Dimension of convex hyperspaces
by
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Abstract. It is shown that the rank of a convexity on a separable metric space and the dimen-~
sion of its convex hyperspace are equal under natural conditions. The structure of the convex hyper=
space is investigated with, the aid of an induced convexity.

0. Tntroduction. Tt was shown in [NQS] that the hyperspace of convex sets
of a compact linearly convex set C is homeomorphic to the Hilbert cube provided
that C is locally convex, metrizable, and of dimension >1. Sharply contrasting is
the fact that the convex hyperspace of a square equipped with a “convex structure”
of subsquares is homeomorphic to the 4-cube. These and other examples lead to
the question which numerical invariant of an abstract topological convexity is
responsible for the dimension of the corresponding convex hyperspace.

In regard of the philosophy that dimension is some sort of freedom degree,
it is natural to concentrate on the degree of variation that convex sets are allowed
to have. There is a simple way to measure the latter: the rank of a convexity, which
is defined to be the supremum of alln such that there exists a free set with n points.
Recall [V] that a set is free if no one of its points is in the convex hull of the other
ones. The notion of rank comes from [J5]. The idea goes back to a notion of “clo-
sure-independency” in universal algebra, [M]. Rank has been investigated at length
in [V,]. The main result of the present paper is that for separable metrizable Sy-con-
vexities with connected convex sets and with compact polytopes, rank equals the
dimension of the convex hyperspace.

For the obtaining of a proof it was helpful to equip the convex hyperspace
with a convexity which is naturally induced by the original one. Section 1 below
is largoly concerned with a proot that this “Lfting” operation preserves the above
mentioned class of convexities. Inside this class, the dimension of the underlying
space equals the “convex dimension” of the strueture, as was shown in [Vs]. The
latter dimension function is used for a simple proof that the dimension ot the convex
hyperspace does not exceed the rank of the original convexity. The opposite in-
equality comes from considerations involving a theorem of Hurewicz on the di-
mension-lowering of maps. See Section 2.
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As a particular application we obtain Duda’s theorem (initiated by Kelley)
on the dimension of the hyperspace of continua of a tree-like space, [D], [K]. We
also use convex hyperspaces to determine the Radon number of binary convexities
of minimal rank. For other applications of convex hyperspaces, see [Vs] and [V,].

The notation and terminology of our previous paper [Ve] will be continued.
We are now concerned with uniformizable or metrizable convexities as designed
in [Vs]. Let u be a (diagonal) uniformity on X and let % be a topological convexity
on X. We say that u is compatible with € (or: p is a uniformity for (X, 4)) if for
each Ue u there is an “associated” Ve p with RV[C]=U(C) for each C'e %. Recall
that h denotes the convex hudl operator of (X, %) and that for a relation R X x X,
R[A] denotes the set

(x| Jaed: (g, x)eR} (4=X).

If there exists a (metrizable) uniformity on X compatible with the convexity %,
then (X, %) is called a uniformizable (metrizable) convex structure. See [Vs] for
an alternative description in terms of covering uniformities.

1. The convex hyperspace. Recall that the hyperspace H (X) of a topological
space X is the set of all nonempty closed subsets of X equipped with the topology,
generated by the closed subbase of all sets of type (C=X closed)

(CYy = {Ae H(X)| A=C};
(C,Xy={AeHX)| An C# B}.

If X is not compact, then one usually considers the subspace H (X ) of H(X), con~
sisting of all compact 4 € H(X).

If (X, %) is a topological convex structure, then @ c%* will denote the set
of all compact C in *. Note that *c H(X), 4% <H(X). The set &¥, equipped
with the relative topology, will be called the hyperspace of compact convex scts,
or simply, the convex hyperspace.

1.1. Induced convexity on convex hyperspaces. In studying the dimension of @
it is helpful to consider a natural convexity #(%) on %% which is said to be induced
by @: # (%) is the (topological) convexity generated by the collection of all (closed)
sets of type

(CYNEE or (C,X>n%: Ce%*

Such a convexity was already considered (in more restrictive circumstances) in
yMV,], vMV,] and [V,]. ‘ :

The convex hull operator of # (%) will again be denoted by A (the argument
of & will make it clear which space is involved). As 3 (%) is described in terms of
subbase sets only, it is somewhat diffcult to give a direct formula for the hull of
a subset of #*. However, by [J;, p. 8,9] every nonempty polytope is the inter-
section of a family of subbasic sets. Hence, if .

o = {dy, ..., 4.} <%,
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then obviously
h(st) = {F(Ua2)y 0 LG, XH| o =LC, X5, Ce%*} n %%,

where i* stands for the comvex closure operator of (X, 6) (cf. [V4, 1.2)).

There are two ways to simplify this formula. First note that o ={C, X') means
exactly that C meets all members of &7, i.e. C'is a transversul set of & (terminology
of [yMV,]). Let L(%) denote the collection of all closed convex sets transversal
to 4, and let

LB = LB %
Then obviously, .
(1) W) = < U)y 0 L L(f) (o finite).

A generalization of this formula to non-finite & is obtained in 1.6 below.

Next, note that if s is finite and if Ce L(#) then there exists a point x(4)
in Cn A for each 4 € sf, and the polytope A{x(4)| A} is a transversal set
of o indluded in C. Hence if o = {4y, ..., 4,} then

() k() = (4@l Ach*(Usd); A h{ay, .., a,) # D

ifa,€dyy vy QuEAL .

In many cases these formulas facilitate to decide on the membership of /1(.97).
This will be done without further reference to (1) or (2).
1.2, THEOREM. Let (X, €) be a closure-stcble convex structure such that
(1) every two distinct points in X can be scrcened with comvex closed sets;
2) if Cy, Cy are compact convex, then so is (Cy U Cy).
If o <% is a closed half-space, then there exists « closed half-space C of X
such that

o =L{C>NE or o =<C,X>n Gk

Proof of 1.2. We first derive some intermediate results.
() If Ae o is minimal with respect to inclusion, then A consists of enly one
point. Indeed, let x4 #:xz be in 4. By (1) above there exist Cy, Cz € %* such that

x, € CiNCp, %26 CN\Cy, C,u(=X.

Then A n Cy, AN Cy are in @* and both are proper subscts of A. Hence by
minimality

AnC ¢,
As @*\/ i» convex, we find that

Aehfdn CL A Clabindg,

AnC ¢ .

a contradiction.

Let 4, be the set of allx e X with {*c} e of. Note that A, is closed in. X since &7
is closed in %}.
1"
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UI) 4o is a closed half-space of X. Indeed; let xy,..., X, € &y Then
CB{xpy o Xnky 0G0 = R{{x.}, s Rl

Hence if xeh{x,,..,x,}, then {x}eo/ and consequently x&Ao. This proves
convexity of 4o, and convexity of X\A, is proved in a similar way.

() {4o> N Brcsl =4, x> D @¥. Let Beldy) n @*. If FeB then the
polytope A (F)=B is compact and

CFYY 0 %) = h{{x}| xeFlcs,

In particular, 2(F) e . As B is the limit of the (upward filtered) net 1(F), Fc B
finite, and as  is closed, we find that B e .o/, Let B be in o/ now. As B is compaet
and as o is closed, there is a minimal B'cB with B'e &. By (I), B' = {x} for
some x& X, and hence B meets 4, in x.

We now show that one of the inclusions in (TII) must be an equality. We
distinguish between two possibilities.

First case: Jof = X. Let De {4y, XD N @¥. Then D meets A, and con-
sequently the family

9 = {4l AcD,Adec o}

is nonempty. Let 2’ =@ be a chain with respect to inclusion. Then (2 is convex,
and hence Cl({J9') is compact and convex. This set is also the limit of the net
9' <o, and hence Cl({J@') € . This shows that @ is inductively ordered upwards
by inclusion, and by Zorn’s lemma there is a maximal element D, € 9, If Dy 5= D
then fix a point x € D\D,. As & = X, there is an 4 € & with x e 4. Then
B =Hh*A U Dy)ehi{d, Do},
and as
DycBn D=B,
we may conclude that
Bn Deh{Dy, Blcs .

However, x& B n D, and hence Bn D properly includes Dy, a contradiction.
Applying the second inclusion of (III) then completes the proof that
o = (4o, X> N CF.

Second case: o # X. Fix a point x € X\Jo/. Note that the case & = @
is a trivial one, and it will be excluded by now. Then 4, # @: just minimize some
(compact) member of &7. Fix a point y € A;. We now show that Jo/ = 4,. Suppose
to the contrary that there exists a point z e (J&#/\4,. We then have

{z} ¢ (since z ¢ Ag);
h{x,y} ¢ (since hix,y}&Uss),
and polytopes in X are compact by (2). Hence

*) h{y,z}el1{{g},h{x,y}}c‘€*\&¢.
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On the other hand there is an 4 e & with ze A. Then

{reh{y, sterid v iy,
where {y}e & and
Au{yDehd, HHed.
Hence 1{y, 2z} € &, in contradiction with (¥).
Having shown that Jof <4y, it follows that o/ ={Aded N %) and equality
follows from (III). M
We note that if CcX is a closed half-space, then (C> n %} is a half-space
of %%* as one can easily verify. However, {C, X) is a half-space of @ if and only
if it fullfils the following (rather mild)extra condition: if 4,, 4, are compact convex
sets disjoint with C, then h*(4; u A,) is also disjoint with C.
The latter condition is fulfilled if, for instance, C is of type 1[0, ], where fis
a convexity-preserving (C.P.) map X — [0, 1]. In case (X, %) is at least semi-regular,
there is an abundancy of such sets, and Theorem 1.2 then gives a fairly adequate
picture of the closed half-spaces of a convex hyperspace.
1.3. THEOREM. Let (X, %) be a closure-stable convex structure such that
(1) if Ce®* and x e X\C, then there is a C'e@* with CcintC’, 2 ¢ C';
(2) if Ci, Coe @, then also h*(Cy L Cy) e %
If all convex scts in X dre connected, then the same is true in @,
Proof. Let &/ c%* be nonempty convex, and let 4, Beof. Then by (2),

C=h{4duB)eh{d,Blcs.

Let 2<% be maximal with the following properties:

(3) @ is totally ordered under inclusion;

4 VDe%: AcDcC.

Then 2 is densely ordered under inclusion: let D; =D, be distinct members
of @, and fix x e D,\D,. By (1) there is a D & ¢* with D, cintD; x ¢ D. 4s D, is
connected, we find that D, is properly included in D, n D. By construction,
D, n D is properly included in D,. Therefore, 2 cannot have neighbours.

We next show that @ is also maximal in H,(X) with the above properties (3)
and (4): let Ye H,(X) be such that 4cY<C, and 2 v {Y} is totally ordered
under inclusion. Then

O #9,={Deg| Dc=¥};

G #9,={Deg| Y=D}.
Then 2, is a (nonempty) convex set, and hence Cl(|J2,)< Yis a compact convex
set. Also, (1@, € %%, and both CL(UZ,), NZ, are in @ since P is maximal in 7.
As @ has no neighbours, we find that

ClU2,) = Y =N2,.

As @ is closed in (CY = H(X) by maximality, we find that & is a compact densely
ordered space, whence &2 is connected. Note that

Dch{d,Clcd .
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One similarly finds a subcontinuum in & joining B with C, showing that s is con-
nected.

See [J,, theorem 6] for a related result.

We finally concentrate on the separation properties of a hyperspace convexity,
If the latter convex structure is semi-regular, then cach of its convex closed sub-
sets is the intersection of a family of closed half-spaces, which by Theorem 1.2 are
of the “subbase” type. Although the canonical subbase of a hyperspace convexity
is a rather rich one, there is no indication that the above statement be true in gencral,

The most convenient way to get around these (and other) problems is to re-
strict attention to uniformizable convexities: by [Vs, 2 5] a uniformizable $-con-
vexity is automatically semi-regular, and even rogular if polytopes are compact.
The S, property is considerably easicr to check, in view of results in [J,] or in [V,].

Let us first discuss some notation. Let p be a (diagonal) uniformity on X
The topology of H,(X) is then induced by a uniformity [#] with a base of diagonal
entourages of type [V], Ve pu, where

(V1= {(4, B)} AcV[B], BcV[A]}.
If (4, B) is in [V], then we also say that 4 and B are V-close.
In case X is equipped with a topological convexity 4 then we will be interested
in the space €* rather than H,(X). We therefore use the above notation [u], [V]
relative to the subspace @ of H(X).

We note that [u] is a metrizable uniformity if u is.

1.4, THEOREM. Let (X, %) be a uniformizable convex structure such that, for
each two compact comvex sets Cy, Cy, the convex closure of Cyu C, is compact.
Then (€%, # (%)) is also uniformizable. In fact, if p.is a uniformity for (X, 6), then
[ulis a uniformity for (€%, #(%)). In particular, (€}, # (€))is metrizable if (X, 6) is.

Proof. Let Uep, and consider a sequence of symmetric uniform diagonal
neighbourhoods

WeVelU'eU'celU
where W, resp. V, are associated to V, resp. U’. We will show that [#] is associated
to [U], that is, for each convex @ <=%¥,

) . r(W1[2]) < [U][2].

Note that 2 is the union of the upward filtered collection of all polytopes included
in @, and it directly follows that (1) is valid if it can be obtained for polytopes only.
To this end, let Cy, ..., C,e ¥%, and let

Deh([W1h{C,, ..., C}]).

We put
Ey=m*VID]), E,=hr(UC),
i=1
E=E nE,.
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Note that E, is compact convex, and hence that E is compact convex. In order
to show that

De[UIR{Cy, ..., G},
we will prove that

(2) ¥ and E are U-close,
@) “Eeh{Cy,..,C)}.

Proof of (2). There exist compact convex sets Dy, ..., D, with

@) TDy, ..., D,e[WIA{Cy,..., C}Li
(5) #Deh{Dy, .. D,k

By (4) there exist compact convex sets Ay, ..., 4, with

6) Ay, ., 4,el{Cy, ..., Co}s
(7) A;is W-close to Dy, i=1,...,p.

We then have

J

A;eh*( C) = E;,
=1

r P
D;e W 4],

=1 i=1

»

=1

whence by (5),
r
Deh*( U Dy ch¥(W[E,)) = ClI(VIED .
=1

Hence if x € D then there is a point in E, which is P-close to x. It follows that
G #VIxNnE, =V[{x}InE,
since V[{x}]<E;. Consequently,
DcV[E]<UIE].
On the other hand,
EcE, = B*(V[D)<=Cl(U'[D])=U[D],
establishing (2).
Proof of (3). We have

n
EcE, = U C),
i=1

and it remains to be verified that

8 ife,eCy,...,c,eC,, then En h{cg, s ca} # 9.
By (6) there exist points
yed;nhie, . e, Ji=1,.,p.
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Then
B{xg, ooy Xy ch{cy, o ey < Es s
and it suffices to show that E, meets i{x;, ..., X,}. By (7) we have foreachj = 1,...,p

that 4;= WD)}, and hence that there is a point y;& D; which is WW-close to x;.
Then

{yli RAAE] yp}cW[{xln sees -xp}]C:W[h{xls (RIS} xp}] 3

and consequently

©) B {Dgs oo g} SROP T, oy 3D @ VIB(X1s oes X531
By (5), D meets the former set of (9), and hence

DA Vih{xy, ... x1 # 3.
Then also
@ # VID] 0 h{xy, ..., X} < By nhixg, s X}

establishing (8).

As the sets of type [U], U e u, form a base for [u], it follows that the uniformity
[1] is compatible with #(%). B

It was shown in [V,, theorem 3] that if X is compact and if # is a normal
convexity on X with ¢* closed in H(X), then the induced convexity on %* enjoys
the same properties. It appears that this result is a particular case of the present
one since it was proved in [V, 3.3] that a convexity & on a compact space Xis
uniformizable iff @* is closed in H(X) and for each Ce %*, xe X\C there is
a De%* with '

CcintD; xé¢D.
We now obtain the following result on separation:

1.5. COROLLARY. Let (X, %) be a uniformizable S, convex structure with
h¥(Cy v C,) compact whenever Cy, C, dre . compact convex. Then $#(€) is an
S,-convexity with compact polytopes. In particular, # (%) is a regular convexity.

Proof. Let

oA ={A},...,4,}, B=1{By,...B,}
be finite subsets of %% with (&) N h(#) = B. We put
A =rU«), B=IUB).
Note that 4 and B are compact convex, and that
h(H) = 4> n _LCJ_(.M); hAB) = (BYy n L. L(A).

If A 1 B meets all members of L (s#) and of L (), then 4 ~ B is a common member
of he/ and h®. Hence A n B n C = @ for some C in, say, LoZ. Note that 4 n C
is another transversal set of o/, and we may therefore assume that Cc 4, B~ C = @.

icm
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Let p be a uniformity for (X, %). Then the disjoint compact convex sets B, (o}
are non-proximate, and by [Vs, 2.5] there exist convex closed sets B, C’ of X with
BeB\C',

CcC\B, BuC =X.

Clearly,

(BY ULC, Xy2%:,  (BYe(BMWNC, X).

As C' is also a transversal set of &, we have o =(C’, X, and as the original
set C is a transversal set of o7 disjoint with B’ we also have o n (B) = @. This
shows that « and 4 can be “screened” with convex subsets {C’, XD N GE (B N
A %% of &%, and it follows from [V,, 2.2] that 3#(%) is S,

We next show that polytopes in @* are compact. Let

A = {Ayg, ..., A} <FE.

u :
The convex closure 4 of |J 4; is compact convex again and the trace convexity

i=1

@} A of ¥ on A is obviously compatible with the trace uniformity of p on 4. Also,
(@AY = {4 n %2,

and by [Vs, 2.4] the convex closure operator (vestricted) A*: {4) —» {4) @
is continuous. Hence (%} A)* is a compact subset of %*, and the polytope /1(s/)
is a closed — and hence compact — subset of the former.

The second part of the theorem now follows from [Vs, 2.5]. M

We note that, with an argument as in the above proof, it is possible to show
that the convex closure in #* of the union of two compact convex sets is compact
too. This property is somewhat stronger than the requirement that polytopes be
compact.

As we observed already before 1.4, semiregularity of the hyperspace con-
vexity has a rather strong consequence concerning the canonical subbase:

1.6. COROLLARY. Let (X, %) be a uniformizable S,-comvex structure such that
h¥(C; v Cy) is compact whenever Cy and C, are compact convex. Then every convex
closed subset of €% is the intersection of subbasic sets. In particular, if s c¥¥ then

sty = U)o Lo L(t).

Proof, Let #<=%" be convex closed. If Be%\%, then by semi-regularity
there exists a closed half-space &' of 4% with BB, B¢#'. A uniformizable con~
vexity is closure-stable by [Vs, 2.2] and if it is S, moreover, then it is also semi-
regular, Hence Theorem 1.2 can be applied, showing that #' is of the subbasic type.

The second part of the theorem casily follows as in 1.1. W

17. Remark. All results in this section prerequire the condition that the
convex closure of the union of two compact convex sets be compact again. Here
are some cases in which this condition is fulfilled:
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(1) @ is a completely uniformizable convexity with compact polytopes: indecd,
it follows from [V, 2.6] that then the convex closure of any compact set is compact.

(2) € is a semi-regular convexity with compact polytopes, and % has finite
rank: if C;, C, are compact convex, then both sets are polytopes by [V, 4.6].
Hence h(Cy v Cs) is also a polytope, and therefore it is compact again. Note that
in this case '

hCyu Cy) =M(Cu(Cy).

(3) % is a semi-regular closure-stable convexity with connected convex sets,
compact polytopes, of finite dimension, and of weakly infinite rank: by [Vg, 4.7]
compact convex sets are polytopes, and the above argument applies.

Of course the condition is also fulfilled if the underlying space is merely compart.

2. The main theorem. We first compare rank with convex dimension:

2.1. THEOREM. Let (X, @) be a uniformizable und S, convex structure with con-
nected convex sets and with compact polytopes. Then the following are true.

(1) The convex dimension of ((Kf, H(B)) is at most equal to the rank of (X, ©).

(2) If (X, ) has weakly infinite rank and if (X, %) is either finite-dimensional,
or completely uniformizable, then there is no C.P. map from €% onto the Hilbert
cube with its cubical convexity.

Proof of (1). Let d be the rank of (X, ¥). We may assume that d<oo. Hence,
by a remark in 1.7 the convex closure of the union of two compact convex sets is
compact again, and all results in Section 1 are applicable: (%”’c‘, o (%)) is semi-
regular, closure-stable (being uniformizable), and its convex sets are connected. If
ind (%%, # (8))>d, then by [V, 4.4] there is an onto C.P. map f: €% - [0, 1]*"1,
where the latter cube is equipped with the “subcube” convexity. For each i =1, ...
., d+1 we put :

Hy=LHy m) =0}, #i=fYl wly) =13},

where m; denotes the ith projection. Note that #;, #} are nonempty closed half-
spaces of #¥. Hence by Theorem 1.2 there exist nonempty closed half-spaces C;, C}
of X with

#;=<{C> NG or (C;, XD N EY,
W= (C> 4% or <C}, X>n e,
Note that #; N 3} = @, whereas
(CHL X)) nCLX>nE =B

(it contains a point of type /1 {x, x'}, where x € C;, x" € C}). Hence without loss of
generality,

H=LCOnEE, i=1,..,d+1
{the sets o’} remain undetermined; they will no longer be needed).

i
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Let ie{l,..,d+1}. As fis onto, there exists a D;e %% with

mf(D) =0 (j#i), mflD)=1.
Then D;e [\ #;, D;¢ #;, and hence
i#i
Di¢ci‘

D= NG,
j#i

Fix a point x; & DNC; for each /. This leads us to a collection {xy, ..., Xz..,} which
is free in X since for each /,
X ¢C,

el (j#Fi).

This contradicts with our assumption on the rank of (X, %).

Proof of (2). Let (X, %) have weakly infinite rank. As was observed in 1.7,
each of the additional conditions on (X, ¥) implies that the convex closure of the
union of two compact convex sets is compact, and hence that all results of Section 1
are applicable. If f: €% — [0, 1]® is a C.P. map onto, then operating as above on
the half-spaces

FoimT oy, STt (G=1,2,.)

leads us to an infinite free collection in X, contradicting to our assumption. B

Let us reflect for a moment on the conclusion of (2) above. If (X, %) is a semi-
regular closure-stable convex siructure with connected convex sets and with com-
pact polytopes, then by [V, 4.4] the following statements are equivalent for each
n<oo:

(a) ind(X,¥)=n,

(b) there is a C.P. map X — [0, 1]" which is onto.

An example given in [V, 4.13] shows that these statements are no longer equivalent
if 7 = oo (though (b) == (a) remains valid).

Hence the non-existence of a C.P. map onto the Hilbert cube may be inter-
preted as an expression of “weakly infinite” (or finite) convex dimension. However,
we do not propose this as a definition: there are several other — maybe even more
natural — definitions possible, and the relationships between such concepts (or
their relationships with “topological” weak infinite dimensionality) are still unclear.

A natural question concerning (2) is whether or not the reverse statement is
true: if there is no C.P. map from %% onto the Hilbert cube, does (X, %) then have
finite or weakly infinite rank? We have a negative example which, however, does
not satisfy any one of the additional conditions in (2):

2.2. EXAMPLE. A saparable space X and a metrizable S,-convexity € on
X with connccted convex sets, with compact polytopes, and such that

(1) (X, %) has strongly infinite rank;

(2) there is no C.P. map from %7 onto the Hilbert cube.

Let X bs the subspace of [0, 1]° consisting of all x such that m,(x) = 0 for
all but finitely many e N. Note that X is convex in [0, 1]® relative to the “sub-
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cube” convexity. Hence, if ¥ denotes the trace convexity on X, then % is a metriz-
able S,-convexity with connected convex sets and with compact polytopes.

Let a(n) be the point of X of which all coordinates are 0 except for the nth
one, which is 1. Then {¢(n)| ne N} is free in X (establishing (1)), and it is clear
that if C=X is compact convex, then C is a subcube and Ceh{a(l), ..., a(n)}
for some n e N. It follows that the convex closure of the union of two compuct
convex sets is compact again, and that

U 2,, where @,=<{h{a(l),..,am}> nbe.

neN

If f: €% - [0,1]° were a C.P. map onto, then

0,11° = U f(@,),
neN
where each f(2,) is compact. By the Baire theorem, some f(9,) has nonempty
interior, and hence there is an infinite-dimensional closed subcube Q< f(@,).
Let p: [0,1]1® — Q be the “nearest point” map associated to the (normal binary)
subcube convexity. Then p is convexity preserving, and hence p e f restricts to
a C.P. map onto, &, — Q. However, 9, is the convex hyperspace of an n-cube,
whence ind 2,<2n by 2.1. This leads to a contradiction, since a C,P. map does
not raise the convex dimension by [V,, 4.8]. This establishes (2).
We note that X is not compact, and not finite-dimensional. Also, (X, %) is
not completely uniformizable:if it were so, then the convex closure of a compact
set were compact again. However, the set

Y= {x| n(x) =0 for all but one n}

is ‘a compact subset of X, and its convex closure (in X) equals X. W
We now come to our main theorem. d(X, %) denotes the rank of (X, €).

2.3. THEOREM. Let € be a metrizable S,-convexity on the separable nontrivial
.space X, such that convex sets are connected and polytopes are compact. Then

dim®@"% = d(X,%).
We note that if X is a one-point space, then dim%y = 0 and d(¥X, %) =
Proof of 2.3. We first show that dim@*%<d(X, %) with the aid of Theorem 2.1.
For d(X, ®¥) = oo, the inequality is obvious. If d(X, #)< oo, then all results of
Section 1 apply. In particular, (%%, # (%)) is a metrizable S, convexity with con-

nected convex sets and with compact polytopes. Also, %7 is separable, being a sub-
space of the separable metric space H,(X). Hence by [Vs, 5.3],

dim%* = 1’7141(‘5’:, # (%)),
and the desired inequality follows from 2.1.

We next show that d(X, €)<dim%™*. First note that if C is a dense convex
subset of X, then C and X have equal rank since (by semi-regularity) if F is a finite

K
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free set in X, then its freedom property persists in small neighbourhoods of the
members of F. Hence if AcX is a countable dense subset, then

(1) d(h(A), € 1h(4) = d(X, %) .
Also, (% 1h(4))r is a subspace of %} whence
2 dim (% 1h{A))E<dim%E:.
Put
A={a|neN}; A,={a,....,a); 2,=<h(d)>n %

Then U h(4,) = h(4), U @,=(% 1h(4)), and hence

3) sup{dim @,| ne NY<dim(%€ 1h(A),
4) d(h(A), € 1h(4)) = sup{d(h(4,), € 1h(4,)| ne N}

(the latter equality follows from the fact that the sequence (/1(4,))r%y is increasing).
By (1) to (4), it suffices to show that for each ne N,

d(h(4,), G 1h(A))<dim 2, .

Note that #(4,) is compact, and that &, is its convex hyperspace. This reduces
the theorem to the case where X is compact.

Under the additional condition that X be compact, we now prove that for
each n<oo,

5) d(X,6)=zn = dmE*zn.
Note that X is a connected and nontrivial subspace of %*, whence
dimE*zdimX>1.

Hence (5) is valid for n = 1, and we assume that n>1. As (X, %) is metrizable,
we find by [Vs, 2.4] that the convex closure operator of (X, %) is continuous. This
leads us to a map
fi x>,
Sy, xy) = h{xla L) xn} -

If d(X,®)=n then there exists a free collection F = {zy, ...,
n points. Let O;, P; be open half-spaces of X such that

ANzleP;,, ze0, O0,nP=0 (i=1,..,n).

z,} in X with exactly

Then
U= N P;n0O;
J#l

is a convex neighbourhood of z;. Uniformizability of (X, %) can be used to obtain
a sequence (Cjp)izy of convex closed neighbourhoods of z; such that for each
keN,

CiecintCipe 1S Cips1 <= Uy
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Then
Vi= U CueU,

k=1

and ¥ is a convex open neighbourhood of z;. By [V,, 4.6],
ind ¥; = sup{indC;l ke N}

(recall that ind stands for convex dimension). Now note that (5) is valid if
dim%* = co. We may therefore assume that dim%*<oo. Then

md X = dmX<dmb*<w,
and consequently there is a ke N with
[ind V,=idCyy = m, say.
Having fixed such a compact convex neighbourhood C; = C for each i, we put
W =flC; % ..xCp).

Note that C; x ... x C, and & are compact metric spaces, and jf restricts to a closed
map g between these spaces. By a theorem of Hurewicz (cf. [En, 1.12.4]),

(6) dim(Cy % ... x Cy<dim® +sup{dimg™(y)| ye ¥} .

We now determine the various quantities appearing in (6).

First, Cy x ... x C, can be equipped with the product convexity (see [Jy, p. 21]),
which is easily seen to be metrizable S,, and to have connected convex sets. As
convex dimension behaves additively under the formation of products (cf. [V, 2.6))
we obtain from the equality of topological and convex dimension that

(@) dim(Cyx ... xC) = dimCy+ ...+dimC,,

where dimC; = indC; = m,.
In order to determine dimg~™*(y) for each y e @ we first derive the following
fact. Let Ce @, say: ’

C= h{)“l: AR yn} with ME Cln ""a Jn€ Cn .
By semi-regularity, and as n>1, we can extend the above introduced P, to an open
half-space Q; of X with ;e Q; = ONQ,. Then
n n
®) H G ﬁful(c)c n (Qi n Cy.
i=1 i=1

Indeed, let (y1, ..., ys) be in the left hand set of (8), and let { % j. Then
yje C;eU;ePc ;.
Hence if y; were a member of Q; too, then

yieC=h{yl, ..,2}<0;,
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contradicting that y;e Q;. Hence 3{ ¢ Q;. Also,
yieC=h{yy, ... 1<=0;,
whence yje Q;, i = 1, ..., n, establishing (8). Now note that since V; is open,
0:n C;c 0, N V; = relative boundary of Q;n V;in V.
By [V, 2.8] the convex dimension of the iyperplane Q; m V;is at most ind V;—1,i.e.:
ind(Q; 0 Cy<ind(Q; n Vysm,—1.

We again use the product convexity and the equality of convex and topological
dimension to conclude that

n

n
dim [1(Q; n CHL Y, (=1,
i=1

i=1

whence by (8),
(9) dim [] C,nf~HC)S Y (m—1).
i=1 i=1
Evaluating (7) and (9) in the Hurewicz inequality (6) we find that

n n
Y m<dim®+ Y, (m—1),
i=1 i=1
and hence that
n<dim¥ <dim%*,
establishing the theorem. B

If one interpretes rank as the degree of variation that convex sets are allowed
to have, and if one regards dimension as a degree of freedom, then Theorem 2.3
is made plausible. However, the “philosophy” that dimension is some sort of
freedom degree is accurate for “nice” spaces only. The following example illustrates
that rank and convex hyperspace dimension are quite different quantities if one
drops the connectedness condition on convex sets.

2.4. ExaMPLE. Let X be the Cantor discontinuum, represented as the countable
product of a discrete 3-point space {0, 1,2}. If the latter is equipped with the
order-convexity, then X can be equipped with the product convexity %, which is
metrizable (use a “product” metric) and S, (see [J;, I.10]).

It follows from an argument in [J,, ITL.4] that the convex closed sets in X are
exactly the products of convex sets in {0, 1, 2}. This implies that #* is also a Cantor
discontinuum, and dim * = 0.

On the other hand, the collection F, consisting of all points of X whose co-
ordinates are all equal to 1 except for some nth coordinate which is 0 or 2, is free,
whence d(X, %) = co.

3. Some applications and problems. For convexities on noncompact spaces,
no criteria for uniformizability or metrizability are known at present, except for
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. particular classes of convexity spaces such as convex sets of linear spaces and
tree-like spaces (see [Vs, 3.9]). Our next result is an extension of the main theorem
to a better controllable class of convexities.

3.1. COROLLARY. Let X be a separable metric space, and let € be a regular
convexity on X with. connected convex sets and with compact polytopes, such that
%% is closed in H(X). Then

dim@* = d(X, €)=2-ind(X,E).

If X is also locally convex, then ind(X, %) = dimX.

We note that if (X, %) is uniformizable, then % is closed in H,(X), and in
fact, ¥* is closed in H(X): this follows from [V, 2.6] and from the fact that the
convex hull operator of (X, %) is continuous on finite sets.

Proof of 3.1. It is clear by definition that
1) d(X,%) = sup{d(P, % {P)| P<X a polytope} .

Note that a polytope P is compact, and that the collection
(@ 1P)* = 65 0 (P)

is closed in H,(X) and hence in {(P). It follows from [Vs, 3.3] that (P, % 1P) is
metrizable, whereas it is clear that € 1P is an S,-convexity with connected convex
sets and with compact polytopes. By the main theorem,

2 . dim(& 1PY* = d(P,% {P).
It is obvious that
3 dim%* zsup{dim(% | P)¥| PcX a polytope} .

By (1), (2), (3) and [Vg, 4.2] we already obtain that
dim€*=d(X, €)=2-ind(X, %) .

If d(X, %) = oo, then the first inequality becomes an equality. Assume d(X, %)<,
Then by [V, 4.8], X is the convex hull of a countable set
A ={a,| neN}.
Put
: D, = h{a) i<n}.

If CcX is compact convex, then by [V, 4.7], C is a polytope. As
o0
X= U D,; (D) increasing,
n=1

we find a sufficiently large n such that D, includes all vertices of the polytope C,
and hence it includes C. This shows that

0

%:=U @ 1D

n=1
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and in (3), one can restrict to a countable number of polytopes P. Hence by [En,
1.5.3], (3) becomes an equality, and (1), (2) and (3) together give the desired result
again.

The second part of the theorem is quoted from [V, 5.3]. B

3.2. COROLLARY. Let X be a separable metric and locally connected tree-like
space and let C(X) be the hyperspace of subcontinua of X. Then dimC(X) equals
the sum of (i) the number of endpoints of X and (i) the number of free ultrafilters
of closed connected subsets of X.

See [D, 7.4] or [K, 5.5] for a corresponding result concerning finite graphs.

Proof of 3.2. By [Vs, 2.2] the collection % of all connected subsets of X is
a metrizable S,-convexity with compact polytopes. Then apply [V, ERAN |

Our final application may require a word of explanation. Let (X, %) be a (set-
theoretic) convexity. Then the Radon number of (X, %) is the number

rX, %) e0,1,2, .., o0}
such that for each n<oco,
#(X, @)<n iff no finite subset of X with more than n elements is independent.

A set FeX is called independent if for each pair of disjoint subsets F', F" it is
true that

REYANREF) =@ .

Note that an independent set is also free.

For reasons explained in [V,] we prefer the above definition, giving a value
of r(X, %) which is one lower than the value it has under the “classical” definition.
Our definition agrees with the one in [L].

It was shown in [V, 2.12] that if (X, %) is an n-dimensional binary normal
convexity with connected convex sets and with compact polytopes, then r(X, %)
equals r, or r,+1, where r, denotes the Radon number of the n-cube with subcube
convexity. Also, the latter possibility can occur only if n is a member of |

E = {n] r, is even and C(r,, — 14r,/2) <0},

Here, C(p, ¢) denotes the number of combinations of ¢ elements out of p elements.
With the use of Eckhofi”s formula: for r, (sce below; we adapted the formula to
our definition) one can see that E is a rather thin, irregular sequence of “exceptional”
dimensions. However, we only have an example with r(X, %) = r,+1 in case
n=1lekE®).

In our next theorem we present a condition to ensure that r(X, %) = r, even
ifne E:

(*) We have recenily obtained examples in all other “exceptional” dimensions.
2 — Fundamenta Malhematicae CXXII2
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3.3. THEOREM. Let (X, %) be a normal binary convex structure with connectéed

convex sets and with compact polytopes. If the rank of (X, ) is minimal, that is, if’

d(X, %) =2"ind(X, %),

then r(X, %) equals the Radon number of the ind(X, €)-cube.

A binary normal convexity with compact polytopes is closure-stable by [V,, 2.9],
and its convex hyperspace is normal and binary again by [vMV,, 5.4] or [V, 3.9].

Proof of 3.3. We first present a simple reduction of the problem to metrizable
convexities. We note that the theorem is trivial if d(X, %) = 2-ind(X, %) is in-
finite. So assume d(X,#)<co. Then also ind(X,%)<co, and by [V, 2.13],
r(X,%)<oo. Let Fc X be a free set with d(X, %) many points, let G X be an
independent set with »(X, %) many points, and let

£ X=00,1"  (n=ind(X, %))

be a C.P. map onto. Then there is a finite set H < X such that f(H) equals the corner
point set of [0, 11", and by [V,, 4.3],

fh(H) = [0, 17"

It follows that 2(Fu G U H) is a compact convex set with the same dimension,
rank. and Radon number as X. For each x € F let f,: X — [0, 1] be a C.P. map
separating F\{x} from x, and for each subset G'=G let fg.: X — [0, 1] be a C.P.
map separating 7(G’) from A(G\G"). Then let

g: (FUGUH)- 0,1 (p = n+d(X, 8)+2"%®)

be the C.P. map determined by f,f, (xeF) and fz (G'=G) on h(Fu G U H).
The image set

Y=gW(FuGuH)

carries a normal binary (trace) convexity by [vMW, 3.4]. Clearly, g(F) is free,
g(G) is independent, and g (h(H)) is already n-dimensional (use the coordinate
maps of g determined by f). As a C.P. map does not raise convex dimension, [V4,
4.8], nor rank, [V, 2.5], nor the Radon number, [V,, 1.4], we find that this convex
structure is n-dimensional, and that its rank and its Radon number equal the one
of (X, %). Finally, a normal binary convexity on a compact metric space is metriz-
able, as follows from [vMV,, 3.8] and [V, 3.4].

So we may assume henceforth that (X, %) is metrizable and, if the reader
wishes, that X is even compact. Next we derive the following two auxilliary results
(the first one is stated in full generality):

STATE\/IENT 1. Let X be connected and nontrivial, and let € be a semiregular
closure-stable convexity on X with compact polytopes. Then

r(X, O)<r(€F, #(C)-1.
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Indeed, let Fe X be a finite independent set with at least two points, and ﬁx

a point ¢ € F. As Fis also free, there exists a relative open half-space O of A(F) with
Nc}e0,

Also, there exists a neighbourhood U of ¢ such that for each x e U, Fu {x\{e}
is independent. Then choose ¢’ e U n O, and put

F =Fu{Nec}.
Note that 1(F')<0, whereas ¢ e h(F)\O. Hence

ce 0 = 0ON\O.

(6] h(F) & Ch(F")y A B%.
We show that the collection
2) {ON yeFFuih (F)}

is independent in ¥%: let G, G’ be digjoint subsets of the set (2). We may assume
that A(F) € G (it actually suffices to consider 2-partitions of the above set).
If h(F) is the only member of G, then

G Ch(F) 0 G
and h(G) n h(G") is empty by (1). Suppose next that
G = {hF), {31}, - (0} k=1
G = {{yln+1}’ R {}’p}} .
If Ceh(G'), then }
3) Ch{ye1s s Vp} -
If C were also in £(G), then (cf. (2) of 1.1) for each ze £t (F), C meets h{ys, ..., ¥i» 2}-

Now
h{yls sy yk} Ch(F’)Ch(F) B
and we choose z in the former set. Then C meets
B{31s e Yes 2} = R{¥1s s i
contradicting with (3) and the independency of F'.

STATEMENT 2. If r = r(I") is even, then r(I*") = r+1 (n21).

As was proved in [E, Satz 3], the Radon number of I" (n>1) is the_ largest
possible e N with C(r, [r/2D<2n ([r/2] is the integer closest to r/2). If r is even,
then

C(r+1,r/2y<2C(r, r/2).
If # = r(I"), then the latter number is at most 2.95, whence r+1<r(*). If
F4+2<r(I*", then
(C)] Clr+2, 1+r2)<4n,

on
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and as r is even we have

5) Clr+2,1+47/2) = 2C(r+1,1/2).
As r+1>r(I"), we also have
O] m<Clr+1,r/2).

These three (in)equalities together contradict.
The theorem is clear if X has one point. Otherwise, we find by Theorem 2.3 that

ind (€%, # (%)) = dim@% = d(X, %) = 2n,
where n = ind(X,%)>1. Suppose that
r(m+1 = r(X).

Then neE, and in particular, r = r(I") is even. By Statement 2, r(I*") = r+1,
which is odd, whence 2n ¢ E. Then by Statement 1, and by [V, 2.12],"
r+1 = r(X)<r(@%) = r(®) = r+1,

contradiction. M )

34. ProBLEM. It appears from [Vg] that rank and generating degree of
a convexity are often equal, and that at least in the case of binary convexities, the
g§nerat1ng degree is determined by the subbase of all closed half-spaces. It follows
directly from Theorem 1.2 that then the generating degree of the hyperspace con-
vexity is af most twice the generating degree of the original space: every closed
half-space C gives rise to two convex sets (C> N ¥% and <(C, X> n ¥*, and the
closed half-spaces of %* are among the latter.

Is it true that, for a (sufficiently nice) convex structure (X, %),

d(g%, # (%) = 2d(X,%)?
In case.of an affirmative answer, one finds that the rank of % is twice its dimension,
and this would also enlarge the applicability of Theorem 3.3 above.

3.5. ProOBLEM. The rank of a convexity € at a point pe X can be defined as
follows:

d(X,®¥) = inf{d(U, % 1U)| U a convex neighbourhood of p}-

It follows from [V, 3.2] that if a convex structure (X, %) (with the “usyal” con
ditions) satisfies Fuchssteiner’s property, and if CcX is convex and nowhere
1-dimensional, then the rank of C at any p € C is infinite. Does this imply (for com-
pa;t ;netric C) that the convex hyperspace of C is homeomorphic to the Hilbert
cube?

.An affirmative answer would give a very natural extension of the Nadler-
Quinn-Stavrakis theorem on compact linearly convex sets of dimension >1 (cf
INQS)). '

It ig also. natural to ask for conditions implying that a convex hyperspace -is
homf{omorphlc to an n-cube, or, more generally, to a polyhedron. Such a question
was investigated at length for finite graphs in [D].
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3.6. ProBLEM. Is Corollary 3.1 a proper extension of the main theorem? More
concretely, let % be a regular convexity on X with compact polytopes, such that
@* is closed in H(X). If X is uniformizable (metrizable), is it then true that (X, ¥)
is uniformizable (metrizable) ? In case of an affirmative answer, Corollary 3.1 reduces
to the main theorem.

Added in proof. The main result of this paper has been extended to com-
pact non-metric spaces in a recent paper of the author (Comp. Math. 50 (1983),
pp. 95-108).
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