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essential as it appears: if ORD™ has cofinality w, then our theorem remains
true. (Similarly, for Ml=[Peano Arithmetic], if M has cofinality w then our
theorem goes through.) For suppose («,: n < ) is cofinal. Basically, at stage
1 we construct the p, (s€"2, ie2) so that every dense set is intersected. which
is %, definable with parameters in R(a,) (the sets of rank <oc7). This
argument was previously carried out for arithmetic in Schmerl [4]. Itn is also
shqwn there (Theorem 1.6) that if (N,: v<od is a MacDowell-Specker
chau}, there cf(o) > w, then N, has only one expansion to a model of
predicative second-order extension X% —CA of PA. In a more recent paper
Schmerl ES] has shown that in fact, if S <N, and {xeS: x<N“a‘vp?s
deﬁnab]e. in N, for all ag|N,|, then § is definable in N,. (A similar rejsult
appears in Theorem 1.5 of [4], but only for regular cardinals o)
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Orderability from selections:
Another solution to the orderability problem

by
Jan van Mill and Evert Wattel (Amsterdam)

Abstract. We prove that a Tychonov space X is a GO-space iff X admits a certain type of
(weak) selection.

0. Introduction. All spaces under discussion are Tychonov.

A space is called orderable iff its topology is generated by a linear
ordering. In addition, a space is called a generalized ordered space (ab-
breviated GO-space) iff there exists a linear order < on X such that every
point in X has arbitrary small <-convex neighborhoods. It is well known
that the class of GO-spaces coincides with the class of subspaces of orderable
spaces. As far as we know, the most general characterization of GO-spaces
was given by van Dalen & Wattel [1}:

A space X is GO-space iff X possesses an open subbase consisting of
two nests. :

In this paper we will give quite a different characterization of GO-
spaces, namely, we give a characterization in terms of selections. This
generalizes results from our paper [3] where the compact case was treated.

1. Preliminaries. Let X be a space and let 2¥ denote the hyperspace of
nopempty closed subsets of X. A selection for X is a map F: 2¥ - X such
that F(4)e A for all Ae2*. Let X(2) denote the 2-fold symmetric product of
X, ie. the subspace of 2¥ consisting of all non-empty closed subspaces of X
consisting of at most two points. A weak selection for X is a map s: X(2)
— X such that s(4)e 4 for all 4eX(2), It is easy to see that X has a weak
selection if and only if there is a map s: X2 — X such that for all x, ye X,

1) s(x, y) = s(y, x),
and
(2 s(x, ye{x, y}:

Such a map s: X?— X will also be called a weak selection.
‘Michael [2] showed that for a continuum X the following statements
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are equivalent: (a) X has a selection, (b) X has a weak selection, and (c) X is
orderable. In [3], the authors showed that this result is also true without th
assumption on connectivity, :

Let s: X? - X be a weak selection. We call s locally uniform provided that
for.all xe€ X and for each neighborhood U of x there is a neighborhood Vof x
which is contained in U, such that for all pe X\U and yeV,

s, )=p iff s(p,x)=p

(observ_e that this roughly means that the behaviour of s in the point x
determines the behavior of s in some small neighborhood of x). In the

remaining part of this paper, we will prove that X is a GO-space iff X has a
locally uniform weak selection.

L1 Lemma. (a) Let X be a GO-space. Then X admits a locally uniform weak
selection,

' (b) if X is compact and if s: X? — X is a weak selection, then s is locally
uniform.

Proof. For (a), observe that s: X2 — X defined by 5(x, y) = min {x, y}

1; a}is required. For (b), take xe X and let U be any open neighborhood of x.
efine

4 =(X\U) x {x})ns™" (x)
and
B = -
Observe that ((X\U) x {x})ns™H(X\D),
4 =((X\U) x {x})ns™ ' (%)
and
B =(@0)x (xhns™ (\0),

which implies that both 4 and B are closed. Let W b i
of x with xeWce W™ < U. © &% open neighborhood

If (p, x)e A then, by continuity of s, we can find i
» X) , s a neighborh
p apd a neighborhood ¥(p, x) of x such that reborhood B{p) of

B(p) xVp, x) =s~1(W).
By compactness we can find finitely many py, ..., p,€ X\U such that

A< U B@)xVp, .

Similarly, we can find ¢, ..., ¢, X\U and neighb
neighborhoods U(g;, x) of x such that 't o#hoods Cla) of g, and

B () C@x U@, » =5 W)
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Define
V= 'Ol V(pi: x)m~01 U(qia X).

It is clear that V is as required.

Having the results of [3] in mind, in view of Lemma 1.1(b), it now seems
easy to find a characterization of GO-spaces in terms of weak selections. Let
X be a space having a locally uniform weak selection s. Find a compacitifi-
cation yX of X such that s can be extended to a weak selection s7: (1X)*
—9X. Then, by [3], X is orderable, whence X is a GO-space.
Unfortunately, this procedure does not work, as the next example shows.

1.2. ExampLe. There is a GO-space X and a locally uniform weak
selection s for X such that there does not exist a compactification yX of X
with the property that s can be extended to a weak selection s7: (rX)?
—yX.

Let X = Z and define s: Z> »Z by
if n¢ —m,
if n=—m.

min {n, m
s(n, m= { ‘f }‘
max {n, m}
We claim that X and s are as required. First observe that s is locally uniform
since X is discrete. Let yX be any compactification of X and take a point
oo, e NT\N. Let s7: (yX)* —»yX be a weak selection extending s.
Cram. If te N"\N then t = c0;.
If not, then there obviously exists disjoint sets E, F N with o0, €E",
teF~ and E"nF~ = Q. Take neE arbitrarily. Since

(n, ye {(n, m) meF&m>n}~,

and since s(n, m)=n for all meF with m>n, by continuity of s, we
conclude that s~ (n, t) = n. This implies that :

s™(0g,t) =00y for (ooy, )ef{(n, 0 neE}™.
The same argument yields s™(coy, t) =, whence co, =t.

We conclude that N has a unique limit point co,, and similarly we find
that X\N has a unique limit point co,.

Since lim(—n, n) = (00,, c04), We find that

n—o

5™ (00, 0) = limn = a0,

n-ro
Similarly, since

lim (—n, n+1) = (0, 0y),

n= oo
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it follows that

57 (c0,, 0y) = lim —n = oo,.
v oo
We conclude that oo, = co, and hence that pX is simply the one point
compactification of X. The point at infinity will now be called oo.
Since lim (1, n) = (1, o), we find that s~ (1, o) = 1. On the other hand,
n—+oo
lim (—n, 1) = (c0, 1), which implies that s~ (o0, 1) =cc. Since s~ (1, c0)
n-roq

=57 (00, 1), we have derived a contradiction.

2. A characterization of locally uniform selections. In this section we will
prove that for weak selections, the internal property of being locally uniform
is equivalent to one which is, in a sense, external. This reformulation of local

uniformness is needed to make the concept applicable to prove the an-.

nounced characterization of GO-spaces.

Throughout, X denotes the Cech-Stone compactification of a space X.
If s: X2 - X is a weak selection then, for all xeX, we define

A= {yeX| s(x, y) = x} B, ={yeX]| s(x, y) =y},

respectively. (Formally we have to supply both 4, and B, with an additional
index s; since from the context it will always be clear which weak selection
we mean, for notational simplicity: we suppress the index 5). Observe that
both 4, and B, are closed, that 4,UB, = X and finally that 4,nB, = {x}.

and

2.1. Lemma. Let X be a space and let s: X* — X be a weak
peBX\X and xec X then either p¢Clyy B, or P¢Cly A,.

Proof. Suppose to the contrary that

selection. If

peClyy B.NClyy A,. :
Let Z = X be a zero-set containing a neighborhood of x such that p¢Cl 7.

Define B = B,uZ and 4 = 4,UZ. We claim that both A4 and B are

. zero-sets ‘of X. Indeed, let f: X —[0, 1] be continuous such that 7H0)
=Z. Define g: X - [0, 1] by

fl)

_ (a¢B,),
g(q) = { 0

(¢eB,).

An casy check shows that g is continuous and that g71(0) = B.
Consequently, B is a zero-set and similarly, 4 is a zero-set. Since

P#Clyx Z = Clyx (Bnd) = Clyx BAClyy 4,

we may assume, without loss of generality,

that p¢ Clyx B. Since B, < B, thi
shows that p¢Clsy B,. ; X x & B, this

icm
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We now come to the main result of this section.

2.2. TueorEM. Let X be a space and let s: X* — X be a weak selection. The
following statements are equivalent:

(1) s is locally uniform,

(2) for all pe X\X, s can be extended to a weak selection s : (Xuv{p})2
- Xu{p}. ‘

Proof. Suppose first that s: X2 — X is locally uniform. Take pe fX\X
arbitrarily. Define t: (Xu{p})? —(Xu{p}) by

t(p, p) = p,

t(a, b) =t(b, a) =s(a, b) for a,beX,
t(p,a)=t(a,p)=p if peClyB, and aeX,
tip,a)=t(a, p)=a if' peClyxA, and acX.

By Lemma 2.1, ¢ is well defined. Since, modulo continuity, t is clearly a weak
selection which extends s, we only need to verify continuity. To this end, put
Y = XU{p}. It is clear that we only need to show that t™*(Cly Z) is closed
in Y2 for an arbitrary zero-set Z = X. Take <a, b)>¢t™!(Cly Z). Since

" (Cly Z)NX? =571 (Z)nX?

and since X2 is open in Y2, by continuity of s we find that if <a, b>e X? then
some neighborhood of <a, b} in Y? misses ¢~*(Cly Z). Therefore, without loss
of generality, assume e.g. that p=a.

Case 1. t(p, b) = p and be X. By Lemma 2.1, p¢Clgx4,. Find a zerg-set
S < X such that ClgyS is a neighborhood of p (in fX) _which misses
Clyx 4, WClgxZ. By the local uniformness of s we can find a neighborhood V
of b contained in X\S such that for all xeS§ and ve¥,

sh,x)=b <« s(v, x) =v.

Then (Cly §) x V is a neighborhood of {p, b> which misses t~*(ClyZ) (this
needs some justification which we leave to the reader).

Case 2. t(p, b) = b and beX. This case can be treated analogously.

Case 3. p=aand p=>h. Then p¢Cly Z. So find a neighborhood U gf
p in Ysuch that UNCly Z = ). Then Ux U is a neighborhood of {p, p> in
Y? which misses t™! (Cly Z).

Assume next that the weak selection s: X% — X is such that.for every
pepX\X there is a weak selection t,: (X ulph? - Xu{p} extending s. We
claim that s is locally uniform. To this end, let xeX and .«let Um be a
neighborhood of x in X. Choose a neighborhood Wof xin X with W~ < U.
Define

B = {pepX\X| t,(p, ) = p}UB,
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and

4= {peBX\XI tp(P’ x) = x}UAx'
Applying Lemma 2.1 and using the continuity of the map t, for an arbitrary
peBX\X, the reader can easily check that

B = CI/?X Bx and A= Clﬂx AJ!"

Define

B =BnClyx(X\U) and  A'=AnCly(X\U),

re§pectively. Take peB’: If pe X let t, =s. By continuity of I, we can find a
neighborhood B(p) of pin X and a neighborhood V(p, x) of x in fX such that

(BEAX PN x(V(p, (X U{ph) < 15 (X\W).

By compactness of B’ we can find finitely many points g, ..., qmeA’ and

f}fighborhoods C(g) of g; in BX and neighborhoods U(g:, x) of x in fX such
at

A" = | Cgy,
j=1
while moreover for each 1 <j < m we have that

C@In(Xoigh)) x (U (g x) n(Xuig)) < 7 (W).
Now define

=< () Voo 990< () U, 5.

Then Vis a neighborhood of x in X which is contained in U
C such that
peX\U and veV we have that aforall

$(p, X} =x<>5(p, v) = v.
Consequently, V is as required.

23. Remark. If s: X2 X is a locall i i i

( y uniform weak selection and if

pe ﬂ();\X {t};)e;) by th? I;rekus result, s can be extended to a weak selection
5 ¢ (@uipy)® = Xu{p}. Simple examples show that th i -
need not be locally uniform. ° woak selction s
24. Remark. Observe that Examp

le 1.2 shows that t ition i
Theorem 2.2(2) is best possible, he condition in

_ 3. The construction. In this section we will
terization of GO-spaces. If s: X2 > X is a
and B, are defined as in Section 2.

prove the announced charac-
weak selection and xe X then A,
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The proof of Theorem 3.1 below follows closely, but not literally the
ideas in [3], Theorem 1.1, except for the last part where we have to give an
additional argument that the total ordering < we construct has the property
that the open <-convex sets form a base for the topology. For the reader’s
convenience we give the proof in full detail.

3.1. ToeoreM. Let X be a space. Then the following statements are
equivalent. ’

(1) X has a locally uniform weak selection,

(2) X is a GO-space.

Proof. The implication (2) =(1) was established in Lemma 1.1(a), so it
suffices to prove that (1)=-(2). To this end, let s: X* =X be a locally
uniform weak selection for X and, let < be a wellordering on X. For every
xe X we will construct closed sets L,, U, = X such that

(1) LoU,=X and LU, = {x},

(2) if y<x and if xeL, then L, < L\{y},

(3) if y<x and if xeU, then U, = U\{y},

(4) if zeL, and if z¢ J{L,| y<x&xeU,} then zeB,,
(5) ifzeU, and if z¢Y{U,| y<x&xeL,} then zeA,.

(In the total ordering on X which we will construct in this proof, L, will be
the set of all points smaller than or equal to x, and U, will be the set of all
points larger than or equal to x.)

Let x, be the first element of X, and define

on = on and U"o = Axo’

Assume that we have defined L, and U, for all y < x satisfying (1) through
(5). Let :

E={y<x xéL,,} and F={y<x x¢Uy}-
Put ‘
Z=x\(U LyUYUFUv)~
Ye

yeE
Let k = |E| and for each ¢ <k define points y;€E in the following way:

(6) Yo = mln(E),

™ yo=min{yeEu{x}| (y, <y for all u <)) &(y¢ U; L)}
n<

Let & < k be the first ordinal for which y, = x.
Crav 1 If &g < & then ULy yeE&y <ys} = L{‘ L,,.
“<so
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que yve{zekE ;<y40}\{yul 1 <o} and let u<< &y be the first ording
for which y <y,. Since y, <y for all ¢ < y (notice that ## 0) and since
V#Y, by (7), ye (<) L,,. Choose ¢ < u such that yeLyq. Since y, <y, by (2),

e<u '
L,c Lyp < agoL,d,

CramM 2. If py < py <& then Lyno @ L!;‘l\j{yu1}'

By (7), yu1¢L%. Consequently, y,, €U, and therefore, by (3),
Uyuy < Uy, Mbuo}- Consequently, by (1), Ly, < Ly, v, -

Cramm 3. If py < py .<§ then I;J,M\Ly“0 « Ayuo.

Take reLyH\Lyuo. Since teUyu0 and, by (7),

Unio = VU ¥ <yup &ppee Lo,

Wwe may assume, without loss of generality that ¢ e U, for certain z < Yo With
yuoEL;' Assume that Vuy gL, . We will derive a contradiction, Since p, 0—< Yy
.and since z <y,  this implies by (2), that L,#1 « L\{z}. Conseqouentlyl,
teL\{z} and teU,, contradicting (1). This shows that Yuy # L, which implies
that y, eU,. Since z < Yy bY (3), Uy#1 < U, and therefore xe U,. If also
xe;, then x = z which is impossible since z <x. We conclude that x¢L, or
equivalently, ze E. Let &<y, .be the smallest ordinal such that 7 y,. Since
Vs <z for every 5 <¢&by (7),. either z = y, or zeL,, for certain § < ¢. If z = Y
;hen y,:ro he L,, which contradicts z <Vuo (Claim 2). Therefore, z e L,, for certain
<e.ThenzelL, < Ly)‘o\{y,‘o}. Since z < Yuo and since Yug €Lz, by (2), we also

have that
L, < L\{z},

Tn
which implies that zeL,,“O < L\{z}, a contradiction.

Crav 4. If teCly <yLEJELy>\gE Ly then t is a cluster point of the net
i
{,Va' u< é}
Suppose not. Let U be a neighborhood of t which mi vl
For each neighborhood ¥ of  we choose a point O msses <.
x(NeUnV)n Y L,
yek

an.d we let ,u(V) be the smallest ordinal such that x(Ve
exists by Claim 1). We choose 2 clusterpoint p of

Duwl V is -2 neighborhood of 1}

in gX and2 by Theorem 2.2 we may extend s to a ‘weak selection
5t (Xu{p}) = Xu{p} (if we have chosen the point p in. X, which will
lllappen eg. if & is finite, then the argument -below still works ,if we simpl

ignore the index p everywhere we write $p)- We will first prove that each x(Vl;ID;

Lyu(,,) (such ordinal
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a point of BMV . If this is not the case, then by (4) there is a y < y,(, such that
x(V) in L, and y,4,eU,. Since y < Yuy and Y in Uy, by (3),

Uy, < UNY}

which implies that L, = Lyﬂ 1+ Consequently, x¢ L, or equivalently, yeE. By
Claim 1 we can find a § < u(¥) such that x(V)eL,, which contradicts the
minimality of u(V).
The point (¢, p) is a cluster point of
{(x*(¥), yum)| V is a neighborhood of x}

in (Xu{p}). Since each x(V)eB by continuity of s, we find that s,(t, p)
= t.

Tu(py’
Fix ¢ < ¢ and consider the sequence
{(x(V), y)l V is a neighborhood of t and ¢ < u(V)}.

By Claim 3 and thé definition of u(V) we find that
S((x(V), ya)) =Y

for each element of the sequence. By continuity of s this implies that s(z, y,)
=y,. Since s, is continuous and extends s we can now conclude that sy(t, p)
= p. Since t % p we have derived a contradiction.

Cramm 5. If both t and u are cluster points of the net' {y,| u< ¢} then t
= U.

Let C and D be closed and disjoint neighborhoods of, respectively, t and
u. Define: . .
E = {0 yu)l %,€D,y,eC and o < p},
and

F = {(ybi yz)l y,,eC, yzED and 5 < 8}’ .

respectively. It is clear that (r,u) is a cluster point of E as well as F. If
(¥e> v,) € E then, by Claim 3, s(y,, y,) = y,, whence, by continuity of s, s(u, t)
=u. In the same way, if (y5, y)eF then s(ys;, y,) =ys; and consequently
s(t, u) = t. This contradiction proves the claim.

Cram 6. \J L, has at most one boundary point.

: yekb

Follows immediately from Claims 4 and 5.

Ciamm 7. If teZ and p< ¢ then ted,,.

Since t¢L, clearly teUy”. Therefore by (5), if t¢A, then teU, for
certain y <y, “with y,eL,. If xeL, then x¢ U, since x 5 y in which case
ZnU, = @ which contradicts teZnU,. Therefore yeE. By Claim 1

UiLy| yeE&y <y,} =JU Ly,.
<u

Therefore yﬂeLyd for certain 6 < p which contradicts (7).

4 — Fundamenta Mathematicae [21.3
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Formally we have to consider two cases, namely that { is a successor or
that ¢ is a limit ordinal. Those two cases can be treated analogously and
since the case that £ is a limit is more complicated we will assume from now
on that & is a limit. ‘

Since Lyﬂ\{y,‘} is open for each u < ¢ by Claims 1 and 2, {J L, can have

yek
at most one limit point, say a. By using precisely the same technique as
above and again restricting our attention to the limit case we can find a
limit ordinal # and for each u <n a point z,€F such that

®) if p<6 then U, < U,,
] Uuv,=0U,
" yeF

]
and

(10) - if teZ and u <7 then teBz”.
Again we find that |) U, has at most one boundary point, say b, and that

eF
this point is a cluster point of the net {z,| u <7}
~Case 1. a=b. We then claim that Z = {x} = {a} = {b}. For assume
that there exists a point t € Z\{a}. By Claim 7, s(y,, t) =y, for all u < ¢ and
consequently s(a, f) =a since a is a limit point of {y,},<;. On the other
hand, by (10), s(t,z)=1t for all u<n. By the same argument s(t, a)
= s(t, b) = t. Contradiction.
We therefore conclude that @ = b = x and that Z = {x}. Now define

L= Lu{x} and U,=| U,u{x}.
yeE yeF

An easy check shows that our inductive hypotheses are satisfied.
Case 2. x #a and x # b if either a or b exists. Define

L,={ Lyu(ZnB,) and U,= | U,u(ZnA4,).
yeE yeF

Observe that both L, and U, are closed since ae ZNB, and be ZnA4,. Again
an easy check shows that our inductive hypotheses are satisfied.
" Case 3. x=a and x # b if b exists. Define

L,="U Lyui{x} and U,= Q‘: Uy,
#

yeE

Case 4. x =b and a # x if a exists. Similar to case 3.

Now define x<y iff xeL,. Then < is a linear order. Moreover, for
each xeX the sets {yeX| y <x} and {yeX| x <y} are closed. This means
that X is weakly orderable w.r.t. the order <. So we only have to show that
the space X has an open base consisting of convex sets w.rt. <.
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Suppose that xe X has a cozero-set neighborhood U such that U does
not contain a convex open set containing x. Without loss of generality we
may suppose that U does not contain any closed interval [y, x] for a point
y<x,

We construct a transfinite sequence {y,} which now satisfies the con-
ditions :

(6) Yo = min(E),
@) yy=min{yeE| (y,<y iff ¢ <{)&(y¢ UCLyq)}

if it exists. Let ¢ be the first ordinal such that ye does not exist.

We can now consider all points (z, y,) in (XU{p})? with t < y, and teU
such that there is no member of the sequence between ¢ and y. From
condition (4) it follows that s(z, y,) = t. If x is not an adherence point of the
sequence y, then we can consider the space X U{p} for some pefX which is
in the closure of the sequence y,. Without loss of generality we choose p such
that p is in the closure of the chosen sequence y, and then we may conclude
that s(x, p) = x. If we consider all points (t, y,) with Y <t then we obtain
that s(x, p) = p. (Compare with Claim 3.) We derived a contradiction in the
same way as in Claim 4.

So we assume that x is in the closure of {y}. A similar argument. shows
that x is the limit of the sequence {y}.

Next we choose a point of fX in the closure of all intervals [y, x]
intersected with X\U and we derive a contradiction in the same way; but
now we have that x is in the closure of the y, and p in the closure of the ¢s.

Finally we conclude that the existence of a cozero-set neighborhood U
which does not contain a right neighborhood of x leads to a contradiction,
and so x has a local base consisting of convex open sets. This proves that X
is a GO-space.
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