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Binary consistent choice on pairs and
a generalization of Konig’s infinity lemma
by
Paul E. Howard (Ypsilanti, Mich,)
Abstract. In this paper we answer in the affirmative the question of Cowan: Does T, — BPI?
where T; is Cowan’s generalization of Konig’s infinity lemma restricted to trees of order 2. We

also give a negative answer to the question: Does F, —BPI? where F, is a principle involving
binary consistent choice on pairs and BPI is the Boolean prime ideal theorem.

1. In [2] R. Cowan generalizes Konig’s infinity lemma. We begin by

-describing that generalization. For convenience we give the following defi-

nitions from [2].

A tree is a connected undirected graph without circuts one of whose
vertices is designated as the origin. The number of vertices on the unique
path connecting a vertex v with the origin is the level of v, I(v). (Thus the set
of vertices of a tree can be decomposed into an at most denumerable set of
levels.) A vertex v’ is a successor of a vertex v if v and v’ are connected by an
edge and (V) = I(v)+1.

A tree is finite if its set of vertices is finite and locally finite if each vertex
has only finitely many successors. A branch in a tree is a maximal path
beginning at.the origin. If v and v’ are on the same branch, then v dominates
v if 1(v') = I(v). Konig’s lemma states that any infinite locally finite tree has
an infinite branch.

Let T be a collection of locally finite trees (not necessarily pairwise
disjoint). By a vertex or a level of T, we mean a vertex or a level of some tree
in T. Also if v and v’ are vertices of T, then v’ dominates v in T if v/ dominates
v in some tree in T. Let S be a set of vertices of T. § pierces a level I of T if
[S~Y =1. (For any set A, |A| denotes the cardinal number of 4. § is
consistent if for every v, v in § there is a v” which dominates them both in T.
We can now state R. Cowan’s generalization of Konig’s lemma.

TueoreM 1.1. Let T be a collection of locally finite trees such that for
any finite set of levels of T, there is a consistent set of vertices piercing those
levels. Then there is a consistent set of vertices piercing the. entire set of levels
of T.

Let {4;};er be a collection of sets and R a symmetric binary relation on
(J 4;. A choice function f for {4} Wnsis'tent if f ()RS (j) for all i, jin I
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with i #j. We will also consider the following theorem of Lo§ and Ryll-
Nardzewski: ‘

THEOREM 1.2. Let {A;};; be a collection of finite sets and R a symmetric
binary relation on UA Suppose that for every finite W I, there is an R-

consistent choice functzon for {Ahiew. Then there is an R-consistent choice
Jfunction for {A(},E,

It is known [1] and [6] that both of the above theorems are equivalent
to the Boolean prime ideal theorem (BPI).

We now define the order of a collection of locally finite trees T (o(T)) to
be the least cardinal f such that no tree in T contains a vertex with more
than f successors and let T, be the statement of Theorem 1.1 only for T with
o(T) =n, n a positive integer. Also let F, denote the statement of Theorem
1.2 where it is required that |4, < n for all iel.

In [2] it is shown that T, F,— BPI for any integer n >3 and the
question is posed: Does T, — BPI or F, — BPI? The purpose.of this paper is
to answer both questions. In Section 2 we give a proof of BPI from T, and in
Section 3 we construct a Fraenkel-Mostowski model of ZFU (Zermelo—
Fraenkel set theory weakened to permit the existence of urelements) in which
F, is true and BPI is false. Actually, in the model constructed, the axiom of
choice for sets of three element sets fails, so it appears that F, is considerably
weaker than BPIL

2. In this section we prove:

Taeorem 2.1. T, implies the compactness theorem for propositional logic.

Proof. Let K be an infinite set of propositional formulas such that
every finite subset of K is satisfiable. Let P be the set of propositional
variables occurring in K.

LemMA. If Py is any finite subset of P and K(P) is {xeK: all the
propositional variables in x are in Py} then K(Py) is satisfiable.

Proof. If K(Py) is not satisfiable, then for each truth assignment o for
the variables in P, there is an x, in K (Pg) such that o(x,) = F. Therefore
{%,: o is a truth assignment for P,} is a finite, nonsatisfiable set. This proves
the lemma.

Now ‘to complete the proof of Theorem 2.1 we follow the proof of
Theorem 7 in [2]. Suppose that Wis a finite subset of P. A sequence of
subsets of W, W,, W,, ..., W, is a W-tower if W, is a singleton, W, = Wand
W1 = W,u {x} for some x,i=1,2, ..., k—1. For each W-tower we form a
tree as follows: The origin is @, level l+1 is

Fy, = {0 ¢ is a truth assignment for W, such that o(x) = Tfor all xeKy,}.

ceFy, is connected to o|W,_, which belongs to Fy,_,. Each vertex has at
most two successors, therefore if T'is the set of all such trees, o(T) = 2. If
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Fyw . Fy,, ... » F,, is any finite set of levels of T, is a finite

T, then V= U

subset of P. By the lemma, therefore, Fy # Q. Suppose aeFV, then
\0’[“’1, o|Ws, ..., o|W,} is a consistent set of vertices since ¢ dominates oW,
in all the trees formed from V-towers containing W;.
Further {o|W;, oW, ..., o|W,} pierces each Fy,
Therefore by T, there is a consistent set F such that

IFAFy =1

i=1,2,....m

for all finite W< P,

Since any two truth assignments in F are restrictions of the same truth
assignment, F uniquely determines a truth assignment for P which satisfies
K. This completes the proof of the theorem.

Since the compactness theorem for propositional logic implies BPT [1],
we have :

THEOREM 2.2. T, implies BPI,

3. In this section we prove that the implication F, — BPI does not hold
by constructing a Fraenkel-Mostowski model in which F, is true and BPI
fails.

Given a model M’ of ZFU + AC which has U as its set of urelements, a
permutation model M of ZFU is determined by a group G of permutations
of U and a filter of subgroups I' of G which satisfies

(VaeU)@Hel(VpeH)(p(a) = a)
(VoeG)(VHel)(pHp 'eI).

Each permutation of U extends uniquely to a permutation of M’ by
e-induction and for any ¢eG, we identify ¢ with its extension.

If H is a subgroup of G and xeM’ and (VpeH)(p(x) = x) we say H
fixes x. If it is also the case that (VpeH)(Vyex)(p(y) = y) we say that H
fixes x pointwise. The permutation model M determined by U, G and I'
consists of all those x e M’ such that for every y in the transitive closure of x,
there is some H in I' such that H fixes y. We refer the reader to [4 p46] for
the proof that M is a model of ZFU.

For our proof we assume that M’ is a model of ZFU +AC with a
countable set of urelements U. We also assume for convenience that U
= U, where UynU; =@ if i#j and U;={a, b, ¢;},i =0, 1, 2, ... For

iew .
each iew, define n;: U; —U; by n,(a) =b;, n;(b) =¢; and n;(¢) =¢q. G is
then defined to be the group of permutations

and

G={e: ¢: U'S U and (View)(@|U; =n, or @lU;=nf or ¢|U, =1y}

onto

where 1, is the identity permutation on U;.
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If § is any finite subset of w we define the subgroup Gs of G by
Gs = {peG: (VieS)(¢p fixes U; pointwise)}
and the filter I' of subgroups of G is
I'={Gg: § is a finite subset of w}.

“LemMa 1. G is commutative.

This follows from the definition of G.

LemMma 2. For any xe M, there is a smallest finite subset S of w such that
(VpeGs)(p (9 = ).

Proof. It suffices to show that the intersection of two subsets of w
satisfying the condition of the lemma is also such a subset. Suppose that Gg,
and Gjg, both fix x and suppose that i Gy, ns,- To complete the proof we
show that i (x) = x. Define ¢, €G and ¢,€G as follows:

_Ju@ if teU, where ieS,—S;,
1) = { t otherwise,
v() if teU,, where i¢S,,
)=
¢200) {t otherwise.

Then we have ¢,€Gs, ¢,€Gs, and Y = @;¢,. Therefore V (x) = ¢, ¢,(x)
= X.

DerinirioN. If xe M and S is the smallest finite subset of w such that Gy
fixes x, then S is called the support of x.

The following lemma also follows from the definition of G:
Lemma 3. For any @eG, ¢* =1y.

For each iew we define #; = n,w1y_y, and we note that rjeG.

TueoreM 3.1. BPI is false in M.

Proof. The set X = {U;: iew} has support @ and is therefore in M.
No phoice function for X is in M, for if f is such a choice function with
support S, we choose an integer i¢S and a ¢eGg such that ¢|U; =n;.
Without loss of generality assume that f(U)=q;. Then ¢(U) = U, but
o(f(U)) = @(a) =b; #f(U}), hence ¢ does not fix f, a contradiction.
Therefore the axiom of choice for sets of 3-element sets is false in the model
and the theorem follows since BPI implies this form of AC.

THEOREM 3.2. F, is true in M.

Proof. Let 4 be any set of pairs in the model and R a binary relation
(R e M) such that the hypotheses of F, are satisfied. (Le., for any finite subset
B of A4, B has an R-consistent choice function) Let §, < w be the support of
(A4, R)>. For each ted, OB, = {¢(t): ¢eGg,} is the orbit of ¢ under the
group Gs, and we let OB be the set of orbits of elements of 4 under the
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group Gg,. (Then each te A is in exactly one orbit and OB is well-ordered in
M since it is fixed pointwise by Gg,.)

We apply F, in the model M’ to get an R-consistent choice function g
for A. g need not be in M, but we plan to modify g to get an r-consistent
choice function f for A which is in M.

For each t = {a, b} € A, define sup(r) = S—S,, where S is the support of
t. For each finite S € such that SN Sy = @ define

perm(S) = {[J(m)%: 4,€{0, 1, 2} for all ieS}.
ies

If te A, we will write perm(t) for perm(sup(t)). Note that |perm(t)] = 3loupN
and is therefore an odd natural number. We also note that perm(t) is a
subgroup of Gs,. In addition we have: ‘

LemMa 4. If teA and t'€OB,, then t' = (1) for some  eperm(?).
Proof. Suppose ' €OB,, then ¢’ = ¢/ (1) for some '€ Gs,. Define by

l//(X)E{

Then ¢ eperm(t) and further since for all x such that xeU; for some
iesup(f) ¥~y (x) = x, we have ¥~ 1y’ (1) =t so that y(z) =y'(t) =" This
completes the proof of the lemma.

Now suppose t = {a, b}eA. We define

perm(t, a) = {y eperm(2): g (¥ (1)) = ¥ (a)}

Y'(x) if xeU; for some iesup(t),
x otherwise.

and
perm(t, b)={y eperm(t): g (¥ (1)) = ¥ (b)}.

Then |perm(t)| = |perm(t, a)|+|perm(t, b)| therefore since |perm(#)] is odd,
Iperm(t, a)| # [perm(t, b)l. We can therefore define

f(t)={

and f is defined for every teA.

LemMa 5. f is in M and Gy, fixes f.

Proof. Let t = {a, b} €4 and let ' be any element of Gs,. Define  as
in the proof of Lemma 4. Then as in the proof of Lemma 4, Y () = ' (r) and
further W (a) = ¥'(a). (If not then ¥~ 'y'(a) = b while v~ ({a, b)) = {a, b}
contradicting the fact from Lemma 3 that (')’ = 1) So that

a if |perm(t, )| > |perm(t, b)|,
b if |perm(t, b)| > |perm(z, a)

Iperm(z, @)| = |{n eperm(r): g(n()) = n(a)}]

[{mp e perm (1): g (¥ (1)) = m¥ (@)}|
H{neperm(®): g(n(¥ () = ny (A}
|perm (¥ (1), ¥'(@))].

il
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Similarly |perm(t, b)| = |perm (' (1), ' (b))|. Therefore by the definition of f,

fy=a = f(W'®) =V
proving Lemma 5.

Now the proof of Theorem 3.2 is completed by proving the following:

CLaM. f is R consistent.

The proof is by contradiction. Suppose t; = {a, b} and t, = {c, d} are in
A, that f(t;) = a, f(t;) = ¢ and further that aRe is false.

LemMa 6. Suppose that neperm(sup(t,) Nsup(r,)) and suppose that for
some Y eperm (sup(ty)~sup(ty)), yYneperm(ty, a), ie, g(Un(ty)=yn(a).
Then (g;r every @ eperm (sup(ty)—sup(t,)), pneperm(ty, d), ie, g(pn(ty))
= gna).

Proof. If not then for some ¢ perm(sup(tz)——sup(tl)), oneperm(t,, ¢

which means ‘g(qm(tz)) = g@n(c). Since g is R-consistent we have
Yn(a)Ron(c). Since R is fixed by Gs,, We get

N e (@) R~y e en(c).

Since G is commutative we have ¢~ *(a) Ry ~*(c). But

3 . eperm (sup(t;)—
—sup(t,)) and therefore, Y (c) =y~ (c) = c. Similarly ¢~ *(a) = a 5(() we f:lon~
clude that aRc, a contradiction. This completes the proof of Lemma 6.

We therefore conclude that for every neperm(sup(rl)nsup(rz)) either:

) (Vv eperm (sup(t,) —sup(t,))) (Y € perm (t,, b))
or
) (Yo e perm (sup(t,) —sup (1)) (@n e perm(t, d)).

Therefore if

D, =|{neperm(sup(t,) "sup(t,)): (1) holds)|
and

D, =|{neperm (sup(t;) N sup(t,)): (2) holds}],
then D, +D, > |perm(sup(t;) Nsup(ty))|. So either

2D, > |perm(sup(t;) nsup(t;)] or 2:D,> |perm (sup(t,) A sup(t,))).

In the first case we would have [perm(t,, b) > | i

e v | , perm(t, a)| (since perm (¢
= perm(sup(z,)) can be written as perm (sup(z,)) = {y: l/leperm(s?l(;(t ()1_)
—Tsxfp(tz)).and qeperm(sup(tl)nsup(tz))}) and this contradicts f(r );a
Snmlarly in the second case we would have |perm(t,, d) > |perml(t C)i
contradicting f(t;) =c. This proves the claim and therefore Theotemz’32

icm

Binary consistent choice on pairs 23

References

[1] R. H. Cowen, Some combinatorial theorems equivalent to the prime ideal theorem, Proc.
Amer. Math. Soc. 41 (1973), pp. 268-273.

[2] — Generalizing Kdnig's infinity lemma, Notre Dame J. Formal Logic 18 (1977), pp. 243-247.

[3] — Binary consistent choice on triples, Notre Dame J. Formal Logic 18 (1977), pp. 310-312.

[4] T. Jech, The axiom of choice (Studies in logic and the foundations of mathematics, vol. 75),
North-Holland, 1973.

[5] J. Lo$ and C. Ryll-Nardzewski, On the application of Tychonof*s theorem in mathhemat-
jcal proofs, Fund. Math. 38 (1951), pp. 233-237.

[6] — — Effectiveness of the representation theory for Boolean algebras, Fund. Math. 41
(1955), pp. 49-56.

Received 17 February 1981


GUEST




