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On universal infinite-dimensional spaces
by

Leonid A. Luxemburg (Lexington, Ky.)

Abstract. In this paper we construct a universal compact metric space with given transfinite
D-dimension, A similar result is proved for separable metric spaces. Since D(X)= dim X for finite-
dimensional spaces, these results are extensions of well-known theorems for finite-dimensional spaces.
Also we prove that every separable metric space X is contained in a compact metric space Re AR
such that D(R)<D(X)+1.

§ 1. Definitions and notation. In this paper we consider the transfinite D-di-
mension introduced in [1], Henderson. Some of our results we announced in 2],
Luxemburg, without proof. All spaces in this paper are assumed to be metric and
all mappings continuous. For every ordinal number f the equality B = a+n holds
where a is a limit number or 0 and n =0,1,2, ...(*). Then we put K(f) =n,
J(p) = o ‘

1.1. DEFNITION. We put D(@) = —1. If X ¢ @, then D(X) is the smallest
ordinal number B such that there exists a collection of sets {4,: 0<E<y}, where y
is an ordinal number, satisfying the following conditions:

() X =U {4 0<E<y)

(b) Every set A, is closed and finite-dimensional.

(¢) For any §<y, the set {J {4,: d<€a<y} is closed in X.

(@) J(B) = 7, dimA,<K(B).

(e) For any point x & X, there exists the greatest number §<y such that x € 4;.

If there is no such number B, we put D(X) = 4 where 4 is an abstract symbol
such that 4> 8 for any ordinal number . If conditions (a)-(¢) hold, then equality
(a) is called a p-D-representation of a space X.

1t is evident that

(1) if X<V, then D(X)<D(Y).

Moreover, D(X) = dimX = IndX for finite-dimensional spaces. For any space
X of weight <17, we have | D(X)|<1 (see [1], Henderson, Theorem 10); consequently,
for any separable spacc (in particular, a compact space) X, we have D(X)<w,
or D(X) = 4.

() We always consider f+0 = 0+8 = f3.
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1.2. TusoreM. There is a universal element in the class of all compact. spaces
X such that D(X)<p (B<wy).

1.3. THEOREM. There is @ universal element in the class of all separable spaces
X such that D(X)<p (B<ay).

We note that for every f <, such that §zw,, there exists a separable space X
satisfying the following condition:

D(Xp) = B and for any compact space Y= X we have D(Y)>D(X),

(see [3], Luxemburg, Theorem 8.2). Consequently, universal elements in The-
orems 1.2 and 1.3 are different for any B> wg. These theorems are extensions of
well-known results (see [4], Nobeling) for finite-dimensional spaces, We will also
prove the following theorem: )

1.4. THEOREM. For every separable space X there exists a compact space 'Y e AR
and a homeomorphism f: X — Y such that D(Y)<D(X)+1.

This theorem is an extension of a similar theorem for finite-dimensional spaces
see [5], Bothe). To prove this theorem we need some preliminary constructions,

§ 2. The main constructions.
2.1, DEFmITION. Let X be a compactum and

o) oy XxI-CX

the identification mapping of the product X x I, where I denotes the unit segment
[0, 1], onto the cone CX. (We obtain the cone by identifying all. points of the set
Xx{0}cXxI The point ¢(Xx0) = ae CX is called the apex of the cone CX.)

2.2. CONSTRUCTION. Let ) X; be a discrete union of spaces X;, i=1,2,...
Suppose in any X; there are two closed sets 4; and B;, 4; " B, = &, and for any
i there exists a homeomorphism g;: B; - 4;4,. We identify every point x ¢ B;
in a space Y X; with a point g,(x) for all 7. Then we get a factor mapping:

@ py X @

onto the factor space . We shall consider a set Fe® to be closed if and only if
the set u~1(®) is closed. It is evident that for each i we have an embedding

3) fii Xy> @
and
Ostxy =0
where f; is a restriction of u to X;. We put
(©) P =0(X,, 4, B;,9); X;=/(X). W

2.3. DerNITION. Let & = {F;:i=1,2,...} be a countable family of sets

in a space X and let the set U< X be open. Then the family & is called simple with
respect to U if '
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® U= Uk,

(6) FinF;=@ for li—jl>1,
(7) the family & is locally finite on U and sets F; are closed in X.

24. LEMMA. Let a space & be defined by equality (4); then the family of sets
(X} is simple with respect to ®. Moreover, if the spaces X; are compact, then @ is
separable and locally compact.

The lemma is evident. )

2.5. ConsTRUCTION. Let {X;: i=1,2,..} be a family of disjoint compact
spaces, and for each 7, there exists a homeomorphism 7;: X; — X;.q. We put:-
(8) B(X) = X;xIxCX;
where CX; is the cone with the apex a;. Let
% A; = X;x {0} x {a}cB(X), Bi=X;x {13 x{a;}cB(Xp .

Since 4; and B; are homeomorphic to X, there exist homeomorphisms g;: B;—> A4y,
i=1,2,.. We put
® = ¢(B(X), 41 Bi» 9)-

Since all spaces X; are compact, all spaces B(X;) are also compact and, by virtue
of Lemma 2.4, @ is a locally compact, separable space. We put

H o= (X, h) = {0}V,

where 2 is a compactification of & with an extra point w. Consequently,

(10) A = {w}u U BX)
=1
and .
(11)  the set B(X;+,) N B(X;) is homeomorphic to X;. M

2.6. LemMa: The family of sets {B(X))} is simple with respect to A\,

This theorem follows from Lemma 2.4.

2.7. LemMmaA. If all compacta X; € AR, then A = A (X, hy) e AR,

Proof. Let f: F — 2 be a mapping of a closed subset F of a space X into .
We shall extend f to X. We can easily find a function ¥: A — [0, 1] such that
(12) Y0 =o, PIGHD) =S, YTHE+D, 1] = BX),

where S; = B(X) n B(X;+{). Then we have a mapping Pof: F—[0,1]. Let
w: X =10, 1] be an extension of ¥of. We put

11
(13) Ci = “‘1<ZT-}1:1_>, Bi = #_1([;::‘—1':?])5 W= }l-—l(O)’

Co=0 (i=1,2,.).
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Then

o0
X=Wou U B, C,=B80nBy,.
i=1 .

By virtue of (12) and (13), f(F n C)<S;. Since X;€ AR, by virtue of (11), the
set S, = B(X) N B(X;.,) is also an AR-space. Consequently, for any i, there
exists an extension g;: C; — S, of the restriction of f to Fn C;. We put

g(x) = f(x) for xe F, g(x)= g(x) for xeC;, g(W)=w.

o0
Then we have a continuous mapping g: R=Fu Wu |J C;— A, and clearly
=1

g(RnB)cB(X)=A, g(B;n By N RS,

Since X;e AR, the cone CX;e AR and consequently B(X;) = X;xIx CX;e AR.
Therefore, for each 7, there is an extension k;: B; — B(X;) of the mapping r;: B; n
N R — B(X)<XA', where r; is a restriction of g to R n B;. We put

k(x) = kx) for xeB;, k(x)=ow for xe W.
Then clearly k: X — o is a continuous extension of f. M

2.8. LeMMA. Let a family of sets & = {F} be simple with respect to UcX.
Suppose the family of spaces {X;} (i = 1,2, ...) satisfles the conditions of construction
2.2, and, for each i, there exists a homeomorphism ¢;: F, — X, such that

Gio@x) = @i44(x)  Sfor
Then the mapping ¢: U— @ = &(X;, A;, B, g,), defined by the equality

xeF;nFiq.

@x) = fiopix),
where f; is a homeomorphism (3), is a homeomorphism and
(14) p(F)cX; = fi(X).
The lemma follows directly from Construction 2.2. M

2.9. LemMaA. Let Y be a compactum, CX the cone over X & AR with the apex a
and
BX) = XxIxCX, A;=Xx{i}x{a}cB(X),

If there exists a homeomorphism

i=0,1e[0,1].

[ Y=-X,
then fork any disjoint closed subsets F,G<Y and any homeomorphisms
Jor F> Ady;  fi: G~ 4,

there exists a homeomorphism g: Y — B(X), which extends Jo and fy.
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Proof. Let n;: B(X) - XxI be a projection. Since X¥e AR and I€AR,
we have X x I e AR. Therefore, there exists a mapping k: Y — X x I, which extends
7y ofp and 7y ofy to Y. Then, clearly,

(15)  k is injective on F U G.
Let u: ¥ = [0, 1] be a continuous function such that w~Y0) = Fu G. Let a map-
ping A: ¥ — XxI be defined by the equality
B(y) = {00, u ()} -
We put /(y) = @xoh, where @y is a mapping (1). Then, clearly,
(16) [ is injective on YN(F U G).
We put g(3) = (k(»), 1(»)), then by virtue of (15) and (16) g: ¥' = B(X) = Xx
xIx CX is injective on Y. Since Y is compact, g is a homeomorphism. M
2.10. LEMMA. Let X be a compactum and the equality
a7 X =U {4, y<IB}

be a B-D-representation such that A;, consists of exdctly one point.Let there exists
an increasing sequence {y,} of ordinal numbers such that :

supy; = « = J(f)Zw,
and a sequence of absolute retracts {X} satisfying the following conditions:
(18)  Every compactum with D-dimension <y; has an embedding in X;.
(19)  There exists a homeomorphism hy: X;— Xpoq for 1=1,2, ..

Then there exists a homeomorphism

(20) he X = A (X, )
such that
@1 BN (w) = Ay

where @ is the compctm'ﬁmn'on point in A = A (X, hy). (See Construction 2.5.)
Proof. By virtue of Lemma 8.2 in [3], Luxemburg, there exists a family of
sets F = {F}, simple with respect to XN\Ay, such that

@2) D(F)<y; -

By Definition 2.3, the sets F; are closed in X and are consequently compact. Let
the sets B(X), 4;, B; be defined by conditions (8) and (9); g;: By — 44y are
homeosmorphisms from Construction 2.5. Since A; and B, are homeomorphic
to X, by virtue of (18) and (22), there exist homeomorphisms

fi F= Xy, kg Fyo Fupy =~ Biy rignt Fro Fug = Ay
where

(23) Fier =gioki.
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By virtue of Lemma 2.9 there exists a homeomorphism ¢;: F; — B(X)) which is
an extension of k; and r,. Cousequently, from (23), it follows that

Gropi(x) = @raglx) for xeFinFiy.

By Lemma 2.8 there exists a homeomorphism ¢: XN\Ayp = ¢ = 4 \w. We put
h(x) = @(x) for x ¢ Asp and h(4yp) = . Then, clearly, i is a desired homeo-
morphism. M

§ 3. Natural sums and f§-D-representations of compacta, In Sections 3 and 4 the
symbol f is intended to denote infinite ordinal numbers. Tn what follows we need
some information about the natural sum of ordinal numbers; see [6], Toulmin,
and [7], Hausdorff ().

Every ordinal number f has a unique representation:
® B=oy+ o F 0y

where o, =0,1,2,.. and a; (i<k) are indecomposable transfinite numbers
such that ;. ;<a;. (A transfinite number ¢ is called indecomposable if & is not
the sum of a finite number of ordinal numbers less than £.) The representation (1)
is called canonic. It is evident that K(B) = o4.4y.

3.1. DermuTION. Let (1) be a canonic representation of f# and
2) VN TR

be a canonic representation of y. Let &y, ..., &,44, e clements of the set oy, ...
wees Ot By oy Bpag With decreasing order (€;2€,.,). Then the natural sum y@f
is defined by the equality y@f = &+ ... +£, 4402 B

If n=0,1,2,.., then by definition y®n = y+n = n@®y. It is evident that
Bdy = y®p.

In [1], Henderson, Theorem (8), it was proved that for any spaces X and ¥
3) D(Xx )<DX)@D(Y). '

3.2. LemMMA. Let (1) and (2) be representations of B, y and oy, = 0. Let y<f
and 1 be the first integer such that &, # «;. Then §,<a,.

Proof. .If §;>u,, then, since the sequence {«;} is decreasing, o> for j2l
Besides that, clearly /<p-+1, Therefore, §; is an indecomposable transfinite number.
Consequently, 6;>d¢;+ ... +ogyy and 928+ ... +8; >0y + ... + (a4 ... o) = P
This contradiction proves the lemma. B

3.3. LemMA. Let CX be the cone over a compact space X. Then
D(CX)SD(X)+1.

Proof. Let a be the apex of CX; clearly, CX\{a} can be embedded into X'x I.
Consequently (see [1], Henderson, Theorem 8),

D(CXN{@D<D(XxD)KD(X)+1.

(® In [6] this sum is called “lower™,

B
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Moreover, it is evident that the adding of a point to a nonempty set whose D-di-
mension is defined does not change its D-dimension. B

3.4. LemMA. If D(X)<a and « is indecomposable transfinite, then D(B(X ))<o¢
where B{X) = CXx Xx 1.

The lemma follows from Lemma 3.3 and (3). W
3.5. LemMmA. Let L be a compactum such that
I¢o,
Jor some point 1€ L, and {H} be a family, simple with respect to ®, such that D(H))

<7y;<a. Then there exists an o-D-representation of L

L= U{dy: y</@}

L={ueo,

such that Aygy = {I}.
Proof. For each i, since D(H)<y;, by Lemma 1 in [1], Henderson, there exists
a y-~D-representation of the space H;

Hy= U {4 u<I (0}
such that
dimAL<K(w) .
We put A,f =@ for u>J(y;) and
A;={uU{d:i=1,2,.1.

e~

From the sum theorem it follows that
dim 4;<K(5) .
Moreover, Ay = {/}. It is easy to see that the equality L= {J {4,: 5<J(0)} is
an o-D-representation of L. M
3.6. LEMMA. Let o be an indecomposable ordinal number and, for i=1,2, ...,
X, a compact space such that D(X;)<a. There exists an «-D-representation of
Hy= A (X, h)
A = {d,: y<J ()}
such that Ay = {w}. Consequently, D(A)<o.
Our lemma follows from Lemmas 2.6, 3.4, and 3.5. W
3.7. LemMaA. If X is compact, D(X) = B, and

) X=U {4, y<IB)}
is a B-D-representation of X, then we have:
C,=Uds: y<<I(f)} # O

and C, is compact for each y<J(f). In particular, Cypy = Ay # a..
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Proof. First we will show that C, # & for y<J(f). Indeed, if C, = @, then

i X=U,=X\G.
By Lemma 8.3 in [8], Luxemburg, D(U,) <J(B)<f. This contradicts the condition
of the Lemma. Therefore, C, # & for y<J(f). From condition (c) of Definition 1.1

the set C, is closed in X’ and consequently is compact. Since C,=C, for y>y'y
we have

NA{C,: y<J(B)} # B
But from condition (e) of Definition 1.1 it follows that \{C,: y<J(B)}=A;# . B
3.8. LEMMA. Let (4) be a B-D-representation of X and
Y =) {B,: y<J(8)}
be a &-D-representation of Y. Then the equality

(%) XxY=U{D; D,=U{dy,xB,: Dy = 1}, p<I(G)DI(B)}

is a (B®S)-D-representation of Xx Y and Djyes = Asp* By -

Proof. The equality (5) is a (8@8)-D-representation of X'x ¥ by virtue of [1],
Henderson. From the definition of the natural sum it follows that J(B@d) = J(H)®
@J(5). If y<T(B), ¥’ <J(d) or y<J(B), ¥'<J(0), we have y®y <J(fDS). Con-
sequent]y, DJ(ﬂéBJ) = AJ(ﬂ) X BJ(,;). |

3.9. COROLLARY. Let (4) be a f-D-representation of X and let K be an arbitrary
space with dimK<m; then the equality

XxK={B, = 4,xK: y<J(f) =
is a (B+m)-D-representation of Xx K. B

J(B+m)}

§ 4. On compacta Z(a,).
4.1. DeFINITION. Let X be a compactum and let

(1) B=oy o+, Gy =n=0,1,2,., a=0
be a canonic representation of ordinal number fizw, and let
@) X =U {4y y<I(B)}

be a f-D-representation of X. We put
(B) Y) = U4, ot +e<y<IBHleX,

i<k, Y =X.

We note that by Lemma 3.7, ¥{(«;) is compact and Y(z;) # &. Moreover,

(4) Y(ow) = Aypy -
Let
(5) 0;r Y(ogy) = Z(wy)), i=1,.,k

icm

On universal infinite-dimensional spaces 137

be a mapping on a compactum Z(x;) obtained by identification of all points of

the compactum Y(s) < Y{o;_4). Let {b;} = 0,(¥(e;)). We also put

(6) Z(ory) = Aygy = V(@) s Quey = 1d: ¥(o) > Z(0sy) -

Thus, the compacta Y(«;) are completely defined for i =0, .., k,
X = Y(ug)> .2 Y(w) = Ay

and the compacta Z(x;) are defined as quotient spaces for i =1, ..

Zlo) = Y1)/ Y(a) for i<k

k41,

and
Z(gry) = Y(o4) = Ay B
We introduce one more notation. Let y<a,, then we put #((y) = y..If oy +
F oo Ly<oy + .04, then the ordinal number ;. 4(p) is deﬁned by the
equality oty + ... +o;+ 74 (p) = y for all y<p.
4.2. LEMMA. We put

M By = Qi(Av) s Oyttt Syt
Then the equality

() Z(x) = U {By: p<os}

is an o;-D-representation of the compactum Z(o;) and

(9) Bm = BJ(IZ{) = {bt} .

Proof. The equality in (8) follows from (3), (7), and the construction of g;.
Since ¥(o;-,) is compact, the mapping g; is closed. The mapping g, clearly does
not raise the dimension of closed finite-dimensional sets. Consequently, from
condition (7), it follows that the sets f, are closed and finite-dimensional. Thus
properties (a) and (b) of Definition 1.1 are proved. Property (c) follows from the
closedness of g;. Condition (9) is evident and (e) follows from (9). Condition (d) is
true because g; is a homeomorphism on g; 1(Z(oc,)\b) ]

In the following two lemmas we adopt the notation of Definition 4.1.

4.3. Lemma. For any two distinet points x and y in the compactum X, there
exists a number § =0, ..., k such that x & Y(a;), y e Y(o) and @y41(%) # 0ir1(¥).

Proof. For any point z € X, let i(z) be the greatest number i such that z € ¥ ().
Let u(x) = p(y) = p. Then: either p<k or p = k.

In the second case g4 1(X) = x 5% 3 = @p4,()). Since ¢4, is clearly injective
on Y(a,\Y{o,. ), we also have 0,4 4(X) # 0,4+:(») in the first case. If w(x) # u(y),
for example, p(x)>u(3) = p, then xe Y(a,sq), ¥ € Y(g)\Y (e, ). Therefore,
0p+1(X) = bpyy # 0pee(y). B

4.4, LeMMA. Let X be a compactum and, for i= 1,2, .., k+
a homeomorphism

I, there exists

hy Za) - P;e AR
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in a space P;e AR. Then there exists a homeomorphism

kA1

h: X 11 P
=1

of the space X in the praduct of the spaces P;. Moreover,

(10)  If the set Ay = Z(oy) in a f-D-representation (2) consists of exactly

one point byyq, then h(Ayqg) is a point whose i-th-coordinate in the product
Kt 1

T1P; is a point hyby) (b;€Z(®y))-
i=1

Proof. Since P; e AR there exists an extension
g X =P,
of the mapping 4,0 0;: Y(ot;—1) = P;. Let

h+ 1

h: X — H P;
i=1

be a mapping whose i-coordinate is g;. Let x, y be a pair of distinct points in X.
Then, by Lemma 4.3, 0,4 1(x) # gi+1(») for some i Since Ay, 4 is a homeomorphism,

Fi1(0) = By 0 Q1 () # By 0 0ie1(¥) = g1as(¥) +.
Consequently, A(x) # h(y). Therefore, h is injective. Since X is compact, his
a homeomorphism. Condition (10) is evident. B

§ 5. On compacta P;.

5.1, ConsTrRUCTION. For each ordinal f<w;, we will define a compactum P
and a fixed point g; € P;. For each pair of compacta P, and Py (y<f), we will define
a homeomorphism
(1) hyg: Py~ Py
We put

P,=I" for n=0,1,2,..,

where J* is an n-dimensional cube. Points g, we select in an arbitrary way. Then,
clearly, for py<f<w,, there exist homeomorphisms (1). Suppose, for f<f,.
compacta Py and homeomorphisms (1) have been constructed. If f, is indecompos-
able transfinite, then there exists a sequence of ordinal numbers {y(B,, {)} such that

) sup{(p(Bo. 1): i =1,2,..} =By and  y(Bo, )<p(Bo, i+1)
and thus we put
3) Py = A (Pyg,iy> Mypimepi+ 1) -

We define g, as a compactification point in A" = P, (see Construction 2.5). Let
y<f. Then, by virtue of (2), y<y(B,7) for some /. By inductive assumption there

N
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exists a homeomorphism fypn Py = Pyp,p- Consequently, there exists a homeo-
morphism (1) because Pyp,q 18 homeomorphic to a subset of P;. (See (10) and (11)
in § 2.) '

If o is a decomposable transfinite number and the equality

4 B =gt .ty

is o canonic representation of B, then we put
k1

) Pﬁ = l];IJ Pau .

Let my: Py — Py, be 2 projection on a factor. Then the point ¢ is defined by the
equalities

Tldp) = Qs = 1., k+l.
Let us define the homeomorphism ype Let y< f and let the equality

y=8 4. t0prrs P= 0,1,2, ..

be a canonic representation of y. Let I<p+1 be the first number such that §; # «;.
Then by Lemma 3.2 &;<a. If | = k+1, then clearly

Py = P,xI"

where 71 =ty — Opsyo a0d the homeomorphism h,, exists. Let I<k; then o is
an indecomposable number. Since §,<0,<0, for s>/, we have

&= Oyt A Opa <0

By inductive assumption there exists a homeomorphism

(6) hagt Ps = Poy
Moreover, by our construction

41 -1
M P, = i[:[l P, = Bl P, xP;.

By virtue of (5), (6), and (7) there exists a homeomorphism (1). W

52. Lumma, D(P)<p.

Proof. We will prove this lemma by induction on B. ¥ f<wg, tt.aen clearI'y
D(Py) = . Let p be & decomposable transfinite number and let ('4) be its ‘0'3,1’101311;)
representation. Consequently, by virtue of (3), § 3, and (5), along with Definition 3.
and indoetive assumption,

DPY<D(P)® . ®D(Pay ) SHD o Bty = B.
If B is indecomposable transfinite, then our inequality follows from Lemma 3.6

and the inductive assurmption. M
3 — Fundamenta Mathematicae CXXII/2
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5.3. LeMMA. If o is @ limit number, then there exists an o-D-representation of
the compactum P,

® P, = {4,: y<a = J()}

such that the set Ay, consists of exactly one point gq,.

Proof. We will prove this lemma by induction. If « is an indecomposable
transfinite number, our lemma follows from Lemmas 3.6 and 5.2 and Construc-
tion 5.1. Consequently, our lemma is true for the first limit number o = w,. Let
o = ay+...+a be a canonic representation of the decomposable limit number «.
Then o = y+a, for some limit number y; and from Construction 5.1 it follows that

Py = P,xP,,.

Therefore, by the inductive assumption there exists a y-D-representation of P,
and a o,-D-representation of P,, P,= {Bs: §<y=J()}, P, = {Cy: <0 =] (oq)}
such that B, = {g,}, C,, = {g,}. Since, by Construction 5.1, {g,} = {9, % q,,}
= B,xC,,, our lemma follows from Lemma 3.8. M

5.4. LEMMA. For each B<aw;, Pye AR.

We will prove our lemma by induction. If B<uw, then P, is a Euclidean cube
and our lemma is true. If § is an indecomposable transfinite number then our lemma
follows from Lemma 2.7 and inductive assumption. Let 8 be a decomposable
transfinite number and (4) its canonic representation, Then (5) holds and Pye AR
as a product of AR-spaces. M

§ 6. The main theorems on embeddings of compacta.
6.1. THEOREM. (i) Let X be a compactum and D(X) = B =a+n, a =J(p),
K(B) = n. There exists an embedding:

B X = Pligyy, = Ppiney -

(ii) Let the equality
(€ X=U{4,: y<a = J(B)}

be a B-D-representation of X. We suppose that the set A ) consists of exactly one
point. There exists an embedding

@ X P,
such that
@) h™4g) = ;-

Proof. We note first that since P,,,, is (2n+1)-dimensional cube and, for
o =0, D(X) = dimX = 5, our theorem extends the well-known result of Nobel-
ing [4], on embedding of n-dimensional sets in Euclidean space.

We now prove this theorem by induction on B.If f<awy, then as we have just
said, the theorem is true. Let § be a decomposable ordinal number >, and let
the equality )

4) B=oy+ .+, Uepr =n=0,1,2, ..

icm°
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be its canonic representation. Then, by inductive assumption and by Lemma 4.2,
there exist embeddings
hit Z(a) — Py,

i<k, IMyyrt Z(rr) = Ay = Panes

such that

&)} B gy = (b} <k,

where {b;} = B, (see Lemma 4.2, conditions (8) and (9) of § 4). Since, by Lemma 5.4,
P,e AR, by Lemma 4.4 there exists a homeomorphism

&
R X = []PuxPoysr = Posonss
i=1

If the set Az = Z (a4 1) consists of exactly one point, tl'.xen we consider a m_apping
Te1t Z(%4q) = Po. By virtue of Lemma 4.4 there exists a homeomorphism (2)
such that A(4;q) is 2 point whose i-coordinate is f,(b;). By property (5) anfl by
Definition 5.1 this point is g,. Therefore, condition (3) holds. Let ﬁ. be an inde-
composable ordinal number. Then there exists a canonic representation of B

B=o+oy, oy=0.

By inductive assumption, Construction 5.1, Lemma 2.10, and Definition 4.1, there
exists a homeomorphism

g: Z(og) = H (Pypiys Byep) = Pp== Py

such that g~%(g,) = by. If Ay consists of exactly one point, then the mapping
0y X~ Z(ay) is a homeomorphism and @;(4yp) = {b,}. Therefore h = 9o
is a homeomorphism and condition (3) holds. Clearly, the case when Ay i 0-di-
mensional but not of cardinality 1 can be settled as above.

6.2. THEOREM. If f: X — ¥ is a closed mapping of a space X onto a space ¥, then:

() If sup{dimf~1(3): ye Y}k, k =0,1,2, ..., then

©) DX)SD(¥)+k. |
() If f~Y(y) consists of no more than (k+1) points for each y € Y, then
(7) D(Y)SD(X)+k.

This theorem extends Hurewicz’s formulas for finite-dimensional spaces.
Proof. (a) Let D(Y) = B and

® Y= U {By y<J(B)}
be a B-D-representation of Y. We put

©® Ay =17NB)-
Then

(10) X = U4y y<J(B) = TB+E)}-

3
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We will prove that (10) is a (8+k)-D-representation. By Hurewicz’s formula for
finite-dimensional spaces (see [9]),
_ dimd,<dimB,+k.
In particular, for J(8) = J(f+k)
dim A g4 < dim By SK(B) -+ = K(B+K) .

‘Thefefore, conditions (a) and (b) of Definition 1.1 hold. Conditions (¢) and (c)
follow from (9). Hence, (10) is a (f+k)-D-representation of X and inequality (6)
holds.

(b) Let D(X) = f and let the equality
X = {Bv: ng(ﬁ)}
be a f-D-representation of X. We put

(11) A4, =f(B,) .
Then
(12 S&X) =Y =U{4,: y<I(B) = J(B+E)} .

By virtue of Hurewicz’s formula for finite-dimensional spaces (see [10])
(13) dimd,<dimB,+k, dimBj . y<dimd;p+k<K(B)+k = K(B+k).

Moreover, the sets 4, are closed because f is a closed mapping and the sets B, are
closed. Therefore, conditions (a), (b), (d) of Definition 1.1 hold. Condition ©
holds because 1 is a closed mapping. Condition (€) holds because the set f () is

ﬁnite for every y € ¥. Hence equality (12) is a (8+k)-D-representation of ¥ and (7)
olds. B

6.3. THEOREM. Let X be a compactum, then D(X)<B if and only if there exists
a zero-dimensional mapping f: X — P,.

Proof. We will use the following two assertions:

(14) - (See [8], Luxemburg, Lemma 8.7.)

Let X be a compactum and (1) be its p-D-representation. We define
a mapping

(15) X Xy
as the identification of all points of the set Ayq,. We put

D =n(dyy).
Then the equality

Xy = U {B, = n(4,): y<J(B)}

is a J(B)-D-representation of X, and the set Bjy is a point p. Further-
more, 7 is injective on X\A )
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(16)  (See [8], Luxemburg, Lemma 8.8.)
Let U be an open setin X, 4 = XNU. If f: X - Kand g: X — T are
mappings such that

dim(f7'x) n U)<0, dim(g ' () nA)<0 for yeT, xek,
then the mapping:
F: X - KxT

defined by the equality
F(x) = (f(x), g(x))
is zero-dimensional.

Let (1) be a f-D-representation of X and let = be the mapping (15). Then, by
virtue of assertion (14) and Theorem 6.1, there exists an embedding

h: Xe =P, (x=J(B)).
Therefore, by virtue of (14), the mapping
g=hoemn: X— P,

is injective and consequently, zero-dimensional on U = X\djp. Since dimd g,
< K() = n (condition (d) of Definition 1.1), there exists a zero-dimensional
mapping r: Ay — I" in n-dimensional cube 7" (see [11], Hurewicz). Let g: X—>1I"
be any extension of . Then by virtue of (16), there exists a zero-dimensional mapping

fi X PxI"="Pu, =P,

which is defined by the equality: f(x) = (g(x), g(x)).

On the other hand, let f: X - Py be a zero-dimensional mapping, then by
Theorem 6.2 and Lemma 5.2 D(X)<D(Pp<p. B

Proof of Theorem 1.2. Let R be a compactum and Z(R) be the class of all
compacta X having a zero-dimensional mapping f: X — R. By virtue of [12],
Pasynkov, Theorem 8.8, there is a universal element in the class Z(R). Let D, be
a universal element in the class Z(Py). Then our theorem follows from Theorem 6.3.

6.4. COROLLARY, D(P;) = D(Dy) = B.

Proof. Since for any f there exists a compact space X with D(X) = B (see [1],
Henderson), D(Dp)D(X) = f. By the definition of D, there exists a zero-di-
mensional mapping f: D, — Py. Therefore, by Theorem 6.2 and Lemma 5.2

D(D)<D(B)<p. W

§ 7. Universal spaces for noncompact separable spaces. As mentioned in § 1,
the universal clement in the class of compact spaces X with D(X)<f does not
coincide with the one in the class of separable spaces with D-dimension <p for
B>w,. To prove Theorem 1.3 we need some preliminary lemmas.
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7.1. LEMMA. Let the equality
4y X=U: <@}, TP =«

be a B-D-representation of a space X and let M < 4 ;) be an arbitrary set of dimension
Ind M <s. Then the equality

(XN\Ayq) v M = U {B,: y<I(B)}
where B, = (Ay O (XNAjpy) U M, is an (a+s)-D-representation of (XN\Ayp) v M.
The lemma is evident. M
7.2. DEFINITION. Let

@ B=otn, a=JB), n=KEpB

and 4, be a universal n-dimensional compact space. Then (see [5], Bothe), there
exists (n+1)-dimensional compactum R, >4, such that R,,; € AR. Let g, Py
be a fixed point (see Construction 5.1). Let

Myl PyxXRyyy = Py mayt PyXRyyq = Ryyy
be projections. Then we put
SII = PaXRwH.\{x: nl(x) = G TEZ(JC) € (Rn+1\An): X EPKXRII"‘J.} .
7.3. Lemma. D(Sp<p.

Proof. Let (8) (§ 5) be an cx-D—representation of P, satisfying the conditions
of Lemma 5.3. Then, by Corollary 3.9, the equality

(3) PyxRyry=U{B, = 4, xRy y<a = J(a+n+1)}
is an (x+n+1)-D-representation of the space P,x R,,,. We put
M = {x: X€P,XRypq, my(x) € A, m,(X) = q,} -
Then M is homeomorphic to 4, and consequently dimM = n. By Lemma 7.1
the equality
Sp = (PaX Ryp NAX Ry ) 0 M = {Cy: y<ar = Je+n} (A, = g,)

where C, = ((P,XR,,H\A,, XR,1) N B,,) UM, is an (a+n)-D-representation
of Sg. Therefore D(Sp)<a+n = 4. M

74. LemMa. If D(X)<B and X is separable, then there exists an cmbedding
i X =S,

Proof. Suppose condition (2) holds. Then, by Lemma 8.9 in [3], Luxemburg,
there exists a compactum K> X such that

() K=R,.,;,UH, HAR, =0,
)] XcHU A, (4,=R,.,),

(®) We use here the notation of Definition 7.2.

icm
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(6) His an open set such that there exists a family of compact sets {H;}, simple
with respect to H, such that D(H;)<a.

Let 7: K — L be a mapping onto the quotient compactum L which we obtain
by identification of all points of R,,;<K; we let n(R,.;) = {{}<L. Then by
condition (6), Lemma 3.5, and Theorem 6.1, there exists a homeomorphism g: L— P,
such that

) g() =q.€P,.
Since R,.; € AR, there exists a retraction:
ri K- Ryiq.
We define a mapping F: K — P,x R,y by the equality:
(8) F=(gom,r).
From conditions (5) and (7) it follows that
()] F(X)=SycP X Ry -

Since g is a homeomorphism and 7 is injective on H, the composition g o is
injective on H. Further, r is injective on R,.. Therefore, by virtue of (4) and (8),
Fis injective on K. Since K is compact, F is a homeomorphism. Let f'be a restriction
of F to X, then fis also a homeomorphism and by virtue of (9), f{X)=S;. B

Proof of Theorem 1.3. Since S, is contained in the compactum P, X R,
it is a separable space. Our theorem now follows from Lemmas 7.3 and 7.4. B

§ 8. On compactifications. For any separable space X there exists a compactifi-
cation K> X such that :
D(K)<D(X)+1

(see [13], Kozlovsky, and [3], Luxemburg, for the proof). Moreover, for any
separable finite-dimensional space X there exists a compactification K € AR such that
dimK<dim X+1

(see [5], Bothe). The following theorem is an extension of both these results.
8.1. THEOREM. For cach B<w, there exists a compactum Qg€ AR such that
D(Qp<p+1
and Q, contains a homeomorphic image of any separable space Y with D(Y)<p.
Proof. We put
Qp =P, xRy, a=JB, n=K(@)
(see Construction 5.1 and Definition 7.2). We have proved in § 7 (see (3) § 7) that
D(Qp<a+n+1 = p+1. Since Qy=S5;, it follows from Lemma 7.4 that @

contains a homeomorphic image of each separable space ¥ with D(Y)<p. More-
over, Q € AR because P,€ AR and R,,; € AR. M
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It is also easy to prove that D(Qp) = f+1.

8.2. DEFINITION (see [14], Zarelua). A mapping f: X — Y is called scattcring
if for each point x € X and for each neighborhood V2 x there exists a neighbor-
hood Usf(x), U= Y, such that there exist open sets P and W satisfying the con-
ditions:

fY{U)=PuW, PnW=¢, xefcV.

It i3 easy to prove that for compact spaces the class of all zero-dimensional mappings
coincides with the class of all scattering mappings. Therefore, by Theorem 6.2

(1) If f: X— Y is a scattering mapping and X and Y are compact, then
D(X)<D(Y).
As we mentioned above a separable space need not have a compactification with
the same D-dimension (see [1]).
The following theorem gives a necessary and sufficient condition for the
existence of such a compactification.
8.3. THEOREM, Let X be a separable space with D(X) = B. Then the existence

of a compactum K> X such that D(K) = D(X) is equivalent to the existence of

a scattering mapping f: X — Pg.

Proof. Let f: X — P, be a scattering mapping. Then by virtue of [14],
Corollary 5, Zarelua, there exists a compactification K> X and a scattering ex-
tension F: K — Py of the mapping f. Therefore, by virtue of (1), D(K)<.D(Py) = f.
Moreover, D(K)=D(X) = f because K> X. We have thus proved that our con-
dition is sufficient. Let K be a éompactiﬁcation of X with D(K)= D(X) = p.
Then, by Theorem 6.3, there exists a zero-dimensional and, consequently, scattering,
mapping f: K — P;. Let g: X — P, be a restriction of f to X. Then clearly g is also
scattering. M

8.4. PROBLEM. Let & be a class of all separable spaces and let £ be a class
of all compact spaces. In each of these classes consider two subclasses for
W <U<;:

(1) Spaces X with ind X<a.

(2) Spaces X with Ind X'<e.

So we get four classes of spaces for each «. Do there exist universal elements in
these classes?

8.5. Remark. According to [2], § 8, Luxemburg, there exist compact spaces X
having Ind X = o and an arbitrarily large D(X)<w,. Therefore, there are no uni-
versal elements in the class of compact spaces X having D(X)<4 and Ind X<a.
Analogous results could be obtained for the other three classes in Problem 8.4.
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