icm

238 G.R. Gordh, Jr. and E.J. Vought

[7] L.F. McAuley and M. M. Rao (editors), General Topology and Modern Analysis, Academic
Press, New York 1981.

[8] E. J. Vought, Monotone decompositions of Hausdorff continua, Proc. Amer, Math. Soc. 56
(1976), pp. 371-376.

[9] L. E. Ward, Jr., Mobs, trees, and fixed points, Proc. Amer. Math. Soc. 8(1957), pp. 798-804.

G. R. Gordh, Jr

DEPARTMENT OF MATHEMATICS AND STATISTICS
CALIFORNIA STATE UNIVERSITY

Sacramento, California 958_19

and (current address)

DEPARTMENT OF MATHEMATICS

GUILFORD COLLEGE

Greenshoro, North Carolina 27410

Eldon J. Vought

DEPARTMENT OF MATHEMATICS
CALIFORNIA STATE UNIVERSITY
Chico, California 95929

Received 26 October 1981

On absolutely - A3 operations

by
Kenneth Schilling (Los Angeles, Ca.)

Abstract. Every absolutely A} Boolean operation preserves the Baire property in all
topological spaces, and, as a consequence, measurability in all o-finite complete measure spaces.

It is a classical theorem that the operation (A4) preserves the Baire
property in all topological spaces, and measurability in all o-finite complete
measure spaces.

R. Solovay (unpublished) introduced the class of absolutely A% sets (to be
defined in the next section) in Polish spaces, and proved that they have the
Baire property, and are Lebesgue measurable. Solovay’s results were re-
discovered and extended by Fenstad and Normann [3], who showed that an
absolutely 4} set in an analytic space is measurable with respect to any o-
finite, complete, regular Borel measure.

In order to extend these results further, R. Vaught (unpublished; an-
nounced at Wroctaw, 1977) considered the absolutely 4% Boolean operations,
and showed that these operations preserve the Baire property in any
topological space satisfying the countable chain condition, and measurability
with respect to any o-finite complete measure.

The main result here, in analogy with and extending the classical
theorem cited above, is

TueorEM 3.3. All absolutely A% Boolean operations preserve the Baire
property in all topological spaces.

From 3.3, using a theorem in [8], we directly infer the part of Vaught’s
result dealing with measure.

Now let 3 be an arbitrary o-field of sets on a set X, and let I be
a g-ideal on X such that I = 3. Vaught proved

TueoreM 4.1, If the Boolean algebra J/I satisfies the countable chain
condition, then 3 is invariant under all absolutely A% Boolean operations.

We cannot infer 4.1 directly from 3.3. However, we do show that, by
introducing a simple device, the pattern of our proof of 3.3 carries over into a
new proof of 4.1.

Most of the material herein appears in the author’s doctoral dissertation
[9]. I am grateful to my thesis advisor, Robert Vaught, for his hclp in all
aspects of its preparatxon
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Section 1. Preliminaries. We assume some familiarity with the ter-
minology of set-theoretic forcing and Boolean-valued models. Our notation
is taken from [4], ‘

A set § < P(w) is absolutely A3} if there exist £} formulas @ and ¥ and a
parameter te #(w), such that :

forallx < w, xeSifand only if & (x, £) holds, if and only if ~ ¥ (x, 1) holds,
and for ail complete Boolean algebras 9B,

IVx = @(®(x, ) o ~P(x, Mls = 1.

(For some basic facts about the class of absolutely 4} sets, see [31.)
Let S be any subset of 2(w). For any non-empty set X, S determines an
w-ary operation 0¥ on 2 (X) where

O (A new) = {xeX: {n: xeA,,}e‘S}.

Operations so obtained are called Boolean, Boolean operations have many
pleasant and easily verified properties. For example, the reader will easily
show

(1.1) O3 ((Ay: new)A0¥((B,: new) < U (4,48,).

new

Now the key definition: The Boolean operation 0¥ is said to be an
absolutely A} Boolean operation provided § is an absolutely 4% subset of
2 (w).

Examples of absolutely 43 Boolean operations are the operation (A4), the
R-operations of Kolmogorov, and the Borel game operations [10]. That the
Borel game operations are absolutely 4} is a consequence of D. Martin’s
Borel determinacy theorem [6]. In [10], R. Vaught and the present author
prove that the Borel game operations preserve the Baire property in all
topological spaces (a special case of our main theorem) without appealing to
the fact that these operations are absolutely 43.

Let U, and A, be structures. We write A, < A, to mean that A, is an
elementary substructure of %, in the usual sense of model theory (as in, ¢.g.,
[1]). The Lowenbeim—Skolem theorem [1] says that for any structure Ay,
and any countable subset A of the universe of U, . there exists a countable
structure 2, such that %, < 2, and the universe of %, includes 4. The letter
B will always denote the Boolean algebra (B, A, v, —, £,0, 1)

Let D be an ultrafilter over 8B, and S a subset of B such that IT¥S exists.,
We say that D preserves the infimum IT®S provided that IT*Se D if, and only
if, § = D. For any set M, the ultrafilter D is called M-generic if, for all Se M
such that § < B and II®S exists, D preserves the infimum [7%S. The
Rasiowa-Sikorski theorem [11] states that, if M is a countable set, then

there exists an ultrafilter D over B which is ‘M-generic.
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Section 2. The main lemma. In this section we will prove a lemma which
is a combination of the Lowenheim—Skolem and Rasiowa—Sikorski theorems,
in a game setfing. Our proof is a modification of well-known proof of these
two theorems.

Given a Boolean algebra B, a transitive (in the usual sense of set theory)
set Wand a countable set T< W, we will find a countable set M = Tand a
filter D over B such that
h (M, e)<(W, e,

(2) DnM is an ultrafilter over B/BAM,
(3) (VAeM)(if A< B and IT®4 exists, then
M®*4eDnM or 3be AnM)beD).

Note that (3) implies that DnM is M-generic over B/BNM. Below, p;
and g¢; are to range over non-zero elements of B, and a; over arbitrary sets,

Cfor i=0,1,2, ...

Lemma 2.1. Let B be a Boolean algebra, W a transitive set such that
BeW, T< W a countable set, and de B. Then

4) (Vpo <d3go < po3ageW Vp; <qo3q; < pyJaeW..)
((1), (2) and (3) above hold, for M = Tu{p,, q;, a;: iew} and D = {beB: g, < b

for some n)). .

(The notation of (4) means that player II (the 3-player, or (g, a)-player)
has a winning strategy in the indicated game.)

Proof. Fix B, W, T and d as in the hypothesis of 2.1. We use o
= (Po> 40> Aoy -5 P> Ans Gy -..) to range over completed legal runs of the
game in (4). Put o, = (po, ..., a,) and a, =(py, ..., po) (i€, the first 3n+3 and
3n+1 entries in o, respectively). We. put M(x)e T {p,, 4., a,: new}, and
D(x)={beB: q,<b for some new}.

Let % (g) be the first-order language with equality and the binary
relation symbol €. Let ¢ be an existential .#(g)-formula with free variables
among vg, ..., 0; say ¢ = I, P. Let xo, ..., X, & W. We say that II has dealt
with the pair (@, (xo, ..., %)) at a, if either Wi "1¢[xo, ..., %], or

v
W [xe, ..., X 4
i
(*1) For all «, n, ¢ and all x,, ..., x, €W, there exist g and a such that II
has dealt with the pair (¢, (%o, ..., X)) at o, (g, a).
(Here " denotes concatenation of sequences.)
(xx1)  Xf for all ¢, and all x,, ..., x, €M («) there exists n such that II bas

dealt with (@, (xo, ..., X)) at a,, then (1) holds for M = M (a).

(1) follows immediately from a well-known characterization of the
elementary substructure relation [1, p. 108].
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Now suppose be B. We say II has dealt with b at o, if either ¢, < b or
gn < b.

(*2) For all a, new, and' beB, there exist q‘and a such that II has dealt
with b at «; "(q, a).
Indeed, if p, < b, let (g, a) = (p,, O). Otherwise, let (4, @) = (p,—b, Q).

(#+2)  Xf for all be M (a)nB, there exists n such that II has dealt with b at
&, then (2) holds for D = D(x) and M = M (o).

(*+2) is easily checked.

Fi'nally, if A < B, we say that I has dealt with A at a, if either IT% 4 does
not exist, or g, < I1* 4 and a, = IT® 4, or for some be A, gu<band g, =p,
(%3) For all ¢, new and 4 < B, there exist q and a such that II has dealt

with 4 at «, (g, a).

Indged, if for all bed, p, <b, then p, < IT® A. Let (4, @) = (p,, 11 4).
Otherwise, there exists be 4 such that Pn% b. Let (g, a) = (p,—b, b).

(#+3)  If for all Ae M{x) such that A < B, there exists n such that 11 has
dealt with 4 at a,, then {3) bolds for M = M(x) and D = D ().

(¥x3) follows at once from our definitions.

Player II's winning strategy in (4) is now apparent. Let the variable y
range over things to be “dealt with”, that is, pairs (0. (xq, ..., X)) with
Xo, ---, X, €W, elements b of B, and subsets 4 of B. Say (o, (xo, ..., xy), b, or
A arise in VS W if, X, ..y X, €V, or beV, or AeV, respectively, ‘

Before play begins, II assigns to each y which arises in T a natural
number, by creating an injection from the set of all such y into , in such a
way th.at the range of f misses an infinite set of natural numbers; f M =nis
to be interpreted as meaning that IT promises to deal with X on his nth
move,

Now suppose play to date has gone (p, qq, 4y, ..., p,). If =
some y, then‘by (*1), (+2), or (+3), there exist 3: anod ay sﬁ'gh thﬁx}))]aerf?;
has dealt with y at (p,, 90> 30, -, Dn, 4y, a,); player II plays (g,, a,).
Otherwis_e he plays arbitrarily. He then assigns a number f(y) > # to cach"x
which arises from TG {p,, g, ay, ..., p,, q,, a,} for which f () has not yet
peen.dcﬁned, in such a way that £ is still an injection whose range misses an
infinite set of natural numbers,

4 It is clear that if o = (Po, 9o G0, ...) is a play in which player II follows
this strategy, every y which arises in M (@) is dealt with at some a,. Thus by

(x+1), (+x2), and (xx3), respectively, (1), (2), and (3) hold wi
N ¢l k] ¢l 'y th M
D(«) for D. This completes the proof, ( 1 (#) for M and

Section 3. Absolute 43 operations and the Bair
. : e property. Let X be an
arbitrary topological space, fixed throughout this section. We use U and 'V
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(often subscripted) to range over non-empty open sets in X. For 4, B X,
we write A < B to mean that 4 ~ B is meager (first category), and A =B to
mean 4 < B and B < A. A4 is said to have the Baire property if A = 0 for
some open set (. ‘

Let I be the ideal of meager sets in X, and BP the class of Baire
property sets in X. Then I is a o-ideal in X, and BP is a o-field of subsets of
X [11]. We form the Boolean algebra #(X)/I, and denote its elements A/l,
for A < X. An extremely important subalgebra is BP/I. The Birkhoff-Ulam
theorem [11] says that BP/I is a complete Boolean algebra.

X is a Baire space if no non-empty open set is meager. Open meager
sets will be a nuisance, so we use a device from [5] to avoid them. Let E be
the union of all open meager sets in X, and let D = X ~ E. Then [51Dis
comeager, and is regular open (the closure of an open set 0).

3.1 If beBP/I, and b # 0, then there exists an open set U such that b
= U/I, and U has no non-empty open meager subsets (i.e, U is a Baire space).

Indeed, by definition, there exists an open V such that b = V/I. If D and
O are as above, then U = ¥n0 has the desired properties.

As a final preliminary, we recall the Banach-Mazur theorem .[7].

TueOREM (Banach-Mazur). Let A < X. For all non-empty open sets U, A
= U, if and only if

YU, UV, cU, VU, SV ... NV S 4.
iew

We are now ready to state and prove a theorem from which our main
theorem, 3.3, will follow at once.

THEOREM 3.2, Suppose A =(A,: new) is a sequence of open sets in X.
Further suppose that S < P(w) is a X} set; say te P(w), and ® is a T}
SJormula such that,

Sor all x = w, xeS if, and only if, ®(x, 1) holds.

Let r be the BP/I-Boolean valued subsets of & such that,

Jor all new, r(M) = A4,/1.
Then .
GE A 2 11D (r, Dllars-

Proof. For short, set 8= (B, A, v, —, £, 0,1)=BP/I, b, = A,/I for
n=0,1,..., and d=[|9(, Dlls.

We must discuss a technical point. It would be convenient to have
available an elementary substructure of the universe. Of course, no. such

structure need exists, but, for any formula 6 of the language of set theory., it
is a theorem, the “reflection principle” (see [4]), that for any set z there exists

a transitive set W2z such that

5 ~ Fundamenta Mathematicae 121,3
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(8)p for all xp, x4, ..., x,€W, 0(xq, X;. ..., x,) holds in W
if and only if 8(x,, %y, ..., x,) holds (in the universe).

Accordingly, let 8 be the conjunction of all the (finitely many) formulas
to which we will apply the reflection principle in the remaining part of this
proof. Let Wbe a transitive set such that ¢, d, (b,: new) and Be W, and for
which (5)¢ holds.

We now proceed with the proof of 3.2, If d =0 there is nothing to
prove, so suppose d # 0. Then by 3.1, let U be an open set such that d = U/I
and U has no non-empty open meager subsets.

CLaM.

(6) YU, UV, s U VU, ¥, ... {n: 3m V,, < A,}€S.

Proof of claim. Apply Lemma 2.1 to our present 8, Wand d with T
=18, t, d, (b,: new)}u{b,: new}, to obtain a winning strategy F for player
1T in (4). We now describe player II's winning strategy in (6). As II plays the
game in (6), he will simulate a play of the game in (4) in which he follows the
winning strategy F. .

Suppose I plays Uy < U in (6). Since U has'no non-empty open meager
subsets, Uq/I'eB—{0} and so Uy/I is a legal play of the game in (4), Say F
tells 11 to play (v, ao) in (4). Then there exists ¥, < U, such that vy = Vy/I.

II plays ¥, (in (6)).

Now say I plays U € V;. II simulates that I has played U 1/1 in (4), and
if F tells II to play (v, a,) where ¥, € U, and v, = Wi/I, 11 plays V.

Play continues in this manner, producing a play Uo, Vo, Uy, Vi, ..) of
the game in (6), and a simulated play

(UL, Vo1, ag, UL, Vi1, ay, ..

of the game in (4) in which II has followed the winning strategy F. Thus, if
we put

M = {8,1,d, (b, new)}ulb,: new}U{UJI, Ve, new}
and '
D ={beB: V,/I<bh for some nen},

(1), (2) and (3) of Section 2 hold.

Since the axiom of extensionality is true, by (5), Wis extensional, and so
by (1), M is extensional. Thus we may let : M — N be the transitive collapse
of M, ie. ' is an e-isomorphism of M ontq the transitive set N.

Since B is a.complete Boolean algebra (and recall that BeM), by (5)
and (1) M=% is acomplete Boolean algebra” and so, since ’ is an isomorphism,
NE=“®' is a complete Boolean algebra.” :

Let D'={)’eB: beDnM}. (Note that we cannot speak of D’ since
in general D¢ M.) g
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SUBCLAIM,

D\ is a N-generic ultrafilter over B,

Proof of subclaim. That D' is an ultrafilter over B’ follows easily from
(2). To prove genericity, suppose Ce N and C < D\. We show that IT* Ce D\,

Indeed, since CeN, C = 4’ for some Ae M. Since A' < D\, 4’ < B’ and
so by isomorphism, (1) and (5), 4 < B. Since B is complete, IT® A exists. Thus by
©)

IM®4eDrM or (AbeAnM)beD.

Suppose, for contradiction, that the latter holds. Then b'eA’, so b'eD\
so beD. This is impossible, since beD and D is a filter.

Therefore II* Ae DM, so (IT® AYeD\. A short argument shows that
(II®A) = O™ C. Thus IT¥ CeD, and the subclaim is established.

Hence N[D'] is a generic extension of N.

Recall that we put ||®(r, I)lla = d. As it is a basic fact about forcing that
“limited forcing is definable™, and it is easily checked that r, I, B and de M
by (5), (1) and the fact that ' is an isomorphism, we have

18, g =d".

Now d'e D' (indeed d > Vp/I and so deD), so by the “truth lemma” for
forcing
N[DV=d(s, t')

where s = {new: b’'eD'}. Recall that & was assumed to be a X} formula, and
so by Mostowski’s absoluteness theorem, ®(x, t') is true, i.e.

(N s={new: beD\}eS.
Now, unscrambling . definitions,
b,eD' if and only if b,eD,
if and only if 3m V, /I < b,,
.if and only if AmU,, < A4,,.

Hence, by (7), {new: ImU,, < 4,}€S. This shows that our strategy for the
game in (6) is indeed a winning strategy, and completes the proof of claim

6). :
© “To complete the proof, we borrow a device (due to Vaught) from our
[10]. According to Proposition 4.3 (the resolving lemma) of [107, from (6) it
follows that there is a winning strategy G for player II in the game in (6) such
that, for any play (Uo, ¥y, Uy, Vi, ...) in which player II plays according to
G, for all new, V, < 4, or V,n4,= 0.

--Cram. G is a winning strategy for the Banach—Mazur game

® YU, S UV S Uy WU, ¥y ... () Vi < GX(4),
new
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Proof of claim. Let (Ug, ¥p, ...) be a play of the game in (8) in which
player II has followed the strategy G. Suppose x& () V.

Hew

Fix new. If xe4,, then ¥, = A4,, so certainly AmV,, < 4,,.

Conversely, suppose dmV,, < 4,. If V,n4, = O, one sees easily that one
of the sets V,,, V, is meager, contradicting the fact that U has no non-empty
open meager subsets. Thus ¥, = 4,, and so x€A,.

Hence for all new, xe A, if and only if 3m¥,, < 4,. Now since G was a
winning strategy for (6), we have {n: xeA,}eS, that is, xe OF(4). This
completes the proof of the claim.

Thus by (8) and the Banach-Mazur theqrem, ¢%(4) > U. Recalling that
U/I =||®(r, T)l|g, we have

O (AT 2 (1D (r, Dllws
and the proof of 3.2 is complete.

As promised, from 3.2 we obtain a short proof of 3.3

TueoreM 3.3. Absolutely. A} Boolean operations preserve the Baire
property.

In detail, let A'=(A,: new) be a sequence of subsets of X with the Baire
property. Suppose § < P(w) is an absolutely A} set; say & and ¥ are X}
SJormulas and t < @ such that

Jor all x = w, xe8 if and only if @ (x, ) holds if and only if ~¥(x, 1) holds,
and
©) forlall complete Boolean algebras B, ||Vx S B(Dx, ) e> ~ ¥ (x, i'))“,,,
Then

1) OF (A) has the Baire property.

2) If r is the Boolean BP/I-valued subset of 6 such that, for all new, r(¥)
= A1, then OF(AYI =||®(r, Dllgp;s-

Proof. First, note that 2) implies 1). Next, observe that, using (1.1), 2)

reduces to the case where all of the sets 4, are open. With this reduction, all of

the hypotheses of 3.2 are satisfied, and we have
(10) OF (AT 2 ||D(r, Dl

Likewise, the hypotheses of 3.2 are satisfied with ¥ for ¢ and ~§ for S.
Thus

(11) O~s (AT 2 11®(r, Dllsgy-

It is routine to check that @X5(4) = ~0}(A). Also, by (9), ¥, Dlarr
=||@(r, Dlgp- Thus, taking complements in (11) we have
(12) ' @0, Dilger = OF (A1
(10) and (12) yield the conclusion of 2), and we are done.
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Remarks. 1) It is clear from the proof of 3.3 that in (%) the phrase “for
all complete Boolean algebras B” may be weakened to “for B = BP/I”.

2) Let (X, #, 1) be an arbitrary o-finite complete measure space. By a
theorem in [8], there exists a topology % for X with the property that

“(X, .#, p-measurable = (X, J)-Baire property”
and
“(X, ., p)-measure zero = (X, J)-meager”.

Using the topological space (X, J), 3.3 yields at once 3.3, which is 3.3
with “o-finite measure space” replacing “topological space”, “measurability”
replacing “the Baire property”, J# replacing BP, and letting I be the ideal of
sets of measure zero. In particular, all absolutely 43 Boolean operations
preserve measurability.

In the next section we shall, by another method, establish a generaliz-
ation of 3.3' (but not of 3.3) originally due to Vaught.

3) Let X be the space of infinite subsets of w with the Ellentuck
topology (see [2]). 3.3, along with the results of [2], yield at once the result
that absolutely A sets are Ramsey. This extends the result of Silver and
Mathias that analytic sets are Ramsey.

Section 4. Other fields of sets, Let X be an arbitrary non-empty set, J a
o-fleld of subsets of X, and I a ¢-ideal on X such that I & 3. Our main
object in this section is to prove the following theorem, due to R. Vaught:

TurorEM 4.1, Suppose the Boolean algebra J/I satisfies the countable
chain condition. Then 3 is invariant under all absolutely A% Boolean operations.

4.1 overlaps with but does not include 3.3. However, 4.1 does include
3.3', as the Boolean algebra “measurable/measure zero” satisfies the count-
able chain condition for-any ¢-finite measure space X.

Our proof of 4.1 is accomplished by assigning nmew (non-topological)
meanings to the topological terminology used in Theorems 3.2 and 3.3 (in
particular “open”, “meager”, and “Baire property”) in such a way that our
proofs of 3.2 and 3.3 are valid for these new meanings. The reinterpreted 3.3
will immediately imply 4.1. ,

For the remainder of this section, fix arbitrary X, 3 and I as above. As
usual, we form the Boolean algebra #(X)/I, and subalgebra B = J/I. We
also add the hypothesis

(13) B satisfies the countable chain condition.

Let A, BS X. Wesay Ais openif AeI~Iorif A= 0. Wesay dis
meager if Ael. i

{Aside: The space X consisting of X along with its open sets as just
defined, is not in gemeral a topological space, though as we shall see, X
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satisfies a few key theorems of topology, suitably interpreted. It is true, that if
one applies one of the usual definitions of ‘meager’ (in terms of ‘open’) to our
X, our notion of ‘meager’ is obtained (even without assuming (13); see [97), but
we will not need this fact).

Say ASBif A~ Blsmeager Wesay A=Bif A<B and B A A
has the Baire property if A =@ for some open set €.

Let BP be the class of sets with the Baire property. Then one easily see
that

42. BP =3, so BP/I=3/I(=

We shall need a few simple facts.

4.3. Every collection of disjoint open sets is countable.

Indeed, 4.3 is equivalent (13), as an easy argument shows. As a consequ-
ence of 4.3, we obtain 4.4.

4.4. The class of open sets is closed under disjoint unions.

45. B is a complete Boolean algebra.

45 follows from a general theorem about Boolean algebras: A o-
complete Boolean algebra satisfying the countable chain condition is com-
plete (see [117). Alternatively, 4.5 can be obtained directly from 4.4, without
using (13).

Finally, a version of the Banach-Mazur theorem holds. Let U, V usually
subscripted, range over non-empty open sets.

TueoreM 4.6, Let A < X. For all non-empty open sets U, A = U if and
only if

(14) YU, S UV, SU YU, S ¥ ... (| V, S A.

Proof. Suppose 4 > U, ie, U~ Ael. Then, in particular,
Und=U~ (U~ A)e3.

Say player 1 plays Uy < U. We claim that UynA is nonempty and
open. Indeed, Uynd = Uyn(UnA)eJ. Also UgnA¢l, for otherwise U,
=(UnA)u(Ug'~ 4) S (UpnA)U(U ~ A)el, contradicting the fact that U,
is open. Thus UgnA eI ~ I; player II plays V, = UynA. Then, no matter
how play continyes, ) ¥, < A. This proves (14).

new

Our proof of the converse copies the proof in [7] for topological spaces.
Suppose F is a winning strategy for player II in (14). By a partial F-play, we
mean a sequence z =(Uy, ¥, ..., U,, V) such that Ug2V,>...2V,
and II has played according to F. Another partial F-play =z
= (Ug, W55 -+ Up, V) is said to be disjoint from z if V,nV), = Q.

Let So be a maximal disjoint set of partial F-plays (Ug, Vp), and Jet
To= U {Vo: for some U,,(Uy, V;)€So}. Then by 44, T, .is open. Thus
U~Toe3. Actually, U ~ Tyel, for otherwise. U ~.T, is. non-empty and

icm
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open, so for some V we could add (U ~ Ty, V) to So, contradicting the
maximality of Sy.

Now let S, be a maximal d1s10mt set of partial F-plays (U, Vg, Uy, Vi)
such that (UO, Vo)€So, and let

= Ulel for some UO: VO’ Ula(UO’ VO: Ul:Vl)ESI}'

Again by 44, T; is open. We claim that U ~ T; 1. It suffices to show that
Ty~ Tiel, for then U~ T, S(U ~ T)U(Ty ~ Ty el.

Indeed, supposc for contradiction that T, ~ T; is non-empty and open.
Now Ty~ Ty =U{V, ~ T;: for some Uy(U,, Vp)eS,}; by 43, this is a
countable union, so for some (Uy, Vo)€S,, ¥ ~ T; is non-empty and open.
But then we could add (U, V,, ¥, ~ Ty, V) to S, for some V, contradicting
the maximality of §;. This proves the claim.

Continuing in this manner, obtain a sequence of partial F-plays,
8o, 815 ..., and a sequence of open sets, Ty, Ty, ..., such that, for all i,
U~Tel Thus U ~iﬂ Tiel. We complete the proof by showing that

[=4]

NTeA.
tew .

Let xe‘ﬂ T;. Since x € Ty, there is a unique (U,, V)8, such that xe V.

i8m

Since x & Ty, this is a unique (U, Vg, Uy, V)€S, such that xeV;. But then
(Uy, Vo)eS, by construction, and so xeVg; thus by uniqueness, (Uj, V3)
= (Uy, V). Continuing in this way, obtain a. play (Uq, V,, Uy, ¥, ..) of (14)
according to the winning strategy F. Therefore ﬂ V€4, so xeA.

Thus N T & A so since U~ () Tiel, U~ Ae] that is, A > U, as

lew few
desired.

The reader may now read the statements and proofs of Theorems 3.2
and 3.3 using the notions of open, Baire property, meager, BP, I, and < of
this section. The only needed change is the reference to 3.1 just before (6). In
our current context, we may take U to be any open set such that d = U/I, as
there are no non-empty open meager sets. Indeed, if U is non-empty and
open then, by definition, U¢I, so U is not meager.

Recalling 4.2, then, the first line of 3.3 as now interpreted, implies that S is
invariant under all absolutely 43 Boolean operations. Thus we have 4.1.

References

[1] €. €. Chang and H. J. Keisler, Model Theory, North Holland, Amsterdam 1973,

[2] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symb. Logic 39 (1974), pp.
1631685,

[3] 1. E. Fenstad and D. Normann, On absolutely measurable sets, Fund. Math. 81 (1974),
pp. 91-98,

e g -



GUEST


250 "K. Schilling

[4] T. Jech, Set Theory, Academic Press, New York 1978.

[5] K. Kuratowski, Topology I, New York-London-Warszawa 1966.

[6] D. A. Martin, Borel Determinacy, Ann. of Math. 102 (1975), pp. 363-371.

[7] J. C. Oxtoby, The Banach-Mazur game and Banach Category theorem, Contributions to
the theory of games iii, Princeton 1957, pp. 159-163.

[8] — Measure ard category, Springer-Verlag, New York 1971,

[9] K. Schilling, Properties invariant under infinitary Boolean operations, Ph. D. Thesis,

Berkeley 1981.

[10] — and R. Vaught, Borel games and the Baire property, to appear.
[t13 R. Sikorski, Boolean algebras, Springer-Verlag, New York 1969.

Received 7 December 1981

On Borel-measurable collections
of countable-dimensional sets

by

Roman Pol (Warszawa)

Abstract. Let B be a Borel set in the product S x T of compact metrizable spaces, whose
vertical sections B(s) are countable-dimensional (i.e. unions of countably many zero-dimensional
sets) Gy-sets in T It is an open guestion whether the small transfinite dimension ind of the
vertical sections of B is bounded, ie. if sup {indB(s): seS) < w,. We show that a certain
additional assumption about B (an existence of a Borel-measurable, poini-finite, sectionwise
separation for B, see Definition 3.2) guarantees that this is true.

§ 1. Preliminaries. In this paper we consider only separable metrizable
spaces and “compactum” means “compact space”. Our terminology concern-
ing analytic sets follows [K] and the terminology related to dimension
theory follows [A-P], [El] and [Na].

1.1. Terminology and notation. A closed set L in a space X separates two
disjoint sets 4 and B in X if X\L = UUV, U and Vbeing disjoint open sets with
A < U and B < V. We denote by w the set of natural numbers, I is the real unit
interval and Fin o is the set of all non-empty finite subsets of w. We identify the
power set 2" with the Cantor cube {0, 1}7"¢, i.e. we identify each subset of
Fin @ with its characteristic function and we consider the characteristic
functions with pointwise topology. The symbol |A| stands for the cardinality of
the set A. A sequence {4;: i€w) of subsets of X is point-finite if for each xe X
the set {iew: x4} is finite (thus we exclude the possibility that one set ocours
in the sequence infinitely many times). Given a set E in the product § x T we
denote by E (s) the vertical section {te T (s, t)e E} of the set E at the point s€S.

1.2. Countable-dimensional sets and the small transfinite dimension. A
space X is countable-dimensional if X = \J X;, X, being zero-dimensional.
=1

i

The small transfinite dimension ind is the ordinal-valued function ob-
tained through the extension of the classical Menger—Urysohn inductive
dimension by transfinite induction. If the transfinite dimension is not defined
for X, we write ind X = oo; since our spaces have always a countable base, if
ind X # oo, then ind X < wy.
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