

Binary consistent choice on pairs and a generalization of Konig's infinity lemma

by

Paul E. Howard (Ypsilanti, Mich.)

Abstract. In this paper we answer in the affirmative the question of Cowan: Does $T_2 \to BPI$? where T_2 is Cowan's generalization of Konig's infinity lemma restricted to trees of order 2. We also give a negative answer to the question: Does $F_2 \to BPI$? where F_2 is a principle involving binary consistent choice on pairs and BPI is the Boolean prime ideal theorem.

1. In [2] R. Cowan generalizes Konig's infinity lemma. We begin by describing that generalization. For convenience we give the following definitions from [2].

A tree is a connected undirected graph without circuts one of whose vertices is designated as the origin. The number of vertices on the unique path connecting a vertex v with the origin is the level of v, l(v). (Thus the set of vertices of a tree can be decomposed into an at most denumerable set of levels.) A vertex v' is a successor of a vertex v if v and v' are connected by an edge and l(v') = l(v) + 1.

A tree is *finite* if its set of vertices is finite and locally finite if each vertex has only finitely many successors. A branch in a tree is a maximal path beginning at the origin. If v and v' are on the same branch, then v' dominates v if $l(v') \ge l(v)$. Konig's lemma states that any infinite locally finite tree has an infinite branch.

Let T be a collection of locally finite trees (not necessarily pairwise disjoint). By a vertex or a level of T, we mean a vertex or a level of some tree in T. Also if v and v' are vertices of T, then v' dominates v in T if v' dominates v in some tree in T. Let S be a set of vertices of T. S pierces a level l of T if $|S \cap l| = 1$. (For any set A, |A| denotes the cardinal number of A.) S is consistent if for every v, v' in S there is a v'' which dominates them both in T. We can now state R. Cowan's generalization of Konig's lemma.

THEOREM 1.1. Let T be a collection of locally finite trees such that for any finite set of levels of T, there is a consistent set of vertices piercing those levels. Then there is a consistent set of vertices piercing the entire set of levels of T.

Let $\{A_i\}_{i\in I}$ be a collection of sets and R a symmetric binary relation on $\bigcup_{i\in I}A_i$. A choice function f for $\{A_i\}_{i\in I}$ is R consistent if f(i)Rf(j) for all i, j in I

with $i \neq j$. We will also consider the following theorem of Łoś and Ryll-Nardzewski:

THEOREM 1.2. Let $\{A_i\}_{i\in I}$ be a collection of finite sets and R a symmetric binary relation on $\bigcup_{i\in I}A_i$. Suppose that for every finite $W\subseteq I$, there is an R-consistent choice function for $\{A_i\}_{i\in W}$. Then there is an R-consistent choice function for $\{A_i\}_{i\in I}$.

It is known [1] and [6] that both of the above theorems are equivalent to the Boolean prime ideal theorem (BPI).

We now define the order of a collection of locally finite trees T(o(T)) to be the least cardinal \mathfrak{t} such that no tree in T contains a vertex with more than \mathfrak{t} successors and let T_n be the statement of Theorem 1.1 only for T with o(T) = n, n a positive integer. Also let F_n denote the statement of Theorem 1.2 where it is required that $|A_i| \leq n$ for all $i \in I$.

In [2] it is shown that $T_n o F_n o BPI$ for any integer $n \ge 3$ and the question is posed: Does $T_2 o BPI$ or $F_2 o BPI$? The purpose of this paper is to answer both questions. In Section 2 we give a proof of BPI from T_2 and in Section 3 we construct a Fraenkel-Mostowski model of ZFU (Zermelo-Fraenkel set theory weakened to permit the existence of urelements) in which F_2 is true and BPI is false. Actually, in the model constructed, the axiom of choice for sets of three element sets fails, so it appears that F_2 is considerably weaker than BPI.

2. In this section we prove:

Theorem 2.1. T_2 implies the compactness theorem for propositional logic. Proof. Let K be an infinite set of propositional formulas such that every finite subset of K is satisfiable. Let P be the set of propositional variables occurring in K.

LEMMA. If P_0 is any finite subset of P and $K(P_0)$ is $\{x \in K: all \text{ the propositional variables in } x \text{ are in } P_0\}$ then $K(P_0)$ is satisfiable.

Proof. If $K(P_0)$ is not satisfiable, then for each truth assignment σ for the variables in P_0 there is an x_{σ} in $K(P_0)$ such that $\sigma(x_{\sigma}) = F$. Therefore $\{x_{\sigma} \colon \sigma \text{ is a truth assignment for } P_0\}$ is a finite, nonsatisfiable set. This proves the lemma.

Now to complete the proof of Theorem 2.1 we follow the proof of Theorem 7 in [2]. Suppose that W is a finite subset of P. A sequence of subsets of W, W_1 , W_2 , ..., W_k is a W-tower if W_1 is a singleton, $W_k = W$ and $W_{i+1} = W_i \cup \{x\}$ for some x, i = 1, 2, ..., k-1. For each W-tower we form a tree as follows: The origin is \emptyset , level i+1 is

 $F_{W_i} = \{\sigma : \sigma \text{ is a truth assignment for } W_i \text{ such that } \sigma(x) = T \text{ for all } x \in K_{W_i} \}.$ $\sigma \in F_{W_i}$ is connected to $\sigma | W_{i-1}$ which belongs to $F_{W_{i-1}}$. Each vertex has at most two successors, therefore if T is the set of all such trees, $\sigma(T) = 2$. If

 $F_{W_1}, F_{W_2}, \ldots, F_{W_m}$ is any finite set of levels of T, then $V = \bigcup_{i=1}^m W_i$ is a finite subset of P. By the lemma, therefore, $F_V \neq \emptyset$. Suppose $\sigma \in F_V$, then $\{\sigma|W_1, \sigma|W_2, \ldots, \sigma|W_m\}$ is a consistent set of vertices since σ dominates $\sigma|W_i$ in all the trees formed from V-towers containing W_i .

Further $\{\sigma|W_1, \sigma|W_2, ..., \sigma|W_m\}$ pierces each F_{W_i} , i=1, 2, ..., m. Therefore by T_2 there is a consistent set F such that

$$|F \cap F_{W}| = 1$$
 for all finite $W \subseteq P$.

Since any two truth assignments in F are restrictions of the same truth assignment, F uniquely determines a truth assignment for P which satisfies K. This completes the proof of the theorem.

Since the compactness theorem for propositional logic implies BPI [1], we have

THEOREM 2.2. T_2 implies BPI.

3. In this section we prove that the implication $F_2 \to BPI$ does not hold by constructing a Fraenkel-Mostowski model in which F_2 is true and BPI fails.

Given a model M' of ZFU+AC which has U as its set of urelements, a permutation model M of ZFU is determined by a group G of permutations of U and a filter of subgroups Γ of G which satisfies

$$(\forall a \in U)(\exists H \in \Gamma)(\forall \varphi \in H)(\varphi(a) = a)$$

and

$$(\forall \varphi \in G)(\forall H \in \Gamma)(\varphi H \varphi^{-1} \in \Gamma).$$

Each permutation of U extends uniquely to a permutation of M' by \in -induction and for any $\varphi \in G$, we identify φ with its extension.

If H is a subgroup of G and $x \in M'$ and $(\forall \varphi \in H)(\varphi(x) = x)$ we say H fixes x. If it is also the case that $(\forall \varphi \in H)(\forall y \in x)(\varphi(y) = y)$ we say that H fixes x pointwise. The permutation model M determined by U, G and Γ consists of all those $x \in M'$ such that for every y in the transitive closure of x, there is some H in Γ such that H fixes y. We refer the reader to [4, p.46] for the proof that M is a model of ZFU.

For our proof we assume that M' is a model of ZFU+AC with a countable set of urelements U. We also assume for convenience that $U=\bigcup_{i\in\omega}U_i$ where $U_i\cap U_j=\emptyset$ if $i\neq j$ and $U_i=\{a_i,\,b_i,\,c_i\},\,i=0,\,1,\,2,\,\ldots$ For each $i\in\omega$, define $\eta_i\colon U_i\to U_i$ by $\eta_i(a_i)=b_i,\,\eta_i(b_i)=c_i$ and $\eta_i(c_i)=a_i$. G is then defined to be the group of permutations

$$G = \{\varphi \colon \ \varphi \colon \ U \overset{1-1}{\underset{\text{onto}}{\to}} U \ \text{ and } \ (\forall i \in \omega)(\varphi|U_i = \eta_i \ \text{ or } \ \varphi|U_i = \eta_i^2 \ \text{ or } \ \varphi|U_i = \mathbf{1}_{U_i}\}$$

where 1_{U_i} is the identity permutation on U_i .

If S is any finite subset of ω we define the subgroup G_S of G by

$$G_S = \{ \varphi \in G : (\forall i \in S) (\varphi \text{ fixes } U_i \text{ pointwise}) \}$$

and the filter Γ of subgroups of G is

$$\Gamma = \{G_S : S \text{ is a finite subset of } \omega\}.$$

LEMMA 1. G is commutative.

This follows from the definition of G.

LEMMA 2. For any $x \in M$, there is a smallest finite subset S of ω such that $(\forall \varphi \in G_S)(\varphi(x) = x)$.

Proof. It suffices to show that the intersection of two subsets of ω satisfying the condition of the lemma is also such a subset. Suppose that G_{S_1} and G_{S_2} both fix x and suppose that $\psi \in G_{S_1 \cap S_2}$. To complete the proof we show that $\psi(x) = x$. Define $\varphi_1 \in G$ and $\varphi_2 \in G$ as follows:

$$\varphi_1(t) = \begin{cases} \psi(t) & \text{if } t \in U_i \text{ where } i \in S_2 - S_1, \\ t & \text{otherwise,} \end{cases}$$

$$\varphi_2(t) = \begin{cases} \psi(t) & \text{if } t \in U_i, \text{ where } i \notin S_2, \\ t & \text{otherwise.} \end{cases}$$

Then we have $\varphi_1 \in G_{S_1}$, $\varphi_2 \in G_{S_2}$ and $\psi = \varphi_1 \varphi_2$. Therefore $\psi(x) = \varphi_1 \varphi_2(x) = x$.

Definition. If $x \in M$ and S is the smallest finite subset of ω such that G_S fixes x, then S is called the support of x.

The following lemma also follows from the definition of G:

LEMMA 3. For any $\varphi \in G$, $\varphi^3 = 1_U$.

For each $i \in \omega$ we define $\eta'_i = \eta_i \cup 1_{U-U_i}$ and we note that $\eta'_i \in G$.

THEOREM 3.1. BPI is false in M.

Proof. The set $X=\{U_i\colon i\in\omega\}$ has support \emptyset and is therefore in M. No choice function for X is in M, for if f is such a choice function with support S, we choose an integer $i\notin S$ and a $\varphi\in G_S$ such that $\varphi|U_i=\eta_i$. Without loss of generality assume that $f(U_i)=a_i$. Then $\varphi(U_i)=U_i$ but $\varphi(f(U_i))=\varphi(a_i)=b_i\neq f(U_i)$, hence φ does not fix f, a contradiction. Therefore the axiom of choice for sets of 3-element sets is false in the model and the theorem follows since BPI implies this form of AC.

THEOREM 3.2. F_2 is true in M.

Proof. Let A be any set of pairs in the model and R a binary relation $(R \in M)$ such that the hypotheses of F_2 are satisfied. (I.e., for any finite subset B of A, B has an R-consistent choice function.) Let $S_0 \subseteq \omega$ be the support of $\langle A, R \rangle$. For each $t \in A$, $OB_t = \{\varphi(t): \varphi \in G_{S_0}\}$ is the orbit of t under the group G_{S_0} and we let OB be the set of orbits of elements of A under the

We apply F_2 in the model M' to get an R-consistent choice function g for A. g need not be in M, but we plan to modify g to get an r-consistent choice function f for A which is in M.

For each $t = \{a, b\} \in A$, define $\sup(t) = S - S_0$, where S is the support of t. For each finite $S \subseteq \omega$ such that $S \cap S_0 = \emptyset$ define

perm(S) =
$$\{\prod_{i \in S} (\eta_i)^{d_i}: \Delta_i \in \{0, 1, 2\} \text{ for all } i \in S\}.$$

If $t \in A$, we will write perm(t) for perm $(\sup(t))$. Note that $|\operatorname{perm}(t)| = 3^{|\sup(t)|}$ and is therefore an odd natural number. We also note that $\operatorname{perm}(t)$ is a subgroup of G_{S_0} . In addition we have:

LEMMA 4. If $t \in A$ and $t' \in OB_t$, then $t' = \psi(t)$ for some $\psi \in perm(t)$.

Proof. Suppose $t' \in OB_t$, then $t' = \psi'(t)$ for some $\psi' \in G_{S_0}$. Define ψ by

$$\psi(x) \in \begin{cases} \psi'(x) & \text{if } x \in U_i \text{ for some } i \in \sup(t), \\ x & \text{otherwise.} \end{cases}$$

Then $\psi \in \operatorname{perm}(t)$ and further since for all x such that $x \in U_i$ for some $i \in \sup(t) \ \psi^{-1} \psi'(x) = x$, we have $\psi^{-1} \psi'(t) = t$ so that $\psi(t) = \psi'(t) = t'$. This completes the proof of the lemma.

Now suppose $t = \{a, b\} \in A$. We define

$$\operatorname{perm}(t, a) = \{ \psi \in \operatorname{perm}(t) : g(\psi(t)) = \psi(a) \}$$

and

$$\operatorname{perm}(t, b) = \{ \psi \in \operatorname{perm}(t) : g(\psi(t)) = \psi(b) \}.$$

Then $|\operatorname{perm}(t)| = |\operatorname{perm}(t, a)| + |\operatorname{perm}(t, b)|$ therefore since $|\operatorname{perm}(t)|$ is odd, $|\operatorname{perm}(t, a)| \neq |\operatorname{perm}(t, b)|$. We can therefore define

$$f(t) = \begin{cases} a & \text{if } |\text{perm}(t, a)| > |\text{perm}(t, b)|, \\ b & \text{if } |\text{perm}(t, b)| > |\text{perm}(t, a)| \end{cases}$$

and f is defined for every $t \in A$.

LEMMA 5. f is in M and G_{S_0} fixes f.

Proof. Let $t=\{a,b\}\in A$ and let ψ' be any element of G_{S_0} . Define ψ as in the proof of Lemma 4. Then as in the proof of Lemma 4, $\psi(t)=\psi'(t)$ and further $\psi(a)=\psi'(a)$. (If not then $\psi^{-1}\psi'(a)=b$ while $\psi^{-1}\psi'(\{a,b\})=\{a,b\}$ contradicting the fact from Lemma 3 that $(\psi^{-1}\psi')^3=1_U$.) So that

$$|\operatorname{perm}(t, a)| = |\{\eta \in \operatorname{perm}(t) : g(\eta(t)) = \eta(a)\}|$$

$$= |\{\eta\psi \in \operatorname{perm}(t) : g(\eta\psi(t)) = \eta\psi(a)\}|$$

$$= |\{\eta \in \operatorname{perm}(t) : g(\eta(\psi(t))) = \eta\psi(a)\}|$$

$$= |\operatorname{perm}(\psi'(t), \psi'(a))|.$$

Similarly $|\operatorname{perm}(t, b)| = |\operatorname{perm}(\psi'(t), \psi'(b))|$. Therefore by the definition of f,

$$f(t) = a \leftrightarrow f(\psi'(t)) = \psi'(a)$$

proving Lemma 5.

Now the proof of Theorem 3.2 is completed by proving the following: CLAIM. f is R consistent.

The proof is by contradiction. Suppose $t_1 = \{a, b\}$ and $t_2 = \{c, d\}$ are in A, that $f(t_1) = a$, $f(t_2) = c$ and further that aRc is false.

LEMMA 6. Suppose that $\eta \in \operatorname{perm}(\sup(t_1) \cap \sup(t_2))$ and suppose that for some $\psi \in \operatorname{perm}(\sup(t_1) - \sup(t_2))$, $\psi \eta \in \operatorname{perm}(t_1, a)$, i.e., $g(\psi \eta(t_1)) = \psi \eta(a)$. Then for every $\varphi \in \operatorname{perm}(\sup(t_2) - \sup(t_1))$, $\varphi \eta \in \operatorname{perm}(t_2, d)$, i.e., $g(\varphi \eta(t_2)) = \varphi \eta(d)$.

Proof. If not then for some φ perm(sup (t_2) -sup (t_1)), $\varphi \eta \in \text{perm}(t_2, c)$ which means $g(\varphi \eta(t_2)) = \varphi \eta(c)$. Since g is R-consistent we have $\psi \eta(a) R \varphi \eta(c)$. Since R is fixed by G_{S_0} , we get

$$\eta^{-1}\psi^{-1}\varphi^{-1}\psi\eta(a)R\eta^{-1}\psi^{-1}\varphi^{-1}\varphi\eta(c).$$

Since G is commutative we have $\varphi^{-1}(a)R\psi^{-1}(c)$. But $\psi \in \text{perm}(\sup(t_1) - \sup(t_2))$ and therefore, $\psi(c) = \psi^{-1}(c) = c$. Similarly $\varphi^{-1}(a) = a$ so we conclude that aRc, a contradiction. This completes the proof of Lemma 6.

We therefore conclude that for every $\eta \in \operatorname{perm}(\sup(t_1) \cap \sup(t_2))$ either:

(1)
$$(\forall \psi \in \operatorname{perm}(\sup(t_1) - \sup(t_2))) (\psi \eta \in \operatorname{perm}(t_1, b))$$

or

(2)
$$(\forall \varphi \in \operatorname{perm}(\sup(t_2) - \sup(t_1))) (\varphi \eta \in \operatorname{perm}(t_2, d)).$$

Therefore if

$$D_1 = |\{\eta \in \operatorname{perm}(\sup(t_1) \cap \sup(t_2)): (1) \text{ holds}\}|$$

and

$$D_2 = |\{ \eta \in \operatorname{perm} (\sup(t_1) \cap \sup(t_2)) : (2) \text{ holds} \}|.$$

then $D_1 + D_2 \ge |\operatorname{perm}(\sup(t_1) \cap \sup(t_2))|$. So either

$$2 \cdot D_1 \geqslant |\operatorname{perm}(\sup(t_1) \cap \sup(t_2))|$$
 or $2 \cdot D_2 \geqslant |\operatorname{perm}(\sup(t_1) \cap \sup(t_2))|$.

In the first case we would have $|\operatorname{perm}(t_1, b)| > |\operatorname{perm}(t_1, a)|$ (since $\operatorname{perm}(t_1) = \operatorname{perm}(\sup(t_1))$) can be written as $\operatorname{perm}(\sup(t_1)) = \{\psi\eta\colon \psi\in\operatorname{perm}(\sup(t_1) - \sup(t_2))\}$ and this contradicts $f(t_1) = a$. Similarly in the second case we would have $|\operatorname{perm}(t_2, d)| > |\operatorname{perm}(t_2, c)|$ contradicting $f(t_2) = c$. This proves the claim and therefore Theorem 3.2.

References

- R. H. Cowen, Some combinatorial theorems equivalent to the prime ideal theorem, Proc. Amer. Math. Soc. 41 (1973), pp. 268-273.
- [2] Generalizing König's infinity lemma, Notre Dame J. Formal Logic 18 (1977), pp. 243-247.
- [3] Binary consistent choice on triples, Notre Dame J. Formal Logic 18 (1977), pp. 310-312.
- [4] T. Jech, The axiom of choice (Studies in logic and the foundations of mathematics, vol. 75), North-Holland, 1973.
- [5] J. Łoś and C. Ryll-Nardzewski, On the application of Tychonoff's theorem in mathematical proofs, Fund. Math. 38 (1951), pp. 233-237.
- [6] Effectiveness of the representation theory for Boolean algebras, Fund. Math. 41 (1955), pp. 49-56.

Received 17 February 1981