

essential as it appears: if ORD^M has cofinality ω , then our theorem remains true. (Similarly, for $M\models [Peano\ Arithmetic]$, if M has cofinality ω then our theorem goes through.) For suppose $(\alpha_n\colon n<\omega)$ is cofinal. Basically, at stage n we construct the p_s^i ($s\in {}^n2$, $i\in 2$) so that every dense set is intersected, which is Σ_n definable with parameters in $R(\alpha_n)$ (the sets of rank $<\alpha_n$). This argument was previously carried out for arithmetic in Schmerl [4]. It is also shown there (Theorem 1.6) that if $\langle N_v \colon v \leq \alpha \rangle$ is a MacDowell-Specker chain, where $cf(\alpha) > \omega$, then N_α has only one expansion to a model of predicative second-order extension $\Sigma_\infty^0 - CA$ of PA. In a more recent paper Schmerl [5] has shown that in fact, if $S \subseteq |N_\alpha|$ and $\{x \in S \colon x <^{N_\alpha} a\}$ is definable in N_α for all $a \in |N_\alpha|$, then S is definable in N_α . (A similar result appears in Theorem 1.5 of [4], but only for regular cardinals α .)

References

- U. Felgner, Comparison of the axioms of local and universal choice, Fund. Math. 71 (1971), pp. 43-62.
- [2] H. J. Keisler, Models with tree structures, Proc. Tarski Sympos, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R. I. (1974), pp. 331-348.
- [3] A. Mostowski, A remark on models of the Gödel-Bernays axioms for set theory, Sets and Classes, North-Holland (1976), pp. 325-340.
- [4] J. Schmerl, Peano models with many generic classes, Pacific J. Math. 46 (1973), pp. 523-536. (Errata: Pacific J. Math., to appear.)
- [5] Recursively saturated, rather classless models of Peano Arithmetic, in: Logic Year 1979-80 (Univ. of Connecticut), Lec. Notes Math. 859 (1981), pp. 268-282.
- [6] S. Shelah, Models with second-order properties II: Trees with no undefined branches, Ann. Math. Logic 14 (1978), pp. 73-87.

PURDUF UNIVERSITY West Lafayette, Indiana 47907

Received 27 April 1981

Orderability from selections: Another solution to the orderability problem

b

Jan van Mill and Evert Wattel (Amsterdam)

Abstract. We prove that a Tychonov space X is a GO-space iff X admits a certain type of (weak) selection.

0. Introduction. All spaces under discussion are Tychonov.

A space is called orderable iff its topology is generated by a linear ordering. In addition, a space is called a generalized ordered space (abbreviated GO-space) iff there exists a linear order \leq on X such that every point in X has arbitrary small \leq -convex neighborhoods. It is well known that the class of GO-spaces coincides with the class of subspaces of orderable spaces. As far as we know, the most general characterization of GO-spaces was given by van Dalen & Wattel [1]:

 \bar{A} space X is GO-space iff X possesses an open subbase consisting of two nests.

In this paper we will give quite a different characterization of GO-spaces, namely, we give a characterization in terms of selections. This generalizes results from our paper [3] where the compact case was treated.

1. Preliminaries. Let X be a space and let 2^X denote the hyperspace of nonempty closed subsets of X. A selection for X is a map $F: 2^X \to X$ such that $F(A) \in A$ for all $A \in 2^X$. Let X(2) denote the 2-fold symmetric product of X, i.e. the subspace of 2^X consisting of all non-empty closed subspaces of X consisting of at most two points. A weak selection for X is a map $s: X(2) \to X$ such that $s(A) \in A$ for all $A \in X(2)$. It is easy to see that X has a weak selection if and only if there is a map $s: X^2 \to X$ such that for all $x, y \in X$,

$$(1) s(x, y) = s(y, x),$$

and

(2)
$$s(x, y) \in \{x, y\}.$$

Such a map $s: X^2 \to X$ will also be called a weak selection.

Michael [2] showed that for a continuum X the following statements

221

icm[©]

are equivalent: (a) X has a selection, (b) X has a weak selection, and (c) X is orderable. In [3], the authors showed that this result is also true without the assumption on connectivity.

Let $s: X^2 \to X$ be a weak selection. We call s locally uniform provided that for all $x \in X$ and for each neighborhood U of x there is a neighborhood V of x which is contained in U, such that for all $p \in X \setminus U$ and $y \in V$,

$$s(p, y) = p$$
 iff $s(p, x) = p$

(observe that this roughly means that the behaviour of s in the point x determines the behavior of s in some small neighborhood of x). In the remaining part of this paper, we will prove that X is a GO-space iff X has a locally uniform weak selection.

- 1.1. Lemma. (a) Let X be a GO-space. Then X admits a locally uniform weak selection,
- (b) if X is compact and if $s: X^2 \to X$ is a weak selection, then s is locally uniform.

Proof. For (a), observe that $s: X^2 \to X$ defined by $s(x, y) = \min\{x, y\}$ is as required. For (b), take $x \in X$ and let U be any open neighborhood of x. Define

$$A = ((X \setminus U) \times \{x\}) \cap s^{-1}(x)$$

and

$$B = ((X \setminus U) \times \{x\}) \cap s^{-1}(X \setminus U),$$

Observe that

$$A = ((X \setminus U) \times \{x\}) \cap s^{-1}(x)$$

and

$$B = ((X \setminus U) \times \{x\}) \cap s^{-1}(X \setminus U),$$

which implies that both A and B are closed. Let W be an open neighborhood of x with $x \in W \subset W^- \subset U$.

If $(p, x) \in A$ then, by continuity of s, we can find a neighborhood B(p) of p and a neighborhood V(p, x) of x such that

$$B(p) \times V(p, x) \subset s^{-1}(W)$$

By compactness we can find finitely many $p_1, \ldots, p_n \in X \setminus U$ such that

$$A \subset \bigcup_{i=1}^n B(p_i) \times V(p_i, x).$$

Similarly, we can find $q_1, \ldots, q_m \in X \setminus U$ and neighborhoods $C(q_i)$ of q_i and neighborhoods $U(q_i, x)$ of x such that

$$B \subset \bigcup_{i=1}^m C(q_i) \times U(q_i, x) \subset s^{-1}(X \backslash W^-).$$

Define

$$V = \bigcap_{i=1}^{n} V(p_i, x) \cap \bigcap_{i=1}^{m} U(q_i, x).$$

It is clear that V is as required.

Having the results of [3] in mind, in view of Lemma 1.1(b), it now seems easy to find a characterization of GO-spaces in terms of weak selections. Let X be a space having a locally uniform weak selection s. Find a compacitification γX of X such that s can be extended to a weak selection s^- : $(\gamma X)^2 \rightarrow \gamma X$. Then, by [3], γX is orderable, whence X is a GO-space. Unfortunately, this procedure does not work, as the next example shows.

1.2. Example. There is a GO-space X and a locally uniform weak selection s for X such that there does not exist a compactification γX of X with the property that s can be extended to a weak selection s^- : $(\gamma X)^2 \rightarrow \gamma X$.

Let $X = \mathbb{Z}$ and define $s: \mathbb{Z}^2 \to \mathbb{Z}$ by

$$s(n, m) = \begin{cases} \min\{n, m\} & \text{if } n \neq -m, \\ \max\{n, m\} & \text{if } n = -m. \end{cases}$$

We claim that X and s are as required. First observe that s is locally uniform since X is discrete. Let γX be any compactification of X and take a point $\infty_1 \in N^- \setminus N$. Let s^- : $(\gamma X)^2 \to \gamma X$ be a weak selection extending s.

CLAIM. If $t \in N^- \setminus N$ then $t = \infty_1$.

If not, then there obviously exists disjoint sets $E, F \subset N$ with $\infty_1 \in E^-$, $t \in F^-$ and $E^- \cap F^- = \emptyset$. Take $n \in E$ arbitrarily. Since

$$(n, t) \in \{(n, m) | m \in F \& m > n\}^-,$$

and since s(n, m) = n for all $m \in F$ with m > n, by continuity of s, we conclude that $s^{-}(n, t) = n$. This implies that

$$s^{-}(\infty_{1},t) = \infty_{1}$$
 for $(\infty_{1},t) \in \{(n,t) | n \in E\}^{-}$.

The same argument yields $s^{-}(\infty_1, t) = t$, whence $\infty_1 = t$.

We conclude that N has a unique limit point ∞_1 , and similarly we find that $X\backslash N$ has a unique limit point ∞_2 .

Since $\lim_{n \to \infty} (-n, n) = (\infty_2, \infty_1)$, we find that

$$s^-(\infty_2, \infty_1) = \lim_{n \to \infty} n = \infty_1.$$

Similarly, since

$$\lim_{n\to\infty}(-n, n+1)=(\infty_2, \infty_1),$$

it follows that

$$s^-(\infty_2, \infty_1) = \lim_{n \to \infty} -n = \infty_2.$$

We conclude that $\infty_1 = \infty_2$ and hence that γX is simply the one point compactification of X. The point at infinity will now be called ∞ .

Since $\lim_{n\to\infty} (1, n) = (1, \infty)$, we find that $s^-(1, \infty) = 1$. On the other hand, $\lim_{n\to\infty} (-n, 1) = (\infty, 1)$, which implies that $s^-(\infty, 1) = \infty$. Since $s^-(1, \infty) = s^-(\infty, 1)$, we have derived a contradiction.

2. A characterization of locally uniform selections. In this section we will prove that for weak selections, the internal property of being locally uniform is equivalent to one which is, in a sense, external. This reformulation of local uniformness is needed to make the concept applicable to prove the announced characterization of GO-spaces.

Throughout, βX denotes the Čech-Stone compactification of a space X. If $s\colon X^2\to X$ is a weak selection then, for all $x\in X$, we define

$$A_x = \{ y \in X | s(x, y) = x \}$$
 and $B_x = \{ y \in X | s(x, y) = y \}$.

respectively. (Formally we have to supply both A_x and B_x with an additional index s; since from the context it will always be clear which weak selection we mean, for notational simplicity we suppress the index s). Observe that both A_x and B_x are closed, that $A_x \cup B_x = X$ and finally that $A_x \cap B_x = \{x\}$.

2.1. Lemma. Let X be a space and let s: $X^2 \to X$ be a weak selection. If $p \in \beta X \setminus X$ and $x \in X$ then either $p \notin \operatorname{Cl}_{\beta X} B_x$ or $p \notin \operatorname{Cl}_{\beta X} A_x$.

Proof. Suppose to the contrary that

$$p \in \operatorname{Cl}_{\beta X} B_x \cap \operatorname{Cl}_{\beta X} A_x$$

Let $Z \subset X$ be a zero-set containing a neighborhood of x such that $p \notin Cl_{gx}Z$.

Define $B = B_x \cup Z$ and $A = A_x \cup Z$. We claim that both A and B are zero-sets of X. Indeed, let $f \colon X \to [0, 1]$ be continuous such that $f^{-1}(0) = Z$. Define $g \colon X \to [0, 1]$ by

$$g(q) = \begin{cases} f(q) & (q \notin B_x), \\ 0 & (q \in B_x). \end{cases}$$

An easy check shows that g is continuous and that $g^{-1}(0) = B$. Consequently, B is a zero-set and similarly, A is a zero-set. Since

$$p \notin \operatorname{Cl}_{\beta X} Z = \operatorname{Cl}_{\beta X} (B \cap A) = \operatorname{Cl}_{\beta X} B \cap \operatorname{Cl}_{\beta X} A,$$

we may assume, without loss of generality, that $p \notin \text{Cl}_{\beta X} B$. Since $B_x \subset B$, this shows that $p \notin \text{Cl}_{\beta X} B_x$.

We now come to the main result of this section.

- 2.2. THEOREM. Let X be a space and let s: $X^2 \to X$ be a weak selection. The following statements are equivalent:
 - (1) s is locally uniform,
- (2) for all $p \in \beta X \setminus X$, s can be extended to a weak selection s^- : $(X \cup \{p\})^2 \to X \cup \{p\}$.

Proof. Suppose first that $s\colon X^2\to X$ is locally uniform. Take $p\in\beta X\backslash X$ arbitrarily. Define $t\colon (X\cup\{p\})^2\to (X\cup\{p\})$ by

$$t(p, p) = p,$$

 $t(a, b) = t(b, a) = s(a, b)$ for $a, b \in X,$
 $t(p, a) = t(a, p) = p$ if $p \in \text{Cl}_{\beta X} B_a$ and $a \in X,$
 $t(p, a) = t(a, p) = a$ if $p \in \text{Cl}_{\beta X} A_a$ and $a \in X.$

By Lemma 2.1, t is well defined. Since, modulo continuity, t is clearly a weak selection which extends s, we only need to verify continuity. To this end, put $Y = X \cup \{p\}$. It is clear that we only need to show that $t^{-1}(\operatorname{Cl}_Y Z)$ is closed in Y^2 for an arbitrary zero-set $Z \subset X$. Take $\langle a, b \rangle \notin t^{-1}(\operatorname{Cl}_Y Z)$. Since

$$t^{-1}(\operatorname{Cl}_{Y} Z) \cap X^{2} = s^{-1}(Z) \cap X^{2}$$

and since X^2 is open in Y^2 , by continuity of s we find that if $\langle a, b \rangle \in X^2$ then some neighborhood of $\langle a, b \rangle$ in Y^2 misses $t^{-1}(\operatorname{Cl}_Y Z)$. Therefore, without loss of generality, assume e.g. that p = a.

Case 1. t(p, b) = p and $b \in X$. By Lemma 2.1, $p \notin \operatorname{Cl}_{\beta X} A_b$. Find a zero-set $S \subset X$ such that $\operatorname{Cl}_{\beta X} S$ is a neighborhood of p (in βX) which misses $\operatorname{Cl}_{\beta X} A_b \cup \operatorname{Cl}_{\beta X} Z$. By the local uniformness of s we can find a neighborhood V of b contained in $X \setminus S$ such that for all $x \in S$ and $v \in V$,

$$s(b, x) = b \Leftrightarrow s(v, x) = v.$$

Then $(Cl_Y S) \times V$ is a neighborhood of $\langle p, b \rangle$ which misses $t^{-1}(Cl_Y Z)$ (this needs some justification which we leave to the reader).

Case 2. t(p, b) = b and $b \in X$. This case can be treated analogously.

Case 3. p = a and p = b. Then $p \notin \operatorname{Cl}_Y Z$. So find a neighborhood U of p in Y such that $U \cap \operatorname{Cl}_Y Z = \emptyset$. Then $U \times U$ is a neighborhood of $\langle p, p \rangle$ in Y^2 which misses $t^{-1}(\operatorname{Cl}_Y Z)$.

Assume next that the weak selection $s\colon X^2\to X$ is such that for every $p\in\beta X\backslash X$ there is a weak selection $t_p\colon (X\cup\{p\})^2\to X\cup\{p\})$ extending s. We claim that s is locally uniform. To this end, let $x\in X$ and let U be a neighborhood of x in X. Choose a neighborhood W of x in X with $W^-\subset U$. Define

$$B = \{ p \in \beta X \setminus X | t_p(p, x) = p \} \cup B_x$$

225

$$A = \{ p \in \beta X \setminus X | t_p(p, x) = x \} \cup A_x.$$

Applying Lemma 2.1 and using the continuity of the map t_n for an arbitrary $p \in \beta X \setminus X$, the reader can easily check that

$$B = \operatorname{Cl}_{\beta X} B_x$$
 and $A = \operatorname{Cl}_{\beta X} A_x$.

Define

$$B' = B \cap \operatorname{Cl}_{\beta X}(X \setminus U)$$
 and $A' = A \cap \operatorname{Cl}_{\beta X}(X \setminus U)$,

respectively. Take $p \in B'$. If $p \in X$ let $t_p = s$. By continuity of t_p , we can find a neighborhood B(p) of p in βX and a neighborhood V(p, x) of x in βX such that

$$(B(p)\cap (X\cup\{p\}))\times (V(p,x)\cap (X\cup\{p\}))\subset t_p^{-1}(X\backslash W).$$

By compactness of B' we can find finitely many points $q_1, \ldots, q_m \in A'$ and neighborhoods $C(q_i)$ of q_i in βX and neighborhoods $U(q_i, x)$ of x in βX such that

$$A' \subset \bigcup_{j=1}^m C(q_j),$$

while moreover for each $1 \le j \le m$ we have that

$$\langle C(q_j) \cap (X \cup \{q_j\}) \rangle \times \langle U(q_j, x) \cap (X \cup \{q_j\}) \rangle \subset t_p^{-1}(W).$$

Now define

$$V = \langle \bigcap_{i=1}^{n} V(p_i, x) \rangle \cap \langle \bigcap_{j=1}^{m} U(q_j, x) \rangle \cap X.$$

Then V is a neighborhood of x in X which is contained in U such that for all $p \in X \setminus U$ and $v \in V$ we have that

$$s(p, x) = x \Leftrightarrow s(p, v) = v.$$

Consequently, V is as required.

- 2.3. Remark. If s: $X^2 \rightarrow X$ is a locally uniform weak selection and if $p \in \beta X \backslash X$ then by the previous result, s can be extended to a weak selection s^- : $(X \cup \{p\})^2 \to X \cup \{p\}$. Simple examples show that the weak selection $s^$ need not be locally uniform.
- 2.4. Remark. Observe that Example 1.2 shows that the condition in Theorem 2.2(2) is best possible.
- 3. The construction. In this section we will prove the announced characterization of GO-spaces. If s: $X^2 \to X$ is a weak selection and $x \in X$ then A_x and B_x are defined as in Section 2.

Orderability from selections; Another solution to the orderability problem

The proof of Theorem 3.1 below follows closely, but not literally the ideas in [3]. Theorem 1.1, except for the last part where we have to give an additional argument that the total ordering ≤ we construct has the property that the open ≤-convex sets form a base for the topology. For the reader's convenience we give the proof in full detail.

- 3.1. THEOREM. Let X be a space. Then the following statements are equivalent.
 - (1) X has a locally uniform weak selection,
 - (2) X is a GO-space.

Proof. The implication $(2) \Rightarrow (1)$ was established in Lemma 1.1(a), so it suffices to prove that (1) \Rightarrow (2). To this end, let $s: X^2 \to X$ be a locally uniform weak selection for X and, let \prec be a wellordering on X. For every $x \in X$ we will construct closed sets L_x , $U_x \subset X$ such that

- $L_x \cup U_x = X$ and $L_x \cap U_x = \{x\},\$
- (2) if v < x and if $x \in L_v$ then $L_v \subset L_v \setminus \{v\}$,
- (3) if y < x and if $x \in U_y$ then $U_x \subset U_y \setminus \{y\}$,
- (4) if $z \in L_x$ and if $z \notin \bigcup \{L_y | y < x \& x \in U_y\}$ then $z \in B_x$,
- if $z \in U_x$ and if $z \notin \bigcup \{U_y | y \prec x \& x \in L_y\}$ then $z \in A_x$.

(In the total ordering on X which we will construct in this proof, L_x will be the set of all points smaller than or equal to x, and U_x will be the set of all points larger than or equal to x.)

Let x_0 be the first element of X_0 and define

$$L_{x_0} = B_{x_0} \quad \text{and} \quad U_{x_0} = A_{x_0}.$$

Assume that we have defined L_{ν} and U_{ν} for all y < x satisfying (1) through (5). Let

$$E = \{ y \prec x | x \notin L_y \}$$
 and $F = \{ y \prec x | x \notin U_y \}.$

Put

$$Z = X \setminus \big(\bigcup_{y \in E} L_y \cup y \bigcup_{y \in F} U_y \big).$$

Let k = |E| and for each $\xi \le k$ define points $y_{\varepsilon} \in E$ in the following way:

$$y_0 = \min(E),$$

(7)
$$y_{\zeta} = \min \left\{ y \in E \cup \{x\} | (y_{\mu} \prec y \text{ for all } \mu < \zeta) \, \& \left(y \notin \bigcup_{\mu < \zeta} L_{y_{\mu}} \right) \right\}.$$

Let $\xi \leq k$ be the first ordinal for which $y_{\xi} = x$.

Claim 1. If
$$\xi_0 \leqslant \xi$$
 then $\bigcup \{L_y | y \in E \& y \prec y_{\xi_0}\} = \bigcup_{\mu < \xi_0} L_{y_\mu}$.

227

icm[©]

Take $y \in \{z \in E \mid z \prec y_{\xi_0}\} \setminus \{y_{\mu} \mid \mu < \xi_0\}$ and let $\mu \leqslant \xi_0$ be the first ordinal for which $y \prec y_{\mu}$. Since $y_{\varrho} \prec y$ for all $\varrho < \mu$ (notice that $\mu \neq 0$) and since $y \neq y_{\mu}$, by (7), $y \in \bigcup_{\varrho < \mu} L_{y_{\varrho}}$. Choose $\varrho < \mu$ such that $y \in L_{y_{\varrho}}$. Since $y_{\varrho} \prec y$, by (2),

$$L_{y} \subset L_{y_{Q}} \subset \bigcup_{\delta < \xi_{0}} L_{y_{\delta}}.$$

CLAIM 2. If $\mu_0 < \mu_1 < \xi$ then $L_{y_{\mu_0}} \subset L_{y_{\mu_1}} \setminus \{y_{\mu_1}\}$.

By (7), $y_{\mu_1} \notin L_{y_{\mu_0}}$. Consequently, $y_{\mu_1} \in U_{y_{\mu_0}}$ and therefore, by (3), $U_{y_{\mu_1}} \subset U_{y_{\mu_0}} \setminus \{y_{\mu_0}\}$. Consequently, by (1), $L_{y_{\mu_0}} \subset L_{y_{\mu_1}} \setminus \{y_{\mu_1}\}$.

Claim 3. If $\mu_0 < \mu_1 < \xi$ then $L_{y_{\mu_1}} \backslash L_{y_{\mu_0}} \subset A_{y_{\mu_0}}$.

Take $t \in L_{y_{\mu_1}} \setminus L_{y_{\mu_0}}$. Since $t \in U_{y_{\mu_0}}$ and, by (7),

$$U_{y_{\mu_0}} \subset \bigcup \{U_y | y \prec y_{\mu_0} \& y_{\mu_0} \in L_y\} \cup A_{y_{\mu_0}},$$

we may assume, without loss of generality that $t \in U_z$ for certain $z < y_{\mu_0}$ with $y_{\mu_0} \in L_z$. Assume that $y_{\mu_1} \in L_z$. We will derive a contradiction. Since $y_{\mu_0} < y_{\mu_1}$ and since $z < y_{\mu_0}$ this implies by (2), that $L_{y_{\mu_1}} \subset L_z \setminus \{z\}$. Consequently, $t \in L_z \setminus \{z\}$ and $t \in U_z$, contradicting (1). This shows that $y_{\mu_1} \notin L_z$ which implies that $y_{\mu_1} \in U_z$. Since $z < y_{\mu_1}$, by (3), $U_{y_{\mu_1}} \subset U_z$ and therefore $x \in U_z$. If also $x \in L_z$ then x = z which is impossible since z < x. We conclude that $x \notin L_z$ or equivalently, $z \in E$. Let $\varepsilon \leqslant \mu_0$ be the smallest ordinal such that $z \leqslant y_z$. Since $y_\delta < z$ for every $\delta < \varepsilon$ by (7), either $z = y_\varepsilon$ or $z \in L_{y_\delta}$ for certain $\delta < \varepsilon$. If $z = y_\varepsilon$ then $y_{\mu_0} \in L_{y_\varepsilon}$ which contradicts $z < y_{\mu_0}$ (Claim 2). Therefore, $z \in L_{y_\delta}$ for certain $\delta < \varepsilon$. Then $z \in L_{y_\delta} \subset L_{y_{\mu_0}} \setminus \{y_{\mu_0}\}$. Since $z < y_{\mu_0}$ and since $y_{\mu_0} \in L_z$, by (2), we also have that

$$L_{y_{\mu_0}} \subset L_z \setminus \{z\},$$

which implies that $z \in L_{y_{\mu_0}} \subset L_z \setminus \{z\}$, a contradiction.

Claim 4. If $t \in \operatorname{Cl}_X \left\langle \bigcup_{y \in E} L_y \right\rangle \setminus \bigcup_{y \in E} L_y$ then t is a cluster point of the net $\{y_\mu | \mu < \xi\}$.

Suppose not. Let U be a neighborhood of t which misses $\{y_{\mu} | \mu < \xi\}$. For each neighborhood V of t we choose a point

$$x(V) \in (U \cap V) \cap \bigcup_{y \in E} L_y$$

and we let $\mu(V)$ be the smallest ordinal such that $x(V) \in L_{y_{\mu(V)}}$ (such ordinal exists by Claim 1). We choose a clusterpoint p of

$$\{y_{\mu(V)}|\ V \text{ is a neighborhood of } t\}$$

in βX and by Theorem 2.2 we may extend s to a weak selection $s_p\colon (X\cup\{p\})^2\to X\cup\{p\}$ (if we have chosen the point p in X, which will happen e.g. if ξ is finite, then the argument below still works if we simply ignore the index p everywhere we write s_p). We will first prove that each x(V) is

a point of $B_{y_{\mu(V)}}$. If this is not the case, then by (4) there is a $y < y_{\mu(V)}$ such that x(V) in L_y and $y_{\mu(V)} \in U_y$. Since $y < y_{\mu(V)}$ and $y_{\mu(V)}$ in U_y , by (3),

$$U_{y_{\mu(Y)}} \subset U_{y} \setminus \{y\}$$

which implies that $L_y \subset L_{y_{\mu(V)}}$. Consequently, $x \notin L_y$ or equivalently, $y \in E$. By Claim 1 we can find a $\delta < \mu(V)$ such that $x(V) \in L_{y_{\delta}}$ which contradicts the minimality of $\mu(V)$.

The point (t, p) is a cluster point of

$$\{(x(V), y_{\mu(V)}) | V \text{ is a neighborhood of } x\}$$

in $(X \cup \{p\})^2$. Since each $x(V) \in B_{y_{\mu(V)}}$, by continuity of s_p we find that $s_p(t, p) = t$.

Fix $\varrho < \xi$ and consider the sequence

$$\{(x(V), y_{\varrho}) | V \text{ is a neighborhood of } t \text{ and } \varrho < \mu(V)\}.$$

By Claim 3 and the definition of $\mu(V)$ we find that

$$s((x(V), y_{\varrho})) = y_{\varrho}$$

for each element of the sequence. By continuity of s this implies that $s(t, y_e) = y_e$. Since s_p is continuous and extends s we can now conclude that $s_p(t, p) = p$. Since $t \neq p$ we have derived a contradiction.

Claim 5. If both t and u are cluster points of the net $\{y_{\mu}|\ \mu < \xi\}$ then t = u.

Let C and D be closed and disjoint neighborhoods of, respectively, t and u. Define:

$$E = \{(y_0, y_u) | y_0 \in D, y_u \in C \text{ and } \varrho < \mu\},$$

and

$$F = \{(y_{\delta}, y_{\epsilon}) | y_{\delta} \in C, y_{\epsilon} \in D \text{ and } \delta < \epsilon\},$$

respectively. It is clear that (t, u) is a cluster point of E as well as F. If $(y_\varrho, v_\mu) \in E$ then, by Claim 3, $s(y_\varrho, v_\mu) = y_\varrho$, whence, by continuity of s, s(u, t) = u. In the same way, if $(y_\delta, y_\epsilon) \in F$ then $s(y_\delta, y_\epsilon) = y_\delta$ and consequently s(t, u) = t. This contradiction proves the claim.

CLAIM 6. $\bigcup_{y \in E} L_y$ has at most one boundary point.

Follows immediately from Claims 4 and 5.

CLAIM 7. If $t \in Z$ and $\mu < \xi$ then $t \in A_{y_{\mu}}$.

Since $t \notin L_{y_{\mu}}$ clearly $t \in U_{y_{\mu}}$. Therefore by (5), if $t \notin A_{y_{\mu}}$ then $t \in U_{y}$ for certain $y \prec y_{\mu}$ with $y_{\mu} \in L_{y}$. If $x \in L_{y}$ then $x \notin U_{y}$ since $x \neq y$ in which case $Z \cap U_{y} = \emptyset$ which contradicts $t \in Z \cap U_{y}$. Therefore $y \in E$. By Claim 1

$$\bigcup\{L_{y}|\ y\in E\&y\prec y_{\mu}\}=\bigcup_{\delta<\mu}L_{y_{\delta}}.$$

Therefore $y_{\mu} \in \dot{L}_{\nu_{s}}$ for certain $\delta < \mu$ which contradicts (7).

Formally we have to consider two cases, namely that ξ is a successor or that ξ is a limit ordinal. Those two cases can be treated analogously and since the case that ξ is a limit is more complicated we will assume from now on that ξ is a limit.

Since $L_{y_{\mu}} \setminus \{y_{\mu}\}$ is open for each $\mu < \xi$ by Claims 1 and 2, $\bigcup_{y \in E} L_y$ can have at most one limit point, say a. By using precisely the same technique as above and again restricting our attention to the limit case we can find a limit ordinal η and for each $\mu < \eta$ a point $z_{\mu} \in F$ such that

(8) if
$$\mu < \delta$$
 then $U_{z_{\mu}} \subset U_{z_{\delta}}$,

$$(9) \qquad \bigcup_{\mu < \eta} U_{z_{\mu}} = \bigcup_{y \in F} U_{y},$$

and

(10) if $t \in \mathbb{Z}$ and $\mu < \eta$ then $t \in B_{z_{\mu}}$.

Again we find that $\bigcup_{y \in F} U_y$ has at most one boundary point, say b, and that this point is a cluster point of the net $\{z_u | \mu < \eta\}$.

Case 1. a=b. We then claim that $Z=\{x\}=\{a\}=\{b\}$. For assume that there exists a point $t\in Z\setminus \{a\}$. By Claim 7, $s(y_{\mu},t)=y_{\mu}$ for all $\mu<\xi$ and consequently s(a,t)=a since a is a limit point of $\{y_{\mu}\}_{\mu<\xi}$. On the other hand, by (10), $s(t,z_{\mu})=t$ for all $\mu<\eta$. By the same argument s(t,a)=s(t,b)=t. Contradiction.

We therefore conclude that a = b = x and that $Z = \{x\}$. Now define

$$L_x = \bigcup_{y \in E} L_y \cup \{x\}$$
 and $U_x = \bigcup_{y \in F} U_y \cup \{x\}.$

An easy check shows that our inductive hypotheses are satisfied.

Case 2. $x \neq a$ and $x \neq b$ if either a or b exists. Define

$$L_x = \bigcup_{y \in E} L_y \cup (Z \cap B_x)$$
 and $U_x = \bigcup_{y \in F} U_y \cup (Z \cap A_x)$.

Observe that both L_x and U_x are closed since $a \in Z \cap B_x$ and $b \in Z \cap A_x$. Again an easy check shows that our inductive hypotheses are satisfied.

Case 3. x = a and $x \neq b$ if b exists. Define

$$L_{\mathbf{x}} = \bigcup_{\mathbf{y} \in E} L_{\mathbf{y}} \cup \{\mathbf{x}\}$$
 and $U_{\mathbf{x}} = \bigcap_{\mu < \xi} U_{\mathbf{y}_{\mu}}$.

Case 4. x = b and $a \neq x$ if a exists. Similar to case 3.

Now define $x \le y$ iff $x \in L_y$. Then \le is a linear order. Moreover, for each $x \in X$ the sets $\{y \in X | y \le x\}$ and $\{y \in X | x \le y\}$ are closed. This means that X is weakly orderable w.r.t. the order \le . So we only have to show that the space X has an open base consisting of convex sets w.r.t. \le .

Suppose that $x \in X$ has a cozero-set neighborhood U such that U does not contain a convex open set containing x. Without loss of generality we may suppose that U does not contain any closed interval [y, x] for a point $y \leq x$.

We construct a transfinite sequence $\{y_{\zeta}\}$ which now satisfies the conditions

$$(6) y_0 = \min(E),$$

(7')
$$y_{\zeta} = \min \left\{ y \in E | (y_{\varrho} \prec y \text{ iff } \varrho < \zeta) \& (y \notin \bigcup_{\varrho < \zeta} L_{y_{\varrho}}) \right\}$$

if it exists. Let ξ be the first ordinal such that y_{ξ} does not exist.

We can now consider all points (t, y_{ζ}) in $(X \cup \{p\})^2$ with $t \leqslant y_{\zeta}$ and $t \in U$ such that there is no member of the sequence between t and y_{ζ} . From condition (4) it follows that $s(t, y_{\zeta}) = t$. If x is not an adherence point of the sequence y_{ζ} then we can consider the space $X \cup \{p\}$ for some $p \in \beta X$ which is in the closure of the sequence y_{ζ} . Without loss of generality we choose p such that p is in the closure of the chosen sequence y_{ζ} and then we may conclude that s(x, p) = x. If we consider all points (t, y_{ζ}) with $y_{\zeta} \leqslant t$ then we obtain that s(x, p) = p. (Compare with Claim 3.) We derived a contradiction in the same way as in Claim 4.

So we assume that x is in the closure of $\{y_{\zeta}\}$. A similar argument shows that x is the limit of the sequence $\{y_{\zeta}\}$.

Next we choose a point of βX in the closure of all intervals [y, x] intersected with $X \setminus U$ and we derive a contradiction in the same way; but now we have that x is in the closure of the y_{ξ} and p in the closure of the t's.

Finally we conclude that the existence of a cozero-set neighborhood U which does not contain a right neighborhood of x leads to a contradiction, and so x has a local base consisting of convex open sets. This proves that X is a GO-space.

References

- J. van Dalen and E. Wattel, A topological characterization of ordered spaces, Gen. Top. and Appl. 3 (1973), pp. 347-354.
- [2] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), pp. 152-182.
- [3] J. van Mill and E. Wattel, Selections and orderability, Proc. Amer. Math. Soc. 83 (1981), pp. 601-605.

WISKUNDIG SEMINARIUM VRIJE UNIVERSITEIT De Boelelaan 1081 1081HV Amsterdam