
* aed

axed and K(X,) is connected except for finitely many aeA. Then by
Theorem 1.5 X, is Lc. at x,. Therefore X ¢ 18 L. at each element of M, and since

icm°
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K(X,) is connected except for finitely many a e 4, then by Theorem 1.3 X, is
connected except for finitely many ae A.
By a similar argument the theorem follows when lc. is replaced by c.ik.
If M, is a component of X, for all e A, then the 24 statements in
Theorem 2.2 are equivalent and each of the statements imply M, is closed
open for all ae 4 and J] M, is closed open in [] X,. Also, if M, = X, for all

aed aed
a€ A, then the 24 statements are equivalent and each of the statements imply

components of X, are closed open for all xe 4 and components of [] X, are
‘ asAd
closed open.
CorouLary 2.2. For each aeA let (X,, T,) be nonempty compact R,.
Then the following are equivalent: (a) X, is lc. for all aeA and X, is

I X,
connected except for finitely many ac A, (b) 2°%4 s Le, (© T] 2% is Le., and

aed
(d) 2% s e, for all e A and 2% is connected except for finitely many xc A.
Tueorem 23. For each ocA let (X,, T,) be nonempty R, and let
M, eC(X,) such that X, is l.c. (cik) at each element of M, for all ac A. Then

nXx,
the following are equivalent: (a) 2°** " is lc. (c.ik) at [] M,, (b) [] 2™ is le.

aed aed
(cik) at {M,}yeq, and (¢) X, is connected except for finitely many acA.
The proof is straightforward using the previous results and is omitted.
Lemma 2.1. For each oA let (X,, T,) be a nonempty topological space,
let K, be a nonempty compact subset of X,, and ler 0 be open in || X, such

acd

that [] K, = 0. Then for each a.c A there exists M,e T, such that M, = X,

exce;:?or Simitely many aeA and [[ K, = [[ M, = 0.

Proof. Since a base for :;1‘:3 weafA topology on []X, is &
={[] 0. 0,€T, for all aeA and O, = X, except for ﬁnitelyu:any ae A},
ther?ﬁ?or each {X,}ses €[] Ko let [] O, €% such that {x},cac]] O, €0.
Then {]10,1} {%, Juea eﬁAKu is an“oApen cover of ElK, and thc;:‘ exists a

ae. ETZ
finite subcover {[] Oy }=1. Let F={xeAl Oy #X, for some
A

o,
ie{l, ..., n}}, which is finite. For each a4 and y,eK, let

X, if xeA—F,
Nye = {ﬂoxm, if aeF, Yo €00,
and let
X, if ce A—F,
== N Ka'
M, {UN,G it ueF,  7=€
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Then M,eT, for all aeAd, M, =X, except for finitely many aed, and
K. <]]M, <0.
aed asd

TueoreM 24. For each oacA let (X,, T,) be nonempty R, and let
K,eK(X,)nC(X,). Then the following are equivalent: (a) X, is connected
except for finitely many a€ A and if O, is open in X, such that K, < O,, then
there exists an open connected set C, such that K, < C, = O, for all ae A, (b)

1 x,
[TKX,) is Le. ar {K,lues> (©) [T 2™ is Le. at {Ky}ues, (d) 224
aeAd aed

T K., and (e) K(HX is Le. at [] K,.

aeAd aed
Proof. (a) 1mphes (b): By Theorem 1.3 K(X,) is connected except for
finitely many acA, by Theorem 14 2™ is Lc. at K, for all xe A4, and by
Theorem 1.7 K(X,) is Lc. at K, for all «e 4, which implies [1K(x
{Ka}aeA'
(b) implies (c): Since H K(X,)is 1c. at {K,}eq, then K (X,) is connected

except for finitely many oceA and K(X,) is lc. at K, for all aeA, which
implies 2 *= is connected except for finitely many ae 4 and 2™ is lc. at K, for
all xeA. Thus []2™ is Lc. at {K,}

aed

(c) implies (d): Since HZ

is le, at

(X, is Lc. at
aed

aed "

is Le. at {K,}seq, then 2 is connected

except for finitely many cxeA which implies X, is connected except for
finitely many ae 4, and 2% s Lc. at K, forallaeA. Let € be open in [] X,

A
such that H K, < 0. By Lemma 2.1 for each a €4 there exists M, e Tﬁesuch
that M, = X except for ﬁmtely many xeA and HK c H M, < 0. For

each aeF = {aecd| M, #X, or X, is not connected} let C, be open
connected in X, such that K, = C, = M,. For each axcA let

B ={Ca if aeF,
“Z\X, if a¢F.
Then [] B, is open connected in HX and [] K, =[] B, = . Thus by

aeAd

aed aed

Theorem 1.4 2““ e is Lc. at HK,,.

asd

(d) implies (e): By Theorem 1.7 K(J] X,) is lc. at []K,.
acd aed

. . n Xa
(e) implies (a): By Theorem 1.7 2**4 ~ is L.c. at 1 K,. Then by Theorem

acA

2.1 H2 % is Le. at {K.}eea and X, is connected except: for finitely many

e _®

icm
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aeA. Since J] 2™ is Lc. at K, for all x4, which

aed
implies if O, € T, such that K, = O,, then there exists an open connected set

C, such that K, =« C, =.0, for all acA.

TueoREM 2.5. For each acd let (X,, T,) be nonempty R, and let
K,e K(X,)nC(X,). Then the following are equivalent: (a) X, is connected
except for finitely many acA and if O,eT, such that K, < O,, then the
component of O, containing K, contains K, in its interior for z;(ll aed, (b)
[T K(X,) is cik. at {K,}ueas (€) HZ is cik. at 1Ky oea» (d) 224 " s czk at

aed agd

HXa) is cik. at [] K,

aed
The theorem follows by an argument similar to that for Theorem 24

and is omitted.

TueoreM 2.6. For each acA let (X,, T,) be nonempty R, and let
C,eK(X,) such that X, is connected except for finitely many acA and if
ocA, K, is component of C,, and 0,e T, such that K, < O,, then there exzsta
an open connected set B, such that K, < B,€0,. Then [] K(X,) and ]2 X

is'le. at {K,}4eq, then 2¥a

aed

n x, aed aed
are Le. at {Cplueq and K ([T X,) and 24~ are lc. at [] C,.
oed a€Ad

Proof. Since X, is connected except for finitely many aeA, then 2¥
and K (X,) are connected except for finitely many o eA By Theorem 1.4 2™
is Lc. at each component of C and by Theorem 1.8 2% and K(X,) are lc. at
C,. Hence [] K (X,) and [] 2% are L. at {C,}ues. Let & be a component of

acd
[1C.. Then & =

aeAd

acA
1 K., where K, is a component of C, for all ae 4, and by
acA
X

1 %, T X,
Theorem 2.4, 2***  and K(H X,) are lc. at 4. Then by Theorem 1.8 20t

and K([] X,) are lc. at HC

asd
THEOREM 2.7. For each acA let (X,, T) be nonempty R, and let
C,eK(X,) such that X, is connected except for finitely many aeA and if
oceA K, is a component of C,, and O,eT, such that K, <O,, then the
component of O, containing K, contains K, in its interior. Then H K(X,) and

aed
[12*

Xﬂ
are cik. at {Cyleea and K([1X.) and 2** ~ are cik. at []C,.
el aed [}

The theorem follows by an argument similar to that for Theorem 2.6
and is omitted.

TugoreM 2.8. For each ocA let (X,, T,) be nonempty R, and let
C,eK(X,) for all ac A. Then the following are equivalent: (a) X, is connected
exceptjorf"mtely many weA and if ae A, K, is a component of C,, and 0,€ T,
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such that K, < O, then there exists an open connected set B, such that

K, =B, =0, (b) [TK(X,) is Le. at {C,laeqs (©) [T 2™ is Le. at {Cylues, (d)
aed aed

11 X,
K([TX.) is Le. ar T C,, and (¢) 2°*  is Le. ar ] C,.
agd

acd agAd

Proof. By Theorem 2.6 (a) implies (b).
(b) implies (c): Since [T K (X,) is Lc. at {C,}peq, then K (X,) is connected

acA
except for finitely many «e 4 and K(X,) is Lc. at C, for all ae 4. Then by
Theorem 1.3 2** is connected except for finitely many ¢ €4 and by Theorem
110 2% is lc. at C, for all xed. Thus [] 2™ is lc. at {C)

aed
(c) implies (d): Since [] 2% s lc. at {Cylucas then 2" is connected
acd
except for finitely many «e4 and 2 is Lc. at C, for all ®€A4. Then by
Theorem 1.3 X, is connected except for finitely many x e 4, by Theorem 1,10
if xed, K, is a component of C,, and 0, & T, such that K, < 0,, then there
exists an open connected set B, such that K, < B, < 0,, and by Theorem 2.6

n x,
2 s le. at []C,.

acAd .
mx
(d) implies (e): Since [] X, is Ry, [ C,eK ([] X.), and 24 " is Lc, at
: aeAd aed agd
[1¢., then by Theorem 1.10 K([Tx,) is 1c. at J]C,.

aecd asAd aed
(¢) implies (a): Let Bed, let K, be a component of Cj, and let OyeTy
such that K, = 0. For each « + f let K, be a component of C,. Then [] K,

agd-

acd

m x,
is a component of [] C, and by Theorem 1.10 24  is lc. at [1K.. Then
aecd . -1=7 |
by Theorem 24 X, is connected except for finitely many «e 4 and there

exists an open connected set By such that K; « B, = 0;.

TreOREM 29. For each ac A let (X,, T) be nonempty locally compact R,
and let C,eK(X,) for all ac A, where X, is compact except for finitely many
a€A. Then the following are equivalent: (a) X, is connected except for finitely
many acd and if we A, K, is a component of Cy, and O,e T, such thar
K, = 0,, then the component of O, containing K, contains K, in its interior,
() [T K(X,) is cik. at {C,luen, (0) [[ 2™ is cik. at (Caloear (@) K(TT X,) is

xed acA
nx xeA
cik ot [IC,, and () 2 " is cik. ar []C,.
xeAd aed

The theorem follows by an argument similar to that for Theorem 2.8
and is omitted.
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