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Fixed point index for open sets in euclidean spaces*
by

G.S. Skordev (Sofia)

Abstract. Using chain approximations of multi-valued mappings a fixed point index for a
large class of such mappings of open sets in euclidean spaces is constructed. This fixed point
index satisfies all usual properties of fixed point index for single valued maps including
commutativity and mod-p property.

Introduction. The aim of the present note is to give an unified approach
to fixed point theory for single-valued as well as for certain classes of multi-
valued mappings on locally compact polyhedra and in particular on open
sets in euclidean spaces. A fixed point index with all usual properties
(additivity, homotopy invariance, normalization, commutativity and mod-p
property) is constructed. In particular for single-valued maps on open sets in
euclidean spaces we obtain the classical theory [5, 9. The main idea is to
use certain chain approximations of a given map and to localize the
Lefschetz number of these chain approximations. In the global Lefschetz
fixed point theory of multi-valued maps the chain approximations are used
in [2, 8, 23, 28-32]. In the case of single-valued maps the fixed point index is
defined as local Lefschetz number of chain approximation in [4, 10, 18, 22].
In the case of multi-valued maps on compact polyhedra these two appro-
aches were used in [27] to define a fixed point index with all properties. For
a review of results, applications and problems of the fixed point index theory
see [12, 13, 15, 25].
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§ 0. Notations. We consider maps #: X — Y for which the sets @ (x) are
not empty and compact for every xeX. The map & is called upper-semi-
continuous (us.c) if for every open set U in Y the set

$~1(U) = {xeX: ®(x) = U}
is open, [16], ch. 4, p. 32.

* This paper was written while the author was a research fellow sponsored by the
Alexander von Humboldt foundation at the University of Bremen.
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Let X, = X, Y, © Yand ®(X,) = Y,. By &y y;: Xy > Yy we denote the
map defined as @y y, (x) = $(x) for every x in X,. _

With IntY, we denote the interior of the set Y} in ¥, and by Y — the
closure of Y, in Y.

By N we denote the natural numbers and by F — given field.

Suppose K is a polyhedron with a triangulation 7. By ¢ we denote the
kth barycentric subdivision of z. By C, (K, k) denote the chain group of t*
with coefficients F, [33).

Let ¢: C, (K, k)—C, (L, I) be a chain map, and L — polyhedron. If K
is a subpolyhedron in t* by ¢|K,; we denote the chain map

PICx (K, k) Cy(Ky, k) = Cye (L ).

For a given space X by H,(X) we denote Cech homology with
coefficients F, [33], ch. 6. We say that the usc. map & is F-acyclic (or
acyclic) if for every xeX the set @(x) is connected and A, ((b(x)) =0 for
i> 0. In this note we consider F-acyclic maps.

§1. Approximation systems. Here we use the notion of A-system
for a given usc. map (with respect to a given and fixed field F). For
the definition and properties of A-systems see [27], ch. 2. By K and L we
denote locally compact polyhedra.

(1.1) DerFNiTION. Let @: K — Lbe an us.c. map. Suppose that for every
compact polyhedra M and N with M c K, #(M) = IntN < N < L is given
an A-system A (D yy) for @,y Then we say that o/(P) = | A (Pyy)) is F-.c/-system
(or simple 7-system) for @ provided: for every compact polyhedra M;, N; with
M, €M, cK,N; cIntN, = N, = L&(M;) = IntN; there is k, such that for
all k> ko there is @ in A(Pp,w )k With @|M; e A(Py,y -

(1.2) Remarks. (i) Let ¥: P—Q be an us.c. map and P, 0 — compact
polyhedra. Then every A-system A(') for ¥ induces an o/-system for ¥. For
M and N — compact polyhedra with M = P, ¥(M) < IntN = N = Q denote
by A(Wumn): the set ‘

{pe A(P): ¢(Cy(M, K) = C, (N, K)}.

Since M is a compact set and ¥ — us.c. map and ¥ (M) < IntN, then
A(¥un) = {A(Prnk} is an A-system for the map ¥yy. It is easy to see that
{A(¥uy)} is an of-system for ¥. We denote this «/-system also by A(¥).

(ii) Let #: K — Lbe an acyclic map. For compact polyhedra M and N
with M c K, ®(M) < IntN < N = L consider A*(Pyy) ~ the A-system
induced by @yy, [27], ch. 3, §1, (3.7). It is easy to check that &/*(P)
= {A* (D)} is an of-system, We call this o7/-system s7-system induced by P.

(1.3) RESTRICTION OF &/-sysTeMs. Let @: K — L be an usc. map and

o (®) — an /-system for ¢. If K, is a subpolyhedron in K and L, ~
subpolyhedron in L with &#(K,) < L,, then

{A(Pyn)e A (®): M <K, NcL,}
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is o/-system for the map ¥y , . We denote this s/-system by o (P),r,-
1 . N 1

In case L= L, we write o (®)x, instead of o (P)g .

(1.4) HomotoPy OF ./-SYSTEMS. Let &y, ®,: K —» Lbe us.c. maps and
oA (@), A (P,) — /-systems for @, and J,. Let H: K xI — Lbe us.c. and
H(x, 0) = & (x), H(x, 1) = #,(x), x in K, i.e, H is a homotopy between the
maps ®; and ®,, [ =[0, 1]. We say that the .o/-systems 7 (®,) and .« (P,)
are H-homotop if for every compact polyhedra M, N with M cK,
H(M xI)cIntN < N < Lthe A-systems A(®, yy) and A(P,py) are Hyurn
-homotop, [27], ch. 2, §3, (212). '

Here A(Pyp)e (D), i=1,2.

(1.5) Remarks. (i) Let ¥,, ¥,: P> Q be us.c. maps, P, Q — compact
polyhedra and A(¥,), A(¥,) — A-systems for ¥,, ¥,. Let h: PxI —Q be
us.c. homotopy between ¥,, ¥,, and A(¥,), A(¥,) are h-homotop A-system.
Then A(¥Y,) and A(¥,) are h-homotop .o7-systems, see remark (1.2) (i).

(ii) Let &, ®,: K — Lbe acyclic maps and H: K x L— L acyclic map,
homotopy between @, and @,. Using Lemma (4.3), § 2, ch. 4, [27] we obtain
that the induced .o7-systems &/*(®,) and &*(P,) are H-homotop.

(1.6) ComposiTION OF &f-sysTEMS. Let Ky, K, K3, be locally compact
polyhedra and @,: K; =K, #,: K, » K; — us.c. maps. Let &/ (®,) be &/~
systems for &,, i = 1, 2. Using o (®;) we shall define o/-system for ®,0 &,.

Consider the composition A(®,yp)0 A(Pypn), here A(Pyyn)€ L (Py)
and A(P,yp)€ o (P,). From Lemma (2.16), § 4, ch. 2, [27] this composition
is an A-system for the map (P, - D;)yp. It is easy to check that

{A(Poynp) 0 A(Pypn): A(Donp)E (D), A(¢1MN)E'~d(¢1)}

is an oZ-system for ®,0®;. We call this &/-system — composition of the sZ-
systems s/ (®,) and o/ (P,) and denote it by (@)oo (Py).

(1.7) Remarks. (i) Let #: P—Q be an us.c. map and @ = ,0 ... 09,
where ¢@;: P, = P;,, is F-acyclic map and P, — compact polyhedron, i
=1,...,n+1, P, =P, P,.; = Q. From [27], Example 1, § 1, ch. 3 we know
that the decomposition ,0¢,-;0...0¢; of the map & induces an A-
system A*(®) for &: A*(p,)0 ...0A*(p,), where A*(p;) are induced 4-
systems. The A-system A*(®) is called induced by &. More general, if ¥: P
—~Q, we say that ¥ admits F-acyclic (acyclic) decomposition if ¥
=1,0 ... oy, where ;: C;~C;,, are F-acyclic maps and X; — compact
Hausdorff spaces, C; = P, C,.y =@, [26, 28]. Using Vietoris-Begle con-
struction of the induced chain homomorphism for acyclic maps ;, [1, 28,
36], we construct an 4-system A (') as follows: let 7 be a triangulation of P
and g triangulation of Q. Let A*(%¥), be the set of all chain maps

@: Cy(P, k)~ Cy(Q, k)

constructed for the composition of acyclic maps ¥,0 ... 0y as in Lemma 1,


GUEST


44 G. 8. Skordev

[28]. Then it is easy to check that
A*(P) = {A* (P)}

is an A-system for ¥. Obviously this A-system depends on the decomposition
Y,0...0¢;. We call it A-system for @ induced by the decomposition
¥,0 ...0Yy. Denote by # the class of all maps which admit F-acyclic
decomposition.

(i) Let ¥: K~ L be an usc. map. We say that ¥ has an acyclic
decomposition if ¥ =y,0 ... oy, where '

(@) ¥+ X;—X;+; — acyclic maps,

(b) X; — Hausdorff spaces, X; =K, X,.; = L.

Let M be a compact polyhedron in K, N compact polyhedron in L such
that ¥ (M) < IntN. Denote by C; =y, ... ¥, (M) and by y;: C; = C,.,
the map for which ¥}(x) =y, (x) for every xeC;. Then the map ¥yy: M
— N belongs to 2 (Y- ... Y1 is a F-acyclic decomposition for ¥)y). Let
A*(Pyy) be the A-system for W,y induced by the decomposition
¥,0 ...oY;. Then

&/(‘F) = {A*(IPMN)}

is «/-system for ¥. We call it — o/-system induced by the decomposition
Y,0 ...0y,. Denote by £, the class of all pairs (¥, y,0-.. oY) where
¥: K—Land y,0...0y; is the acyclic decomposition for the map ¥.
Remark that a given map could have different acyclic decompositions.

(iii) There are different possibilities to define homotopy in the class 2.
We shall consider the following one.

Let o Xi—=Xihq, 1<i<niss, H: X, xI > X, ,, be acyclic maps,
Xy, X,+1 — locally compact polyhedra. The homotopy H induces the family
of maps H,: X, — X, defined as H,(x)=H(x, t), xeX, tel.

Let ¢;=H,, ¢;=H,;. Then we say that the decompositions
PnO .. OPuy1 OPL0QP10...00; and (,0... 0P 1 0P 0P, O... 0@y
are elementary homotop in £, (obviously the maps are homotop with
the homotopy F, =@, ... s 1 Hips—y ... ).

Let @,0...00, and y,0...0¥; be in 2. We say that they are
homotop in £, if there is a finite number elements 9, ..., 9, in 2, such
that §; is an elementary homotopic in £, with 8, and 9, = ¢,0 ... 0,
and 8, =y,0...0Y,. ‘

(1.8) HoMoTOPY OF COMPOSITIONS OF &/-sYsTEMs. Using the same tech-
nique as in the proof of Lemma (2.16), § 4, ch. 2, [27] we prove

(1.9y Lemma. Let @4, 912 Py~ P,, &,, §y: P, — Py, Hi: Pyx]—P,,
H,: Pyx I~ Py be us.c. maps, P, — compact polyhedra and A(®,), A(®}) —
A-systems for &;, @}, i=1,2. If A(D) and A(P) are H;-homotop, then
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A(®y)0 A(P,) and A(D,)0A(P)) are H-homotop where H, = Hy, 0Hy,, tel.

Now from Lemma (1.9) we obtain

(1.10) LemMaA. Let &, 97 K, - K,, &,, &, K; -K;, H;: K, xI
—+K,, Hy: KyxI— K3 be usc. maps and K; — locally compact polyhedra.
Let s (9,), & (P;) be of-systems for &;, &}, i =1, 2. If o (®,), (P are H;-
homotop, then o (P;)0 o (Py) and of ($3)0 .9/ (®7) are H-homotop where H,
= HyoHy, tel. .

(1.11) Remark. Let (®, 9,0...0¢,), (¥, ¥,0 ... oyYy)e P, and o*(P)
be .«Z-system induced by acyclic decomposition ¢,0 ... 0 @, an Z*(P) — -
system induced by the acyclic decomposition ¥, 0 ... oy,. Then straightfor-
ward from the definitions we obtain: if ¢,0...0¢, and ¥,0...0y, are
homotop in #; with a homotopy H, then «/*(#) and /*(¥) are H-
homotopic.

(1.12) SpeCIAL &7-sYSTEMS. Let @: K — Lbe an us.c. map and <7 ($) an
of-system for @. Suppose K < L. «/-system is called special if for every open
and polyhedral sets Oy, ..., 0, in L with

0,00(0)cInt0;,; 1<i<n-1

and 0, — compact there is koe N such that for all keN, k >k, there is
peA(Po,_ 0, With following property

®|0,eA(P55,, )k for

Here A(®$s,5,,,)€#(P), i=1,...,n.

(1.13) Remarks. (i) Let ¥: M >N be an usc. map, M and N —
compact polyhedra, M < N and A(¥) an A-system for ¥. Then A(¥) is a
special &7 -system.

(i) Let (P, @O ...0p)€Py, (L.7) (ii), and /*(P) be the .Z-system
induced by the acyclic decomposition ¢,,0 ... ©¢;. Then from the definition
follows that =/*(®) is a special «&/-system.

i=1,..,n

§ 2. A category appropriate for fixed point index. Let F be a fixed field
and K, K;, L, L; — locally compact polyhedra.

(2.1) DermviioN. Consider the following category " = % (F): the ele-
ments of A" are pairs (&, o/ (#)) where ®: K — Lis an us.c. map and (D)
an o/-system for ®. The composition of two objects in X" is defined
naturally. Let (9, o/ (®))eA and &;: K, = K,, ®,: K; > K;. Then the
composition (@, & (#,))o(®Py, o (#,))is defined as (B0, o (D) 04 (D)),
see (1.6).

(We) call the category A" — category of all F-o-systems.

Let A, be the class of objects in X such that (@, o (P))eX iff
de®?,, (1.7) (i) and &*(P) is an o/-system induced by some acyclic
decomposition of @. Obviously X' is a subcategory of A
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An clement (@, ./ (®)) in A" we call admissible if ®: U — K, where U is
an open set in K and the set

Fix(P) = {xeU: xeP(x)}

is compact. Denote by U the class of all admissible objects in X',

(22) Homotopy IN . Let H: KxI-L be an usc. map and
®,, P,: K- L are defined as &, (x) = H(x, 0), P,(x) = H(x, 1) for xeK.
Suppose (P;, o (§;))e . We say that (P, .o (@, )) and (P,, o (®,)) are H-
homotop in X if & (P,) and o7 ($,) are H-homotop. We say that these two
elements are admissible homotop in A" if K is an open set in L and

Fix(H) = | {Fix(H)): rel}
is compact set (H, is defined as H,(x) = H(x, t)).

(2.3) EXTENSION OF THE FUNCTOR OF SINGULAR HOMOLOGY WITH
COEFFICIENTS F oN A . By Hj we denote the functor of singular homology
with coefficients F, [33], ch. 4. Here for every (, ./ (P))e #, &: K » L, we
define a homomorphism

oZ (P),: H;, (K)— Hy, (L)

such that
(i) If (@, A (D))e A" and (B,, o ($;))0(Py, #(Py)) is defined, then
A (D), 0 (D)), = (&f (?,) 0.91(451))*.
(i) If (®, o (P))e A’y and @ is single-valued, then

A* (D), = P,
where @, is the homomorphism induced by .
(iii) If (P,, o (®,)) and (P,, #(P,)) are homotop in F', then

A (D), = A (D),

We call the homomorphism o (D), induced by (D, o (P)).
Let A(®Pyy) €./ (). From Definition (2.3), § 1, ch. 1, [27] it follows that
for sufficiently largc k and every e A(Pyy) thc homomorphlsm

py: Hy(M) = H,(N)

does not depend on k and ¢ (¢, — is induced by ¢). Denote this homomor-
phism by A(dJMN)*.. From Definition (1.1) we obtain: if M, = M, are
compact polyhedra in K and N; « N, — compact polyhedra in Lsuch that

&(M,)cIntN;, i =1, 2, then
j*A(QMINl)* = A(¢M2N2)*i*:

here i: My — M, j: Ny - N, are inclusions and i,,j, —~ homomorphisms
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in homology, induced by i and j. This gives us that the family of
homomorphisms

-ﬁz(@! = {A(‘DMN)*: A(‘I’MN)EM(@}

is homomorphism of the direct system of groups

H(K)={H,(M): M — compact subpolyhedra in K}
into the direct system of groups

H.(L) = {H,(P): P — compact subpolyhedra in L}

(see [20], Appendix, § A2, p. 381).
Denote by

& (P),: =lim./(P)

the limit of the direct system of homomorphisms </ (®), and by

Hi(K)=1imH,(K) and HL()= lim Hj (L)
direct limits of Hy (K) and H,(L).

By definition H¢ are the homology with compact supports and coeflici-
ents F ([20], ch. 9, §91 p. 269).

Therefore we have a homomorphism

o (9),: Hy (K) = Hy (L)

It is known that homology with compact supports and singular homo-
logy are isomorph on the category of locally compact polyhedra and
continuous mappings, [20], ch. 9, § 9.6.

Let u(X): Hy (X, F) > H,(X, F) be the natural isomorphism for X —
locally compact polyhedron.

Then defining

2 (@), = 1~ (L) A (@) u(K)
we obtain a homomorphism
o (@) Hy(K) ~ B (D)

we call this homomorphism — homomorphism in singular homology, induced
by the <f-system </ (P).

Properties (i), (ii), (iii) follow from the definitions (for the definition of @,
in case @ single-valued and continuous see [20], ch. 9, p. 270).

(24) Remarks. (i) Let (&, &/*($))e A, ®: K — Land & be an acyclic
map. Let A*($yy)e/*(P). Consider the map Pyy: M —N. This is an
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acyclic map and M, N are compact spaces. There is well known definition of
the induced homomorphism in homology of the map ®yy:

(Pyn)y: Hy (M) = Hy(N),
[13, 28]. From the arguments in [28], Lemma 1 we have that for sufficiently

large keN and every @eA(Pyy) follows ¢, =(Pyn),; here ¢, is the
homomorphism in homology, induced by the chain mapping ¢. Therefore if

5* = hin (Pun)e and Q* =u ! (L 6*.”(K)a

then &/*(P), = P,.

(ii) Let (®, &*(P))e Ay, ®: K — Land o/*(P) is induced by the acyclic
decomposition ¢,0 ... 0¢@,, X; — Hausdorff spaces, X, = K and X,,, = L.
Let M and N be compact polyhedra with M < K, &(M) < IntN, and C,;
= @i-1 ... 91 (M). The map ¢; = ¢@JC;: C;=C,y, is acyclic and ¢} a
homomorphism in Cech homology with coefficients F, [13]:

P H*(C.')"’H*(Ciﬂ)-

Consider the homomorphism

PpOP,_1+0 .., 0@1s: H (M)—>H,(N).

‘Since M and N are compact polyhedra then from the arguments in Lemma
1, [28] we obtain: for k sufficiently large and ¢@eof (Pynk, 04
= (;«0 ... 0@}« and therefore

A (B), = lim {@}e0 ... 09},

We denote this homomorphism by ¢0...00x

(2.5) LEFSCHETZ NUMBER OF THE ELEMENTS OF X". Let (&, o (®))e X,
&®: K~ K. If @ is compact map then the induced homomorphism of (®) is a
Leray endomorphism of H3, (K) and if M is a compact subpolyhedron in K. with
®(K) = IntM, then

A (D)) = A(A(Dyia)y)-

Here A(o/ (®),) and A(A(Pyy),) are the Lefschetz numbers of the endomor-
phisms .7 (D), and A(Pym),, [14, 18]

Proof. Let M be a compact subpolyhedra in K such that
@(K) = IntM. Consider the maps Ppp: M > M and &yy: K- M. We
have the following &/-systems: & (D) = o (B)ypr, and of (B pgp) = o (D),
see (1.3). Denote by i: M — K the inclusion. Then from (2.3) we have

A D)y =iy (Prr)y  and  A(Byp), = A (Bypp), i,
Since M is a compact polyhedron, then dimgH, (M) < co and A (A(Dy),)
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exist. Therefore 2/(®), is a Leray endomorphism and A(«/(9),)
= A(A(Prm)y)> [14, 18].

§ 3. Fixed point index on X" Let (P, o/ (®))e ¥, (2.1) and &: U—K.
Since the set Fix(®) is compact, then there is an open and polyhedral set V
in K such that Fix(#) «c V= V< U and V is compact. Let W be an open
and polyhedral set in K with VU ®(V) «c W and W — compact.

Now the set Wis compact polyhedron and V'— open and polyhedral set
in W. Consider A(®Ppy)eo/ (®). Since Fix(py) = V, then A(Ppp) is an I--
system on ¥, Lemma (2.5), § 1, ch. 2, [27]; for the deﬁmtlon of an I-system
see (1.1), § 1, ch. 1, [27].

(3.1) DerFiniTioN. The fixed point index I(®, #Z(P)) of the element
(®, o (D)) is defined as follows '

1(®, (@) = 1{A(®pp)-

Here I(4(Ppp)) is the index of the I-system 4 (Dw), (1.2), § 1, ch. 1, [27].

It seems that this definition depends not only on the /-system ()
but also on ¥V and W. Using only the definitions one prove immediately
that Definition (2.1) is independent on V and W.

(3.2) Remark. Let f: UK be an admissible and single-valued niap.
Then the fixed point index I{f, &#*(f)) coincides with the fixed point index
i(K,f, U) of fon U, see [4, 5, 7, 9, 10, 22]. )

§ 4. Additivity, homotopy invariance and normalization property of the
fixed point index.

(4.1) Apprrivity. Let U be an open set in K, &: U—~K, and
(@, #(®)eW. Let Uy, U, be open and disjoint. subsets in U. If
Fix(®) =« U, v U,, then

o, o (D) =1(D;, d(tlf)vl)+l(d>2, oA (P)y,)-
Here &, = ®|U;: U; > K, and o/ (B)y, is the restriction o/ (®) on U, i =1, 2.

Proof is a straightforward application of the definitions and (2.8), § 2,
ch. 2, [27]

(4.2) HoMOTOPY INVARIANCE. Let U be an open set in K, &, ®,: U —+K
H: UxI—-K — homotopy between &, and &,. If ($,, & (Py)) and
(@, A (P,)) are admissible H-homotopic, then

1(®y, o (By)) = 1(®,, o (D).
Proof. Immediate consequence from (1.4) and Lemma (2.14), §3, ch. 2,
[27], Proposition (1.5), § 1, ch. 1, [27].

(4.3) NORMALIZATION. Let (P, #(®)eN, &: K > K and d-compact map.
Then

A(st (D)) = (&, A (D).

4 — Fundamenta Mathematicae 121
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Proof. Let M be a compact subpolyhedron in K such that @(K) = M.
Then from (2.5)

AL (D))= A(4 (Prmde)-
From H. Hopf trace formula, [5], p. 6 we have
A(A(@rp)y) = 1 (A(Prur)-
From (3.1)
H{A(@yp) = (P, A (D).
§ 5. Commutativity. Let U be an open set in K, V - open set in L,
¢,: U~ L, &, VK, and (&;, #(P))e X . Let
@, = &7 (V): P71 (V) L,
Py=@,|0; ' (U): ¢7'(U) - K,
and
PICATCIC ARSI JC AT ICANI
then
(@00}, o (Br)o (D)) and (@, 005, ()0 (P3))
belong to X" In case they belong to U the indices
I(P,09, oA ()0 (@) and I(P; 0Py, o (B))o sV (D))
'arc defined. Here we shall find conditions under which these two indices are
equal. For this we need some notations. Let
Fix(®,8,) = {xe U: there is ye®,(x) nV such that xe &,(»)},
and similar _
Fix(®,®,) = {yeV: there is xe®,(y) " U such that ye P, (29}
(5.1) ASSUMPTIONS.
(i) Fix(®,Py) and Fix(P,P,) are compact sets.
(ii) Fix(®,9}) and Fix(®,D,) are compact sets.
(iti) @, (Fix(D,0\®; ' (V) "Fix(®;85) = .
(iv) &, (Fix(®,P)\P3 ! (U)) "Fix(,9) = 0.
(5.2) Lemma. Under the conditions (5.1) wé have
1(®,P), oA (Br)o o (B,)) = 1(D, P, (D)) 0 (D,)).
Before proving this lemma we make some remarks.

(5.3) Remarks. (i) In case @, is single-valued then Fix(®$,d,)
= Fix(®,®;) and the condition (5.1) (iii) is satisfied.

icm

Fixed point index for open sets in euclidean spaces 51

(ii) If @, is single valued, then Fix(®,®,) = Fix(®,d,) and (5.1) (iv) is
satisfied.

(iii) In case @; and @, are single-valued, then the assumptions (5.1)
reduce to: one of the sets Fix(®,P,) or Fix(P,P,) is compact, see [7].
(iv) If V=L, then 7' (V) = U and the condition (5.1) (iii) is satisfied.
(54) Proof of Lemma (5.2). The proof is similar to the proof of
Lemma (1.6), § 2, ch. 1, [27]. . )
Denote
By =Fix(®,2,)\@7 '(V), B, = Fix(®,9}),
By =Fix(9,8,)\®; ' (U), B, = Fix(9,95).
From (5.1) (i), (i) we have that the sets B; are compact, i=1, ..., 4.
Let W, be an open and polyhedral set in K such that
&,(B;) "W, =0, BycW, W, co7'(V)
and W, — compact set.
Let O, be open and polyhedral set in L and such that
B,ud (W)<=0,.c0, =V
and 0; — compact set.
Let O, be an open and polyhedral set in L and such that
B,c0,=0,c®;'(U), 0,<0,, 0,n®,(B,) =0
and O, — compact set.
Let W, be an open and polyhedral set in K and
2, (0)uW, c Wy, c W= U
and W, — compact set.
By K, denote a compact subpolyhedra in K with &,(0,)u W, < IntK,
and by L, — compact polyhedra in L with 0, U &, (W,) < IntL,.
Now consider the following I-system on W,
(5.5) A(P26,k)A(P17,5,)-
By the definition — the index of this I-system is
I{®,0P), o (P;)0 (DY)).

Here A(®,5,x,) belongs to &/ (®;) and A(Pyy 5,) belongs to o (2,).
Consider also the I-system on O,

) (56) A(¢1W2L1)A (¢262“72)'

By the definition — the index of this I-system is
1(®, 0}, o (®;)0L (P3)).
Here A(®Pywp,p,) e (P;) and A(P2p,7,) € (P))-
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In order to prove Lemma (5.2) we check that the indices of I-systems
(5.5) and (5.6) are equal.

Consider A(®,y,.,) and A(Pyw,6 ,)- Since these two A-systems belong
to «(®,), then by Definition (1.1) for every sufficiently large ke N there
is a chain map peA(P1p,1, ) such that

(57 oWy eA(P1w,6

Consider A(®,5,,) and A(P25,k,)- Since these two A-systems belong to
o (@,), then from Definition (1.1) we have: for every sufficiently large k,
there is a chain map ¥ €4 (®5,x, ) sSuch that ‘

(5.8) ¥10, EA(¢252W2)k'

Let 7y Cy(Ky, k) = Cy (W, k), mpi Cy(Ly, k) = C, (0, k) are the F-
linear projections of the chain groups of the triangulations 7 and u*. Here ©
is a triangulation of K and g — of L.

By definition of the. index of I-system, (1.2), § 1, ch. 1, [27] we have -

I{A(®35,x,) A(Pv7,5,) = A(n ol W)
and
I(A (‘D1W2L1) A@zﬁzwz)) = A0 05)
in case k is sufficiently large and ¢,  have the properties (5.7), (5.8).
Consider the Lefschetz number A (n,¢|0,). Using Assumption (5.1) (iii)
and Lemma (2.7), § 2, ch. 2, [27], we obtain: for sufficiently large ke N one
has: if ¢ is a simplex in u* and ¢ = 0, ce@y (o), then for every simplex
o' et® with o'ey(s) and o’e W,\W, holds s¢y(c). This gives — for
sufficiently large ke N
A(m,09103) = A(maen;¥|05)
and therefore
Ay o|02) = A(m, 0|02 0mai| Wy).
Similar
A Ym0l Wy) = A(m, |0, 0| W3).
Now using commutativity of the trace of composition of F-linear maps we
obtain
A0\ Wy om,|0,) = A(mh|0, 00| Wy).
Thus Lemma (5.2) is proved.
(5.9) Corovrrary. Let f: U —L be single-valued continuous map, &: V
- K and (&, & (®))eA . Let Fix(®f), Fix(fd) and Fix(f®) be compact. If

O (Fix(f O\~ ! (U)) N Fix(¢f) = O,
B H(2f', & (D)ot *(f)) = I(f &, o£*(f)o A ().
Proof. Lemma (5.2) and remark (5.3) (i).

then

icm

Fixed point index for open sets in euclidean spaces 53

(5.10) CoroLLARY. Let &: L—K and (¢, o (P))e . Let f: U ~ L be
single-valued and continuous. If Fix(f®), Fix(®f) and Fix(f®’) are compact
set, then

I(f8', *(f) ool () = I(®f, o (P)oL*(f)).

(5.11) RepuctioN PROPERTY. Let &: U—K, (@, #(®)) and Lc K. If
®(U) = L, then

1(®, o (@) = I(BIL, A (P)1).

§ 6. mod-p property. Suppose U is an open set in K and &: UK is
an u.s.c. map. Here we consider the composition @” of the map @. The map
®? is defined as follows

& (x) = &(...(2((x).. ),

therefore ®” is defined for those x for which ®(x), ®*(x), ..., PP~ '(x) are
subsets in U. Denote by D(&*) the set where &* is defined, then

D@ = &~ (D1 (®))

for ke N and therefore D(®") is an open subset in U (possible empty).

Here we suppose that the set’ D(®F) is not empty. Let ¥V be an open,
subset of D($7) and & = &|V: V- K, then the map (®): V—K is defined.

Now suppose that (@', & ($)) and (P97, o (D) ... (@) are admissible
elements in J, ie. the sets Fix(%) and Fix(®’?) are compact. Then the
indices 1(®', o (@) and (27, (D) ... & (@) are defined, here oZ(®")
= o/ (®),. We shall find conditions under which these indices are equal.

(6.1) AssumpTions. Let pe N be a prime number, F = Z, and &/ (P) —
Z,-of -system.

(i) H(®) is a special #-system, (1.12).

(ii) D(¢") is not empty.

(iii) Fix(®”) and Fix($") are compact set.

(iv) @ (Fix(#")\V)NFix(®7) = @ for every 1<i<p—1.

(6.2) LemMa. Let &: UK, (9, oA (P)eA and U — open in K. If
assumptions (6.1) are satisfied, then

1(@', o (@) =137, o (D)o ... ol (&)

Proof. Let O, be an open and polyhedral set in K with
Fix(#?) < 0; < 0, = V and O, ~ compact and

0, NP (Fix(PN\V)=0 for 1<s<p-1.
Suppose O; is defined. Define O;,, as an open and polyhedral set in
K with 0,0®(0) < 0;4y <Oy = D(@"1*") and Oy, — compact for
1gigp-1. _
Consider 0, — it is compact and O, < U. Let K; be a compact
subpolyhedron in K with 0,u ®(0,) = IntK,.
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If A(®59,,,) and A(d>5p,(l) belong to &7 (), then
@', o () = I(A(®5,5,)
and
1{®", of (D)o ...0 (D)) = I(A(diap,(l)oA(tDap_lap)o oA(q)al@z)).

Consider A(®5,x,) and A(®5,,,) for 1 <i<p~—1. Since o (9) is a

special o7/-system, then for every sufficiently large ke N there is pe A(P5 ¢ )i
such that v

(6.3) o =0l0;eA(Po5,, ) for i=1,..,p—1

Let n: C,(Ky, k)= C,(0y, k) be the linear projection of the chain
group of the triangulation t* on K, on the chain group of t* on O, (chain
groups are with coefficients Z,, and 7 is a triangulation of K).

Then by Definition (1.2), § 1.2, ch. 1, [27],

I{A(®P5,5,)) = A(noy)
and
I(A(Qapxl)oA(dﬁap_lap)o . OA(P5,5,)) = APy 1 ... P201).
Here ¢; is defined in (6.3).

Consider the chain map n@,p,_; ... ¢,¢;. From Lemma (2.7), § 2, ch. 2,
!:27]_and Assumption (6.1) (iv) we obtain: if k is sufficiently large o is simplex
in 0,, oet*, and OEQyPp-1 .- 9201 (0), then for every simplex o, ett,
o1€¢,(0) and 0,€0,\0, follows o ¢ g, ... ¢,(0y). Therefore

AMPPp-1 - P201) = A(NP,Pp—y ... P;70y).
Since

TPpPp—1 -+ PPy =Py 1Pp—3 ... P2P1 Py,
then
ATQppp=1 - P2001) = APy 1 @pez .. 020,04).
Using the same arguments we prove that
AMPyPyy ... ¢1) = A((mo, )

where (1 f = npin@, ... mp; ~ composition p-times. Since p is a prime
number, then from “§mall Fermat” theorem [24], the Lemma, p. 441, follows
A((me,F) = A(ngp,) in Z,. Thus Lemma (6.2) is proved.

§ 7. Summary of results.

(7.1) THEOREM. Suppose F is a fixed field and A" = X (F) is a cate

= ory 0]
all F '-.w'-sysrems. On Ih'e class of all admissible elements N of X is degﬁneJc)I af
function I: W—F, a fixed point index, with following properties:~
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1. Apprmvity. Let Uy, U, be open disjoint sets in U and U — open in
K. If (®, o (®)eV, &: UK and Fix(P) = U; uU,, then
1(®, o (®) =1(Dy, A (D)y,)+ (P2, # (P,);
here &, = d|U;: U;»K,i=1,2.

II. HOMOTOPY INVARIANCE. Let (@, o#(®,)) and (®;, o (P,)) belong to
A and be admissible H-homotop in A, then

I(®P,, L (®y)) =I1(®,, o (D7)

III. NormaLizATION. Let &: K=K be a compact map- and
(@, o (®)eAH". Then the homomorphism sl (P),: H: (K)— H5, (K) is Leray
endomorphism and

10, o (®) = A @),).

IV. CommutatviTy. Let U be an open set in K and V — open in L,
®,: UL, & VK, and (;, of (D)) belongs to A, i=1,2. Let

@) = &,|07 (V): BT (V) L, &)= ;|P3"(U): 977 (V) K.

I

d (i) Fix(®,%,), Fix(®,9,) are compact sets,
(ii) Fix(®,P,), Fix($,P}) are compact sets,
(iii) @, (Fix(d52¢1)\¢f1(V))r\Fix(bltD’z) =0,
(iv) @, (Fix(®,9,)\®; * (V) nFix(#,9)) = B,

then

1(®,84, o (B)0 (@) = I(@,B}, F (B1)0 o (B5).
V. mod-P properTY. Let U be an open set in K, &: UK, V — non-
empty set in D(®F) and & = P|V: V-K. Let (P, A (B))eX. If
(i) p is a prime number, F = Z, and of (@) is a special s -system,
(i) Fix(®?), Fix(®P'?) are compact sets
(iti) @' (Fix(P"\V) NFix(P”) = O for every 1 <i<p—1, then
(&, A (D) = 1(®", o (P)o ... 0 o (D).

(7.2) CoroLLARY. Restricting the fixed point index on the subcategory X o
we obtain fixed point index with properties (V). Homotopy invariance is
formulated as follows:

(II') HOMOTOPY INVARIANCE IN H'o. Let @, and @, be admissible homotop
in Py, then

1(®y, A* (D)) =1(P3, A*(D,)).

(7.3) RebuctioN PROPERTY. Let U be an open set in K, L locally com-

pact polyhedron in K, ®: U—K and (9, o (P)eW. If B(U) = L, then

1(®, #(®) = [(BLA U, o (@)s)-
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§ 8. Concluding remarks.

(8.1) Let ¢: K — L be a continuous (us.c. and ls.c.) map, and neN. If
for every point xe L the set @(x) is entweder F-acyclic compactum or sum of
n F-acyclic compacta, then & has an o/-system — o/*(d); it is constructed
using [23]. Therefore (&, W*(@))e&i’

(8.2) Let &: K — L be “admissible”, [13], multivalued map, i.e. there
exist two single-valued, continuous maps p: X - K and ¢: X — Lsuch that

(i) p is a proper and F-Vietoris map,

(i) gp~ (%) = ®(x) for every xeX,

(ili) X is a Hausdorff topological space (see [1, 13, 36]). )

We know that there is an induced F-s&/-system for the map gp~?.
Denote this </-system by 2Z(gp~ '), (1.7) (i). Obviously o/ (qp~') is an .+#/-
system for @. Therefore (@, o (gp~*))e A"

(8.3) Let @: K — Lbe an u.s.c. map and suppose that for every compact
subpolyhedron M in K, and compact subpolyhedron N in Lwith (M) = N
the map ®py: |M: M — N can be approximated with a single-valued map
JSun: M — N arbitrary good. This means that for every ke N there is single-
valued and continuous map fyy: M — N such that fyy (x) = St(®(x), u*) for
every xeM. Here u is a triangulation of L and u* —~ kth barycentric
subdivision of y, St(®(x), #¥) = U {sep*: o nd(x) # @}. In this case we say
that @ admits approximations by single-valued maps. Then these approxim-
ations induce an «/-system — o#*($). We call this «7-system induced by single-
valued approximations. Then (®, o/*(®))e . ‘

If ;: U>L, and &,: VK — admit single-valued approximations,
U — open in K, V — open in L. Then (9, &*($))eH . In this case
commutativity property for (®,, o/*(®,)) and (&,, o* (D,)) is simple:

(IV) CommuraTivity. Let &,: U > L and &@,: V=K admit approxim-
ations by single-valued maps and

P =9,|07(V): BT (V) K,
& = &,|031 (U): ;7' (U) - L.
If Fix(9,95) and Fix(®,9) are compact sets, then

I(D,@}, o/*(Py) 0 (D)) = I (D, P, A* (D) 0 oA *(B5)).

For maps admitting approximations by single-valued continuous maps
mod-p property is also simpler.

(V) mod-P proPERTY. Let U be an open set in K, &: UK, V —
nonempty open set in D(®*) and &' = ®|\V: V- K. Let & admits single valued
approximations. If )

@) p is a prime number, F =2Z,,

(i) Fix(®"™) is a compact set,

then
(@, oA (D) =

1(@7, £ (®)o ... 0ot ().
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For examples of maps admitting approximation by single-valued maps
see [3, 6, 11, 19, 21]. For mod-p property see [10, 34, 37].

(8.4) Since every open set in a finite dimensional euclidean space is a
locally compact polyhedron, we obtain a fixed point index for a large class of
multi-valued maps @: U—R" where U is open in R" and R" is n-
dimensional euclidean space.

(8.5) The results of the paper were proved for mappings of locally
compact polyhedra. Using these results and the method proposed by A.
Granas, [14], it is possible to define a fixed point index with all properties for
a large class of multi-valyed maps, including compositions of acyclic maps,
on metric ANR spaces. It should be possible to define a fixed point index for
maps of Browder’s semicomplexes [4, 35]. For this is necessary to find
an appropriate notion of an &/-system for us.c. maps @: X — Y in terms of
Cech or Vietoris complexes of the spaces X and Y.
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Remarks on the n-dimensional geometric measure
of compacta

by
[X. Borsuk |, S. Nowak and S. Spiez (Warszawa)

Ab By the n-di ional geometric measure of a compactum X lying in the Hilbert
space E¥, one understands the lower bound p,(X) of all positive numbers « such that for every
&> 0 there is an ¢-translation f X — E® such that f(X) lies in a polyhedron P = E® for which
the n-dimensional measure |P|, (in the elementary sense) is < «. If dim P <n, we assume |Pl,
=0, and if dimP > n, we assume |P|, = co.

Some relations between geometric measures of two compacta X, Y= E® and the pseudo-
measures of XUY, XnYand X xY are studied.

1. Introduction. In the elementary geometry one assigns to every n-
dimensional polyhedron P the number |P|,, defined as the sum of the
volumes of all n-dimensional simplices belonging to a triangulation of P. If
dimP < n, then one assumes that |P|, = 0, and if dimP > n, then |P|, = co.

One knows that |P|, does not depend on the choice of the triangulation
of P. Moreover, one sees easily that

k
(1.1) X Py, P,, ..., P, are polyhedra, then |P; U ... UP, < Y [P
i=1

Let E® denote the usual Hilbert space, i.e. the space consisting of all real

o0
sequences (X, X, -..), such that Y xi < co, metrized by the formula
i=1

Q((xl: Xz, ) (V1> V2s )) = /El (xr’}’:)z-

We may consider the Euclidean m-space E™ as the subset of E® consisting of
all points (xy, Xz, ++vs Xm» 0,0, ...) denoted also by (X, Xz, .., Xm)-

By the n-dimensional geometric measure of a compactum X < E®, we
understand the number u,(X) (finite or co) defined as the lower bound of all
numbers « > 0 such that for every & > 0, there is an e-translation f;: X — E®
(ie. a map f; satisfying the condition o(x, £,(X)) < & for every x& X) such that
£.(X) is a subset of a polyhedron P = E® with |P|, < «. It is known (see [2])
that:
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