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Subopen multifunctions and selections
by
J.F. McClendon (Lawrence, Kan.)

Abstract. Let m: X — Y be a subopen (e.g, open graph) multifunction with infinitely
connected values. If (X, A) is a relative CW complex it is proved that any continuous partial
selection g: A — Y for m can be extended to a continuous selection f: X — Y for m. A fixed
point corollary is also given. )

Let X and Y be topological spaces. A set valued function m: X - Y
will be called a multifinction if m(x) # @, all x in X. G(m)
={(x,y) yem(x)} =« X xY is the graph of m. Let p: G(m)—~X be the
projection. ‘

DEFINITION. m is a subopen multifunction if for each x in X there is an
open nbhd U, a Serre fibration ¢q: T— U, and an embedding e: Y (U)y->T
such that e(p™'(U)) is open in T and ge = p.

Recall that m is an open-graph multifunction if G(m) is an open subset
of XxY Use U=2X and T= X x Y to see that every open graph multifunc-
tion is a subopen multifunction.

The selection theorem referred to in the title is the following.

1.1. TueoreM. Let (X, A) be a relative CW complex and m: X - Y a
subopen multifunction with m(x) infinitely connected for all x in X. Then any
continuous partial selection g: A — Y for m can be extended to a continuous
selection - X — Y for m. Furthermore, any two such extensions are homotopic
by a homotopy {f} with each f, a selection for m extending g.

This will be deduced from the following main result:

1.2. TueoreM. Let T— B be a Serre fibration and E open in T. Assume
that each E(b) is N-connected and non-empty. Then E — B is an N-fibration.

Theorem 1.1 generalizes the result of [2] and [3] in that there are no
metric hypotheses on the domain, there are no conditions on the codomain
at all, and “open-graph” is replaced by “sub-open”.

The method of proof of 1.1 is to first use Theorem 1.2 to prove that
G(m)— X is a Serre fibration and then apply obstruction theory.

Theorem 1.2 is related to results of Wong [5], however, the metric
hypotheses used in [5] are avoided here. As a corollary to 1.2 (or 1.1) we
obtain a lifting theorem which can be viewed as a generalization of [S, Th.
2.1, Cor. 2.2]. In Section 2 an ANR version of Theorem 1.1 is proved and a
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multifunction fixed point theorem is given which generalizes slightly a result
of [3].

If it is not assumed that m has contractible values then more elaborate
hypotheses are required for selection theorems. This will be discussed in a
separate paper.

1. Notation, proof of Theorem 1.1 using Theorem 1.2. A single valued
(continuous) function f/* X — Y is a (continuous) selection for m: X — Y if

f(x)em(x), all x in X. If A <X and g: A~ Y is a single valued function -

such that g(x)em(x), all x in A4, then g is called a partial selection for m (A
may be empty)

A map is a continuous function. I is the unit interval. If ¢: C — B and
d: D— B are given maps then a map f: C—D is over B if df =c. Let
p: BxZ —» B and r: BXZ —Z be the projections. If j: E < BxZ then pj
and rj will be written as p and r. If g¢: T— B is a map and E open in Tthe
composite E « T— B will be denoted by p: E~B. If p. E—+ B and Dc B,
let E, = E(D)=p~!(D). E, = E(b) is the fiber over b. For a multifunction
m: X —Ylet G(m) <= X xY be the graph and p: G(m)— X the projection.
Note that p~*(x) = x xm(x) = m(x).

A space is called N-connected if every map aI'*! — X can be extended
to a map F*! —» X, 0<j < N. X is infinitely connected if it is N-connected
for all N.

Proof of Theorem 1.1 assuming G(m)— X is a Serre fibr-
ation. Consider

A—2—G(m)
N N
X — x

where g'(a) =(a, g(a)). G(m)— X is a surjective Serre fibration with fiber
m(x) which is infinitely connected — so standard obstruction theory (e.g.
[4, p. 404, Th. 22, p. 416, Th. 9]) gives an extension f": X — G(m) of ¢, over X,
and shows that two such extentions are homotopic, rel(4), over X. Let f
=r1f". Then fis the extension of g required in the theorem and if f; and f,
are two such and H: f{ ~f; the given homotopy then rH: f; ~f, is the
homotopy required in the theorem. m

We are left with the problem of proving that G(m)— X is a Serre
fibration. Let us say that a map E—B is an N-fibration if it has the
homotopy lifting property for CW complexes of dimension < N. A Serre
fibration is map which is an N-fibration for all N. To prove E —B an N-
fibration it suffices [4, p. 375, p. 416] to prove that it has the homotopy
lifting property for cubes of dimension < N. By breaking a cube into smaller
cubes it is easily shown that E — B is an N-fibration if.B has an open cover
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{U} such that each E(U)— U is an N-fibration. In our case G(m)— X is
locally an open subset of a Serre fibration so that the theorem will follow
from Theorem 1.2 below.

1.2. TueoreM. Let T— B be a Serre fibration and E open in T. Assume
each E(b) is N-connected and non-empty. Then E — B is an N-fibration.

In proving 1.2 the following lemma will be useful:

1.3. LemMA. Suppose T— B a Serre fibration, E open in T. Let (X, A) be
a relative CW complex, f: X -~ E a map, G: AxI —E a homotopy with G,
=f]A and pG(a, 1) = pf(a), all a, t. Then G extends to a homotopy H: X xI
—E with Hy =f and pH(x, t) = pf(x), all x, 1.

Proof of Lemma 13. Let Q=Xx0udxIcXxI and G
=fUG: Q- E. So we must find a map H: X xI— E extending G’ and
over B (where X xI—B is pfn, = the projection). Let j: E~ T be the
inclusion. Because T— B is a Serre fibration jG' has an extension to g: X xI
— T over B [4, p. 416, proof of Th. 9]. Since E is open V=g~ '(E) is an
open nbhd of Q and if F is the restriction of g to V then F: V—E is an
extension of G’ over B. Because A is closed in X which is normal there is a
map M: X xI —V with M the identity on Q and =M == (I is compact,
so get AxIcUxIcV, U open. Apply the Urysohn lemma to A and
X-Utogete X—I e(x)=1if xin 4, e(x) =0, if x in X—U. Define
M(x, t) = (x, e(x)t)). Now let H=FM and H is the desired map.

2. Proof of Theorem 1.2 and corollaries. The proof is by induction on
N. First take N = 0. Consider:

0———Ec

0 u/

I——-——*B

Given that pg =fi it is necessary to find an éxtension F: I —E of g over B.
For tel choose e(t)ep™ f (t) < E. Because T— B is a O-fibration there is an
h: I — T, over B, with h(t) =e(t)eE. h™*(E) is open in I so ¢ has an open
nbhd Win I and a map u: W— E over B (u is a restriction of h). Since I is
compact there are 0 =ay <4, < ... <a, =1 with F;: [a-4, a]—E, pF;
=f.

It is now necessary to modify each F; to Fj so that F; extends g and
Fj(a) = F} . (a). Then the F; fit together to give the desired F. Let F 1(0)
=, g(0) = d. Since E(f(0)) is path connected there is a homotopy G: Ox[
- E of F,|0 which is over B from ¢ to d. By Lemma 1.3 (with X = [0, a,], 4
= ) the homotopy extends to a homotopy of F, which is over B. Let F} be
the other end of the homotopy so that pF; = f, Fy(0) = g(0). Similarly F, is
modified to Fj so that pF} =f, F4(a;) = Fi(a,), etc.
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Now assume 1.2 for 0 < M < N and prove it for N. Consider

"x0——— E N1 %0y Ef
N 71 or n |

PMxi<Z—B N ix £ B

Tg prove E — B an N-fibration it is necessary to show the

exists in the first diagram. Now let E! by the sy;)ace of maps I ctlgsll;e;ivi?;r?}z
compact-open topology. By adjointness (replacing maps PxQ — R by ma s
P‘-—> R9) jthls is equivalent to finding the dashed arrow in the secml:d
dllagram, ie, showing E' — B’ is an (N — 1)-fibration. Now E.is open in T so
E'is open in T! and also, T' — B' is a Serre fibration. By the induction
hypothesis it will suffice to prove K (u) is (N —1)-connected and non-empt
for each ueB' where K (u) = {h: I - E| ph =u}. The fact that K (u) is ngn):
empty follows easily from the fact that E — B is a O-fibration. Consider

WA——3 K@) Ixat—Lm k.

o .
j+1e” j -
I Ixptt" »

In
[——— B .
It suffices to find the dashed arrow in the first diagram — but, again by

adjointness, this is equivalent to finding F i i
s U g F in the second dia; i
part of the second diagram over t and wu(t) gives gram. Taking the

0<j<N-1

Iy

taa(ﬁ”) ’:—,;E(u(t))

px P
and e, exists and is unique up to homoto *1) i

up to py rel (8F*1) since E(u(r)) is N-
connectfad, Let Q) = I>.<6(Il“)ut xF*  and f, =fU ez: @ »%(ge::salfsle
IT{:B is a Serre fibration jf, has an extemsion H,: Ix[/*! —+T' over B
F,‘ v([f:) is+ 1an open ntfhd of Q(t) and by restriction we obtain a map;
cc,). x I . — E extending f, over B where Wis a nbhd of t in I. Since I is

I?E?Ct there are 0 = gy < a; < ... <a, =1 and extensions F,: [a
xFP** - E of f over B. i L, el x
v No;}fﬂthe F; must be modiﬁfed. Let Fi =F, and- Fila; x V*! =¢
! 21|(‘,’1 X an+1= d. Because E(u(a,)) is N-connected d and ¢ are homotopit;
c‘tilxX a } as mapjs+ 1to E(u(ay)) = E. Now Lemma 1.3 can be applied
gww“h F—llga1>2 Iaﬁ]lxl ’T ;14 =¢;‘,xﬁ“) to give F, extending f and ovef
Say =c. The other F; are modified

and they then fit together to give the required F. :) Y the same procedure

Notes. (1) The proof shows that i i i
E — B is an N-fibration. 2 T B s an (N+1)fibration then
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(2) If E(b) in 1.2 is not N-connected then more elaborate hypotheses are
required ard this will be studied in a separate paper. The most natural
generalization would be to assume the E(b)'s are N-equivalent — but the
following example shows that this is not sufficient.

Let B=1I, P=(0,HuE D, Z=(0,)u}, 1) and E =(IxP)u
v, 1] xZ)cIxZ. Then E is open in Ix Z. Let p: E—1 be the compo-
sition E = IxZ —I. All of the fibers E(t) are homotopically equivalent (to
the discrete space with two points) but E — I is not a O-fibration since the
identity path: I — I in the base can not be lifted with given end point (1, 3).

Now consider the following situation

A——i——-aEC T
N
X——f—.‘“’B

21. CoROLLARY. Suppose T— B a Serre fibration, E open in T, each E(b)
non-empty and infinitely connected, (X, A) a relative CW complex. Then there
is a map F: X > E extending g over B and any two such extensions are
homotopic. ‘

Proof. By 12 E—B is a Serre fibration and the result follows by
standard obstruction theory, e.g. [4, p. 404, Th. 22, p. 416, Th. 9].

2.2. COROLLARY (to the proof). Suppose X is a compact finite dimensional
ANR and m: X = Y a subopen multifunction with each m(x) infinitely con-
nected. Then m has a continuous selection and any two such are homotopic by
a homotopy {f;} with each f, a selection for m.

Proof. Theorem 1.2 and the paragraph preceeding it show that G(m)
— X is a Serre fibration. By [1, p. 122] X is a retract of a finite dimensional
polyhedron, say i: X — P, u: P X, ui=id. Asin the first paragraph of the
_proof of Theorem 1.1 there is a lifting f': P — G(m), pf’ = u, and any two
such liftings are homotopic. Let f = rf'i. Then fis the desired selection and
the needed homotopy is similarly defined.

2.3. COROLLARY. Suppose X a compact finite dimensional contractible
ANR and m: X — X a subopen multifunction with contractible values. Then m
has a fixed point (ie., x € m(x)). .

Proof. Corollary 2.2 gives a selection and the Brouwer fixed point
theorem applies to the selection to give a fixed point.

Notes. (1) Corollary 2.1 ‘can also be deduced directly from Theorem
1.1. Corollary 2.1 generalizes [5, 2.1, 2.2].

(2) Corollary 2.3 generalizes the fixed point theorem of [3]. The results
of the present paper will be used in a separate paper to obtain a more
general fixed point theorem of the Lefschetz type.
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Notes on topological games
by

Yukinobu Yajima (Yokohama)

Abstract. The topological game G(K, X) is in the sense of R. Telgdrsky. Let K and K' be
classes of spaces with K < K'. It is studied in this paper when Player I has a winning strategy in
G(K, X) if he has one in G(K', X). We will discuss three questions of this kind.

§ 1. Each space considered here means a topological space and no
separation axioms are assumed unless otherwise stated. Throughout this
paper, K denotes a class of spaces which are hereditary with respect to closed
subspaces. We need no other assumptions of K. When we consider such two
classes of spaces, they are denoted by K; and K.

The topological game G(K, X) is introduced and studied by R.
Telgarsky [4]. The detail is seen in it. For a class K, I(K) denotes the class
of all spaces X for which Player I has a winning strategy in G(K, X), and
the class I(I(K)) is abbreviated to I?(K). Moreover, DK, LK and SK denote
the classes of all spaces being discrete unions of spaces from K, locally K and
K-scattered, respectively.

The purpose of this paper is to study the following three questions:

(A) What kind of a space X, does Xel*(K) imply X eI(K) for?

(B) What kind of a space X, does Xel (SK) imply X el(DK) for?

(C) What kind of a space X, does Xel(K,)n1(K;) imply
Xel(K, nK,) for?

In §2, §3 and §4, the questions (A), (B) and (C) are answered,
respectively. Though the question (B) has been already studied by R.
Telgdrsky [6], we give here another result and the improvement of his ones.

Concerning the topological game G (K, X), we use the notations in [7]
rather than in [4]. Here, we do not restate them except the following. Let s
be a strategy of Player I in G(K, X). A finite sequence {Fo, Fy,.... F,»> of
closed sets in X is said to be an admissible choice of Player Il for s
in G(K, X) (ad. ch. for II (s, K, X)) if Fo, =X and the sequence
(E,. F\, ..., E,, Fp», such that E; = s(Fo, Fy, ..., F,_p) for 1 €i<n, is ad-
missible for G(K, X). If s is a winning strategy of Player Iin G(K, X), then
it should be noted that each infinite sequence {(Fq, Fy, ... of closed sets in
X, such that ¢Fq, Fy, ..., F,» is an ad. ch. for II(s, K, X) for each n> 1, has
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