

On universal infinite-dimensional spaces

by

Leonid A. Luxemburg (Lexington, Ky.)

Abstract. In this paper we construct a universal compact metric space with given transfinite D-dimension. A similar result is proved for separable metric spaces. Since $D(X) = \dim X$ for finite-dimensional spaces, these results are extensions of well-known theorems for finite-dimensional spaces. Also we prove that every separable metric space X is contained in a compact metric space $R \in AR$ such that $D(R) \leq D(X) + 1$.

- § 1. Definitions and notation. In this paper we consider the transfinite D-dimension introduced in [1], Henderson. Some of our results we announced in [2]. Luxemburg, without proof. All spaces in this paper are assumed to be metric and all mappings continuous. For every ordinal number β the equality $\beta = \alpha + n$ holds where α is a limit number or 0 and n = 0, 1, 2, ... (1). Then we put $K(\beta) = n$, $J(\beta) = \alpha$.
- 1.1. DEFINITION. We put $D(\emptyset) = -1$. If $X \neq \emptyset$, then D(X) is the smallest ordinal number β such that there exists a collection of sets $\{A_{\xi}\colon 0 \leqslant \xi \leqslant \gamma\}$, where γ is an ordinal number, satisfying the following conditions:
 - (a) $X = \bigcup \{A_{\varepsilon} : 0 \leqslant \xi \leqslant \gamma\}.$
 - (b) Every set A_{ξ} is closed and finite-dimensional.
 - (c) For any $\delta \leqslant \gamma$, the set $\bigcup \{A_{\alpha} : \delta \leqslant \alpha \leqslant \gamma\}$ is closed in X.
 - (d) $J(\beta) = \gamma$, $\dim A_{\gamma} \leq K(\beta)$.
- (e) For any point $x \in X$, there exists the greatest number $\delta \leq \gamma$ such that $x \in A_{\delta}$. If there is no such number β , we put $D(X) = \Delta$ where Δ is an abstract symbol such that $\Delta > \beta$ for any ordinal number β . If conditions (a)–(e) hold, then equality

(a) is called a β -D-representation of a space X. It is evident that

(1) if $X \subset Y$, then $D(X) \leq D(Y)$.

Moreover, $D(X) = \dim X = \operatorname{Ind} X$ for finite-dimensional spaces. For any space X of weight $\leq \tau$, we have $|D(X)| \leq \tau$ (see [1], Henderson, Theorem 10); consequently, for any separable space (in particular, a compact space) X, we have $D(X) < \omega_1$ or $D(X) = \Delta$.

⁽¹⁾ We always consider $\beta + 0 = 0 + \beta = \beta$.

- 1.2. Theorem. There is a universal element in the class of all compact spaces X such that $D(X) \leq \beta$ $(\beta < \omega_1)$.
- 1.3. THEOREM. There is a universal element in the class of all separable spaces X such that $D(X) \leq \beta$ $(\beta < \omega_1)$.

We note that for every $\beta < \omega_1$ such that $\beta \geqslant \omega_0$, there exists a separable space X_{β} satisfying the following condition:

 $D(X_{\beta}) = \beta$ and for any compact space $Y \supset X$ we have D(Y) > D(X),

(see [3], Luxemburg, Theorem 8.2). Consequently, universal elements in Theorems 1.2 and 1.3 are different for any $\beta \geqslant \omega_0$. These theorems are extensions of well-known results (see [4], Nöbeling) for finite-dimensional spaces. We will also prove the following theorem:

1.4. Theorem. For every separable space X there exists a compact space $Y \in AR$ and a homeomorphism $f \colon X \to Y$ such that $D(Y) \leqslant D(X) + 1$.

This theorem is an extension of a similar theorem for finite-dimensional spaces see [5], Bothe). To prove this theorem we need some preliminary constructions.

- § 2. The main constructions.
- 2.1. DEFINITION. Let X be a compactum and

$$\varphi_X \colon X \times I \to CX$$

the identification mapping of the product $X \times I$, where I denotes the unit segment [0, 1], onto the cone CX. (We obtain the cone by identifying all points of the set $X \times \{0\} \subset X \times I$. The point $\varphi(X \times 0) = a \in CX$ is called the apex of the cone CX.)

2.2. Construction. Let $\sum X_i$ be a discrete union of spaces X_i , i=1,2,... Suppose in any X_i there are two closed sets A_i and B_i , $A_i \cap B_i = \emptyset$, and for any i there exists a homeomorphism g_i : $B_i \to A_{i+1}$. We identify every point $x \in B_i$ in a space $\sum X_i$ with a point $g_i(x)$ for all i. Then we get a factor mapping:

$$\mu \colon \sum X_i \to \Phi$$

onto the factor space Φ . We shall consider a set $F \subset \Phi$ to be closed if and only if the set $\mu^{-1}(\Phi)$ is closed. It is evident that for each i we have an embedding

(3)
$$f_i \colon X_i \to \Phi$$
 and

$$\bigcup_{i=1}^{\infty} f_i(X_i) = \Phi$$

where f_i is a restriction of μ to X_i . We put

(4)
$$\Phi = \Phi(X_i, A_i, B_i, g_i); \quad \overline{X}_i = f_i(X_i). \blacksquare$$

2.3. DEFINITION. Let $\mathscr{F} = \{F_i: i=1,2,...\}$ be a countable family of sets in a space X and let the set $U \subset X$ be open. Then the family \mathscr{F} is called *simple with respect to U* if

$$(5) U = \bigcup_{i=1}^{\infty} F_i,$$

- (6) $F_i \cap F_j = \emptyset$ for |i-j| > 1,
- (7) the family \mathcal{F} is locally finite on U and sets F_i are closed in X.
- 2.4. LEMMA. Let a space Φ be defined by equality (4); then the family of sets $\{\overline{X}_i\}$ is simple with respect to Φ . Moreover, if the spaces X_i are compact, then Φ is separable and locally compact.

The lemma is evident.

2.5. Construction. Let $\{X_i: i=1,2,...\}$ be a family of disjoint compact spaces, and for each i, there exists a homeomorphism $h_i: X_i \to X_{i+1}$. We put:

$$(8) B(X_i) = X_i \times I \times CX_i$$

where CX_i is the cone with the apex a_i . Let

$$(9) A_i = X_i \times \{0\} \times \{a_i\} \subset B(X_i), B_i = X_i \times \{1\} \times \{a_i\} \subset B(X_i).$$

Since A_i and B_i are homeomorphic to X_i , there exist homeomorphisms $g_i : B_i \to A_{i+1}$, i = 1, 2, ... We put

$$\Phi = \Phi(B(X_i), A_i, B_i, g_i).$$

Since all spaces X_i are compact, all spaces $B(X_i)$ are also compact and, by virtue of Lemma 2.4, Φ is a locally compact, separable space. We put

$$\mathcal{K} = \mathcal{K}(X_i, h_i) = \{\omega\} \cup \Phi,$$

where \mathcal{K} is a compactification of Φ with an extra point ω . Consequently,

(10)
$$\mathscr{K} = \{\omega\} \cup \bigcup_{i=1}^{\infty} B(X_i)$$

and

(11) the set $B(X_{i+1}) \cap B(X_i)$ is homeomorphic to X_i .

2.6. Lemma. The family of sets $\{B(X_i)\}$ is simple with respect to $\mathcal{K} \setminus \omega$. This theorem follows from Lemma 2.4.

2.7. LEMMA. If all compacts $X_i \in AR$, then $\mathcal{K} = \mathcal{K}(X_i, h_i) \in AR$.

Proof. Let $f: F \to \mathcal{K}$ be a mapping of a closed subset F of a space X into \mathcal{K} . We shall extend f to X. We can easily find a function $\Psi: \mathcal{K} \to [0,1]$ such that

$$\Psi^{-1}(0) = \omega, \quad \Psi^{-1}(1/(i+1)) = S_i, \quad \Psi^{-1}[1/(i+1), 1/i] = B(X_i),$$

where $S_i = B(X_i) \cap B(X_{i+1})$. Then we have a mapping $\Psi \circ f: F \to [0, 1]$. Let $\mu: X \to [0, 1]$ be an extension of $\Psi \circ f$. We put

(13)
$$C_i = \mu^{-1} \left(\frac{1}{i+1} \right), \quad B_i = \mu^{-1} \left(\left[\frac{1}{i+1}, \frac{1}{i} \right] \right), \quad W = \mu^{-1}(0),$$

$$C_0 = \emptyset \quad (i = 1, 2, \dots).$$

Then

$$X = W \cup \bigcup_{i=1}^{\infty} B_i, \quad C_i = B_i \cap B_{i+1}.$$

By virtue of (12) and (13), $f(F \cap C_i) \subset S_i$. Since $X_i \in AR$, by virtue of (11), the set $S_i = B(X_i) \cap B(X_{i+1})$ is also an AR-space. Consequently, for any i, there exists an extension $g_i \colon C_i \to S_i$ of the restriction of f to $F \cap C_i$. We put

$$g(x) = f(x)$$
 for $x \in F$, $g(x) = g_i(x)$ for $x \in C_i$, $g(W) = \omega$.

Then we have a continuous mapping $g \colon R = F \cup W \cup \bigcup_{i=1}^{\infty} C_i \to \mathcal{H}$, and clearly

$$g(R \cap B_i) \subset B(X_i) \subset \mathcal{K}, \quad g(B_i \cap B_{i+1} \cap R) \subset S_i.$$

Since $X_i \in AR$, the cone $CX_i \in AR$ and consequently $B(X_i) = X_i \times I \times CX_i \in AR$. Therefore, for each i, there is an extension $k_i : B_i \to B(X_i)$ of the mapping $r_i : B_i \cap R \to B(X_i) \subset \mathcal{X}$, where r_i is a restriction of g to $R \cap B_i$. We put

$$k(x) = k_i(x)$$
 for $x \in B_i$, $k(x) = \omega$ for $x \in W$.

Then clearly $k: X \to \mathcal{K}$ is a continuous extension of f.

2.8. Lemma. Let a family of sets $\mathscr{F} = \{F_i\}$ be simple with respect to $U \subset X$. Suppose the family of spaces $\{X_i\}$ (i = 1, 2, ...) satisfies the conditions of construction 2.2, and, for each i, there exists a homeomorphism $\varphi_i \colon F_i \to X_i$ such that

$$g_i \circ \varphi_i(x) = \varphi_{i+1}(x)$$
 for $x \in F_i \cap F_{i+1}$.

Then the mapping $\varphi: U \to \Phi = \Phi(X_i, A_i, B_i, g_i)$, defined by the equality

$$\varphi(x)=f_i\circ\varphi_i(x)\,,$$

where f_i is a homeomorphism (3), is a homeomorphism and

(14)
$$\varphi(F_i) \subset \overline{X}_i = f_i(X_i) .$$

The lemma follows directly from Construction 2.2.

2.9. LEMMA. Let Y be a compactum, CX the cone over $X \in AR$ with the apex a and

$$B(X) = X \times I \times CX$$
, $A_i = X \times \{i\} \times \{a\} \subset B(X)$, $i = 0, 1 \in [0, 1]$.

If there exists a homeomorphism

$$f: Y \to X$$

then for any disjoint closed subsets F, G = Y and any homeomorphisms

$$f_0: F \to A_0$$
, $f_1: G \to A_1$,

there exists a homeomorphism $g: Y \to B(X)$, which extends f_0 and f_1 .

Proof. Let $\pi_1: B(X) \to X \times I$ be a projection. Since $X \in AR$ and $I \in AR$, we have $X \times I \in AR$. Therefore, there exists a mapping $k: Y \to X \times I$, which extends $\pi_1 \circ f_0$ and $\pi_1 \circ f_1$ to Y. Then, clearly,

(15) k is injective on $F \cup G$.

Let $\mu: Y \to [0, 1]$ be a continuous function such that $\mu^{-1}(0) = F \cup G$. Let a mapping $h: Y \to X \times I$ be defined by the equality

$$h(y) = \{f(y), \mu(y)\}.$$

We put $l(y) = \varphi_X \circ h$, where φ_X is a mapping (1). Then, clearly,

(16) l is injective on $Y \setminus (F \cup G)$.

We put g(y) = (k(y), l(y)), then by virtue of (15) and (16) $g: Y \to B(X) = X \times I \times CX$ is injective on Y. Since Y is compact, g is a homeomorphism.

2.10. LEMMA. Let X be a compactum and the equality

(17)
$$X = \bigcup \{A_{\gamma} \colon \gamma \leqslant J(\beta)\}$$

be a β -D-representation such that $A_{J(\beta)}$ consists of exactly one point. Let there exists an increasing sequence $\{\gamma_i\}$ of ordinal numbers such that

$$\sup \gamma_i = \alpha = J(\beta) \geqslant \omega_0$$

and a sequence of absolute retracts $\{X_i\}$ satisfying the following conditions:

18) Every compactum with D-dimension $\leq \gamma_i$ has an embedding in X_i .

(19) There exists a homeomorphism $h_i: X_i \to X_{i+1}$ for i = 1, 2, ...

Then there exists a homeomorphism

$$(20) h: X \to \mathscr{K}(X_i, h_i)$$

such that

$$(21) h^{-1}(\omega) = A_{J(\beta)}$$

where ω is the compactification point in $\mathcal{K} = \mathcal{K}(X_i, h_i)$. (See Construction 2.5.)

Proof. By virtue of Lemma 8.2 in [3], Luxemburg, there exists a family of sets $\mathscr{F} = \{F_i\}$, simple with respect to $X \setminus A_{J(\beta)}$, such that

$$(22) D(F_i) \leqslant \gamma_i.$$

By Definition 2.3, the sets F_i are closed in X and are consequently compact. Let the sets $B(X_i)$, A_i , B_i be defined by conditions (8) and (9); g_i : $B_i \rightarrow A_{i+1}$ are homeomorphisms from Construction 2.5. Since A_i and B_i are homeomorphic to X_i by virtue of (18) and (22), there exist homeomorphisms

$$f_i: F_i \to X_i$$
, $k_i: F_i \cap F_{i+1} \to B_i$, $r_{i+1}: F_i \cap F_{i+1} \to A_{i+1}$

where

$$(23) r_{i+1} = g_i \circ k_i.$$

By virtue of Lemma 2.9 there exists a homeomorphism $\varphi_i \colon F_i \to B(X_i)$ which is an extension of k_i and r_i . Consequently, from (23), it follows that

$$g_i \circ \varphi_i(x) = \varphi_{i+1}(x)$$
 for $x \in F_i \cap F_{i+1}$.

By Lemma 2.8 there exists a homeomorphism $\varphi\colon X\diagdown A_{J(\beta)}=\Phi=\mathscr{K}\diagdown \omega$. We put $h(x)=\varphi(x)$ for $x\notin A_{J(\beta)}$ and $h(A_{J(\beta)})=\omega$. Then, clearly, h is a desired homeomorphism.

§ 3. Natural sums and β -D-representations of compacta. In Sections 3 and 4 the symbol β is intended to denote infinite ordinal numbers. In what follows we need some information about the natural sum of ordinal numbers; see [6], Toulmin, and [7], Hausdorff (2).

Every ordinal number β has a unique representation:

$$\beta = \alpha_1 + \dots + \alpha_{k+1}$$

where $\alpha_{k+1} = 0, 1, 2, ...$ and α_i ($i \le k$) are indecomposable transfinite numbers such that $\alpha_{i+1} \le \alpha_i$. (A transfinite number ξ is called indecomposable if ξ is not the sum of a finite number of ordinal numbers less than ξ .) The representation (1) is called canonic. It is evident that $K(\beta) = \alpha_{k+1}$.

3.1. DEFINITION. Let (1) be a canonic representation of β and

$$\gamma = \delta_1 + \dots + \delta_{p+1}$$

be a canonic representation of γ . Let ξ_1,\ldots,ξ_{p+k+2} be elements of the set $\alpha_1,\ldots,\alpha_{k+1},\beta_1,\ldots,\beta_{p+1}$ with decreasing order $(\xi_i\!\geqslant\!\xi_{i+1})$. Then the natural sum $\gamma\!\oplus\!\beta$ is defined by the equality $\gamma\!\oplus\!\beta=\xi_1+\ldots+\xi_{p+k+2}$.

If n=0,1,2,..., then by definition $\gamma\oplus n=\gamma+n=n\oplus\gamma$. It is evident that $\beta\oplus\gamma=\gamma\oplus\beta$.

In [1], Henderson, Theorem (8), it was proved that for any spaces X and Y

$$(3) D(X \times Y) \leqslant D(X) \oplus D(Y) .$$

3.2. LEMMA. Let (1) and (2) be representations of β , γ and $\alpha_{k+1} = 0$. Let $\gamma < \beta$ and l be the first integer such that $\delta_l \neq \alpha_l$. Then $\delta_l < \alpha_l$.

Proof. If $\delta_l > \alpha_l$, then, since the sequence $\{\alpha_i\}$ is decreasing, $\delta_l > \alpha_j$ for $j \ge l$. Besides that, clearly l < p+1. Therefore, δ_l is an indecomposable transfinite number. Consequently, $\delta_l > \alpha_l + \ldots + \alpha_{k+1}$ and $\gamma \ge \delta_1 + \ldots + \delta_l > \alpha_1 + \ldots + (\alpha_l + \ldots + \alpha_{k+1}) = \beta$. This contradiction proves the lemma.

3.3. LEMMA. Let CX be the cone over a compact space X. Then

$$D(CX) \leq D(X) + 1$$
.

Proof. Let a be the apex of CX; clearly, $CX \setminus \{a\}$ can be embedded into $X \times I$. Consequently (see [1], Henderson, Theorem 8),

$$D(CX\setminus\{a\}) \leq D(X\times I) \leq D(X)+1$$
.

Moreover, it is evident that the adding of a point to a nonempty set whose D-dimension is defined does not change its D-dimension.

3.4. LEMMA. If $D(X) < \alpha$ and α is indecomposable transfinite, then $D(B(X)) < \alpha$ where $B(X) = CX \times X \times I$.

The lemma follows from Lemma 3.3 and (3).

3.5. Lemma. Let L be a compactum such that

$$L = \{l\} \cup \Phi, \quad l \notin \Phi,$$

for some point $l \in L$, and $\{H_i\}$ be a family, simple with respect to Φ , such that $D(H_i) \leq \gamma_i < \alpha$. Then there exists an α -D-representation of L

$$L = \bigcup \{ A_{\gamma} \colon \gamma \leqslant J(\alpha) \}$$

such that $A_{J(\alpha)} = \{l\}.$

Proof. For each i, since $D(H_i) \leq \gamma_i$, by Lemma 1 in [1], Henderson, there exists $a \gamma_i - D$ -representation of the space H_i

$$H_i = \bigcup \left\{ A_{\mu}^i \colon \mu \leqslant J(\gamma_i) \right\}$$

such that

$$\dim A^i_{\mu} \leq K(\mu)$$
.

We put $A_{\mu}^{i} = \emptyset$ for $\mu > J(\gamma_{i})$ and

$$A_{\delta} = \{l\} \cup \bigcup \{A_{\delta}^{i}: i = 1, 2, \ldots\}.$$

From the sum theorem it follows that

$$\dim A_{\delta} \leq K(\delta)$$
.

Moreover, $A_{J(\alpha)} = \{l\}$. It is easy to see that the equality $L = \bigcup \{A_{\delta} \colon \delta \leqslant J(\alpha)\}$ is an α -D-representation of L.

3.6. LEMMA. Let α be an indecomposable ordinal number and, for i=1,2,..., X_i a compact space such that $D(X_i) < \alpha$. There exists an α -D-representation of $\mathcal{K}_i = \mathcal{K}(X_i, h_i)$

$$\mathscr{K} = \{A_{\gamma} : \gamma \leqslant J(\alpha)\}$$

such that $A_{J(\alpha)} = \{\omega\}$. Consequently, $D(\mathcal{K}) \leq \alpha$.

Our lemma follows from Lemmas 2.6, 3.4, and 3.5. ■

3.7. LEMMA. If X is compact, $D(X) = \beta$, and

$$(4) X = \bigcup \{A_{\gamma} \colon \gamma \leqslant J(\beta)\}$$

is a β -D-representation of X, then we have:

$$C_{\gamma} = \bigcup \{A_{\delta} : \gamma \leqslant \delta \leqslant J(\beta)\} \neq \emptyset$$

and C_{γ} is compact for each $\gamma \leqslant J(\beta)$. In particular, $C_{J(\beta)} = A_{J(\beta)} \neq \emptyset$.

⁽²⁾ In [6] this sum is called "lower".

Proof. First we will show that $C_{\gamma} \neq \emptyset$ for $\gamma < J(\beta)$. Indeed, if $C_{\gamma} = \emptyset$, then $X = U_{\gamma} = X \setminus C_{\gamma}.$

By Lemma 8.3 in [8], Luxemburg, $D(U_{\gamma}) < J(\beta) \le \beta$. This contradicts the condition of the Lemma. Therefore, $C_{\gamma} \ne \emptyset$ for $\gamma < J(\beta)$. From condition (c) of Definition 1.1 the set C_{γ} is closed in X and consequently is compact. Since $C_{\gamma} \subset C_{\gamma'}$ for $\gamma > \gamma'$, we have

$$\bigcap \{C_{\gamma} \colon \gamma < J(\beta)\} \neq \emptyset.$$

But from condition (e) of Definition 1.1 it follows that $\bigcap \{C_{\gamma}: \gamma < J(\beta)\} = A_{J(\beta)} \neq \emptyset$.

3.8. Lemma. Let (4) be a β -D-representation of X and

$$Y = \{ \} \{ B_{\gamma} \colon \gamma \leqslant J(\delta) \}$$

be a δ -D-representation of Y. Then the equality

(5)
$$X \times Y = \bigcup \{ D_{\mu} \colon D_{\mu} = \bigcup \{ A_{\gamma_1} \times B_{\gamma_2} \colon \gamma_1 \oplus \gamma_2 = \mu \}, \ \mu \leqslant J(\delta) \oplus J(\beta) \}$$

is a $(\beta \oplus \delta)$ -D-representation of $X \times Y$ and $D_{J(\beta \oplus \delta)} = A_{J(\beta)} \times B_{J(\delta)}$.

Proof. The equality (5) is a $(\beta \oplus \delta)$ -D-representation of $X \times Y$ by virtue of [1], Henderson. From the definition of the natural sum it follows that $J(\beta \oplus \delta) = J(\beta) \oplus \oplus J(\delta)$. If $\gamma \leqslant J(\beta)$, $\gamma' < J(\delta)$ or $\gamma < J(\beta)$, $\gamma' \leqslant J(\delta)$, we have $\gamma \oplus \gamma' < J(\beta \oplus \delta)$. Consequently, $D_{I(\beta \oplus \delta)} = A_{J(\beta)} \times B_{J(\delta)}$.

3.9. COROLLARY. Let (4) be a β -D-representation of X and let K be an arbitrary space with $\dim K \leq m$; then the equality

$$X \times K = \bigcup \{B_n = A_n \times K : \gamma \leqslant J(\beta) = J(\beta + m)\}$$

is a $(\beta+m)$ -D-representation of $X\times K$.

§ 4. On compacta $Z(\alpha_i)$.

4.1. DEFINITION. Let X be a compactum and let

(1)
$$\beta = \alpha_1 + ... + \alpha_{k+1}, \quad \alpha_{k+1} = n = 0, 1, 2, ..., \quad \alpha_0 = 0$$

be a canonic representation of ordinal number $\beta \geqslant \omega_0$ and let

$$(2) X = \bigcup \{A_{\gamma} : \gamma \leqslant J(\beta)\}$$

be a β -D-representation of X. We put

 $(3) Y(\alpha_i) = \bigcup \{A_{\gamma}: \alpha_1 + \dots + \alpha_i \leqslant \gamma \leqslant J(\beta)\} \subset X, 1 \leqslant i \leqslant k, Y(\alpha_0) = X.$

We note that by Lemma 3.7, $Y(\alpha_i)$ is compact and $Y(\alpha_i) \neq \emptyset$. Moreover,

$$Y(\alpha_k) = A_{J(\beta)}.$$

Let

(5)
$$\varrho_i \colon Y(\alpha_{i-1}) \to Z(\alpha_i), \quad i = 1, ..., k$$

be a mapping on a compactum $Z(\alpha_i)$ obtained by identification of all points of the compactum $Y(\alpha_i) = Y(\alpha_{i-1})$. Let $\{b_i\} = \varrho_i(Y(\alpha_i))$. We also put

(6)
$$Z(\alpha_{k+1}) = A_{J(\beta)} = Y(\alpha_k), \quad \varrho_{k+1} = \mathrm{id} \colon Y(\alpha_k) \to Z(\alpha_{k+1}).$$

Thus, the compacta $Y(\alpha_i)$ are completely defined for i = 0, ..., k,

$$X = Y(\alpha_0) \supset ... \supset Y(\alpha_k) = A_{I(R)}$$

and the compacta $Z(\alpha_i)$ are defined as quotient spaces for i = 1, ..., k+1,

$$Z(\alpha_i) = Y(\alpha_{i-1})/Y(\alpha_i)$$
 for $i \le k$

and

$$Z(\alpha_{k+1}) = Y(\alpha_k) = A_{J(\beta)}$$
.

We introduce one more notation. Let $\gamma \leqslant \alpha_1$, then we put $r_1(\gamma) = \gamma$. If $\alpha_1 + \dots + \alpha_i \leqslant \gamma \leqslant \alpha_1 + \dots + \alpha_{i+1}$, then the ordinal number $r_{i+1}(\gamma)$ is defined by the equality $\alpha_1 + \dots + \alpha_i + r_{i+1}(\gamma) = \gamma$ for all $\gamma \leqslant \beta$.

4.2. LEMMA. We put

(7)
$$B_{r,(\gamma)} = \varrho_i(A_\gamma), \quad \alpha_1 + \dots + \alpha_{i-1} \leqslant \gamma \leqslant \alpha_1 + \dots + \alpha_i.$$

Then the equality

$$Z(\alpha_i) = \bigcup \{B_{\mu} : \mu \leq \alpha_i\}$$

is an α_i -D-representation of the compactum $Z(\alpha_i)$ and

$$(9) B_{\alpha_i} = B_{J(\alpha_i)} = \{b_i\}.$$

Proof. The equality in (8) follows from (3), (7), and the construction of ϱ_i . Since $Y(\alpha_{i-1})$ is compact, the mapping ϱ_i is closed. The mapping ϱ_i clearly does not raise the dimension of closed finite-dimensional sets. Consequently, from condition (7), it follows that the sets β_{μ} are closed and finite-dimensional. Thus properties (a) and (b) of Definition 1.1 are proved. Property (c) follows from the closedness of ϱ_i . Condition (9) is evident and (e) follows from (9). Condition (d) is true because ϱ_i is a homeomorphism on $\varrho_i^{-1}(Z(\alpha_i) \backslash b_i)$.

In the following two lemmas we adopt the notation of Definition 4.1.

4.3. Lemma. For any two distinct points x and y in the compactum X, there exists a number i = 0, ..., k such that $x \in Y(\alpha_i)$, $y \in Y(\alpha_i)$ and $\varrho_{i+1}(x) \neq \varrho_{i+1}(y)$.

Proof. For any point $z \in X$, let $\mu(z)$ be the greatest number i such that $z \in Y(\alpha_i)$. Let $\mu(x) = \mu(y) = p$. Then: either p < k or p = k.

In the second case $\varrho_{k+1}(x) = x \neq y = \varrho_{k+1}(y)$. Since ϱ_{p+1} is clearly injective on $Y(\alpha_p) \setminus Y(\alpha_{p+1})$, we also have $\varrho_{p+1}(x) \neq \varrho_{p+1}(y)$ in the first case. If $\mu(x) \neq \mu(y)$, for example, $\mu(x) > \mu(y) = p$, then $x \in Y(\alpha_{p+1})$, $y \in Y(\alpha_p) \setminus Y(\alpha_{p+1})$. Therefore, $\varrho_{p+1}(x) = \varrho_{p+1} \neq \varrho_{p+1}(y)$.

4.4. Lemma. Let X be a compactum and, for i = 1, 2, ..., k+1, there exists a homeomorphism

$$h_i \colon Z(\alpha_i) \to P_i \in AR$$

in a space Pi AR. Then there exists a homeomorphism

$$h\colon\thinspace X\to\prod_{i=1}^{k+1}P_i$$

of the space X in the product of the spaces Pi. Moreover,

(10) If the set $A_{J(\beta)} = Z(\alpha_{k+1})$ in a β -D-representation (2) consists of exactly one point b_{k+1} , then $h(A_{J(\beta)})$ is a point whose i-th-coordinate in the product $\prod_{i=1}^{n} P_i \text{ is a point } h_i(b_i) \text{ } (b_i \in Z(\alpha_i)).$

Proof. Since $P_i \in AR$ there exists an extension

$$g_i: X \to P_i$$

of the mapping $h_i \circ \varrho_i$: $Y(\alpha_{i-1}) \to P_i$. Let

$$h: X \to \prod_{i=1}^{h+1} P_i$$

be a mapping whose i-coordinate is g_i . Let x, y be a pair of distinct points in X. Then, by Lemma 4.3, $\varrho_{i+1}(x) \neq \varrho_{i+1}(y)$ for some i. Since h_{i+1} is a homeomorphism,

$$g_{i+1}(x) = h_{i+1} \circ \varrho_{i+1}(x) \neq h_{i+1} \circ \varrho_{i+1}(y) = g_{i+1}(y)$$
.

Consequently, $h(x) \neq h(y)$. Therefore, h is injective. Since X is compact, h is a homeomorphism. Condition (10) is evident.

§ 5. On compacta P_B .

5.1. Construction. For each ordinal $\beta < \omega_1$, we will define a compactum P_{β} and a fixed point $q_{\beta} \in P_{\beta}$. For each pair of compacta P_{γ} and P_{β} $(\gamma \leq \beta)$, we will define a homeomorphism

$$(1) h_{\gamma\beta} \colon P_{\gamma} \to P_{\beta} .$$

We put

$$P_n = I^n$$
 for $n = 0, 1, 2, ...,$

where I^n is an n-dimensional cube. Points q_n we select in an arbitrary way. Then, clearly, for $\gamma \leq \beta < \omega_0$, there exist homeomorphisms (1). Suppose, for $\beta < \beta_0$, compacta P_{θ} and homeomorphisms (1) have been constructed. If β_0 is indecomposable transfinite, then there exists a sequence of ordinal numbers $\{\gamma(\beta_0,i)\}$ such that

(2)
$$\sup \{ \gamma(\beta_0, i) : i = 1, 2, ... \} = \beta_0 \text{ and } \gamma(\beta_0, i) < \gamma(\beta_0, i+1)$$

and thus we put

100

(3)
$$P_{\beta} = \mathscr{K}(P_{\gamma(\beta,i)}, h_{\gamma(\beta,i)\gamma(\beta,i+1)}).$$

We define q_{θ} as a compactification point in $\mathscr{K} = P_{\theta}$ (see Construction 2.5). Let $\gamma < \beta$. Then, by virtue of (2), $\gamma \leqslant \gamma(\beta, i)$ for some i. By inductive assumption there

exists a homeomorphism $h_{\gamma\gamma(\beta,i)}$: $P_{\gamma} \to P_{\gamma(\beta,i)}$. Consequently, there exists a homeomorphism (1) because $P_{\gamma(\beta,i)}$ is homeomorphic to a subset of P_{β} . (See (10) and (11) in § 2.)

If α is a decomposable transfinite number and the equality

$$\beta = \alpha_1 + \dots + \alpha_{k+1}$$

is a canonic representation of β , then we put

$$P_{\beta} = \prod_{i=1}^{k+1} P_{\alpha_i}.$$

Let $\pi_i\colon P_{\beta}\to P_{\alpha_i}$ be a projection on a factor. Then the point q_{β} is defined by the equalities

$$\pi_i(q_{\beta}) = q_{\alpha_i}, \quad i = 1, ..., k+1.$$

Let us define the homeomorphism $h_{\gamma\beta}.$ Let $\gamma < \beta$ and let the equality

$$\gamma = \delta_1 + \dots + \delta_{p+1}, \quad p = 0, 1, 2, \dots$$

be a canonic representation of γ . Let $l \leq p+1$ be the first number such that $\delta_l \neq \alpha_l$. Then by Lemma 3.2 $\delta_l < \alpha_l$. If l = k+1, then clearly

$$P_{\beta} = P_{\gamma} \times I^n$$

where $n=\alpha_{k+1}-\delta_{k+1}$, and the homeomorphism $h_{\gamma\beta}$ exists. Let $l\leqslant k$; then α_l is an indecomposable number. Since $\delta_s \leq \delta_l < \alpha_l$ for $s \geq l$, we have

$$\xi = \delta_l + \dots + \delta_{p+1} < \alpha_l.$$

By inductive assumption there exists a homeomorphism

(6)
$$h_{\xi \alpha_1} \colon P_{\xi} \to P_{\alpha_1} .$$

Moreover, by our construction

(7)
$$P_{\gamma} = \prod_{i=1}^{p+1} P_{\gamma_i} = \prod_{i=1}^{l-1} P_{\alpha_i} \times P_{\xi}.$$

By virtue of (5), (6), and (7) there exists a homeomorphism (1).

5.2. LEMMA. $D(P_B) \leq \beta$.

Proof. We will prove this lemma by induction on β . If $\beta < \omega_0$, then clearly $D(P_{\beta}) = \beta$. Let β be a decomposable transfinite number and let (4) be its canonic representation. Consequently, by virtue of (3), § 3, and (5), along with Definition 3.1 and inductive assumption,

$$D(P_{\theta}) \leq D(P_{\alpha_1}) \oplus \ldots \oplus D(P_{\alpha_{k+1}}) \leq \alpha_1 \oplus \ldots \oplus \alpha_{k+1} = \beta.$$

If β is indecomposable transfinite, then our inequality follows from Lemma 3.6 and the inductive assumption.

3 - Fundamenta Mathematicae CXXII/2

5.3. Lemma. If α is a limit number, then there exists an α -D-representation of the compactum P_{α}

(8)
$$P_{\alpha} = \{A_{\gamma} : \gamma \leqslant \alpha = J(\alpha)\}$$

such that the set $A_{J(\alpha)}$ consists of exactly one point q_{α} .

Proof. We will prove this lemma by induction. If α is an indecomposable transfinite number, our lemma follows from Lemmas 3.6 and 5.2 and Construction 5.1. Consequently, our lemma is true for the first limit number $\alpha = \omega_0$. Let $\alpha = \alpha_1 + ... + \alpha_k$ be a canonic representation of the decomposable limit number α . Then $\alpha = \gamma + \alpha_k$ for some limit number γ ; and from Construction 5.1 it follows that

$$P_{\alpha} = P_{\gamma} \times P_{\alpha_{k}}$$
.

Therefore, by the inductive assumption there exists a γ -D-representation of P_{γ} and a α_k -D-representation of P_{α_k} , $P_{\gamma} = \{B_{\delta} : \delta \leqslant \gamma = J(\gamma)\}$, $P_{\alpha_k} = \{C_{\delta} : \delta \leqslant \alpha_k = J(\alpha_k)\}$ such that $B_{\gamma} = \{q_{\gamma}\}$, $C_{\alpha_k} = \{q_{\alpha_k}\}$. Since, by Construction 5.1, $\{q_{\alpha}\} = \{q_{\gamma} \times q_{\alpha_k}\}$ = $B_{\gamma} \times C_{\alpha_k}$, our lemma follows from Lemma 3.8.

5.4. LEMMA. For each $\beta < \omega_1, P_{\beta} \in AR$.

We will prove our lemma by induction. If $\beta < \omega_0$ then P_β is a Euclidean cube and our lemma is true. If β is an indecomposable transfinite number then our lemma follows from Lemma 2.7 and inductive assumption. Let β be a decomposable transfinite number and (4) its canonic representation. Then (5) holds and $P_\beta \in AR$ as a product of AR-spaces.

§ 6. The main theorems on embeddings of compacta.

6.1. THEOREM. (i) Let X be a compactum and $D(X) = \beta = \alpha + n$, $\alpha = J(\beta)$, $K(\beta) = n$. There exists an embedding:

$$h: X \to P_{\alpha+2n+1} = P_{\beta+n+1}.$$

(ii) Let the equality

(1)
$$X = \bigcup \{A_{\gamma} : \gamma \leqslant \alpha = J(\beta)\}$$

be a β -D-representation of X. We suppose that the set $A_{J(\beta)}$ consists of exactly one point. There exists an embedding

 $h\colon X\to P_n$

such that

$$h^{-1}(q_{\alpha}) = A_{J(\beta)}.$$

Proof. We note first that since P_{2n+1} is (2n+1)-dimensional cube and, for $\alpha = 0$, $D(X) = \dim X = n$, our theorem extends the well-known result of Nöbeling [4], on embedding of n-dimensional sets in Euclidean space.

We now prove this theorem by induction on β . If $\beta < \omega_0$, then as we have just said, the theorem is true. Let β be a decomposable ordinal number $\geqslant \omega_0$ and let the equality

(4)
$$\beta = \alpha_1 + ... + \alpha_{k+1}, \quad \alpha_{k+1} = n = 0, 1, 2, ...$$

be its canonic representation. Then, by inductive assumption and by Lemma 4.2, there exist embeddings

$$h_i: Z(\alpha_i) \to P_{\alpha_i}, \quad i \leq k, \quad h_{k+1}: Z(\alpha_{k+1}) = A_{J(\beta)} \to P_{2n+1}$$

such that

(5)
$$h_i^{-1}(q_{\alpha_i}) = \{b_i\} \quad (i \leq k),$$

where $\{b_i\} = B_{\alpha_i}$ (see Lemma 4.2, conditions (8) and (9) of § 4). Since, by Lemma 5.4, $P_{\gamma} \in AR$, by Lemma 4.4 there exists a homeomorphism

$$h: X \to \prod_{i=1}^{k} P_{\alpha_i} \times P_{2n+1} = P_{\alpha+2n+1}.$$

If the set $A_{J(\beta)} = Z(\alpha_{k+1})$ consists of exactly one point, then we consider a mapping $h_{k+1} \colon Z(\alpha_{k+1}) \to P_0$. By virtue of Lemma 4.4 there exists a homeomorphism (2) such that $h(A_{J(\beta)})$ is a point whose *i*-coordinate is $h_i(b_i)$. By property (5) and by Definition 5.1 this point is q_α . Therefore, condition (3) holds. Let β be an indecomposable ordinal number. Then there exists a canonic representation of β

$$\beta = \alpha_1 + \alpha_2 \,, \quad \alpha_2 = 0 \,.$$

By inductive assumption, Construction 5.1, Lemma 2.10, and Definition 4.1, there exists a homeomorphism

$$g: Z(\alpha_1) \to \mathcal{K}(P_{\gamma(\beta,i)}, h_{\gamma(\beta,i)}) = P_{\beta} = P_{\alpha_1}$$

such that $g^{-1}(q_{\alpha}) = b_1$. If $A_{J(\beta)}$ consists of exactly one point, then the mapping $\varrho_1 \colon X \to Z(\alpha_1)$ is a homeomorphism and $\varrho_1(A_{J(\beta)}) = \{b_1\}$. Therefore $h = g \circ \varrho_1$ is a homeomorphism and condition (3) holds. Clearly, the case when $A_{J(\beta)}$ is 0-dimensional but not of cardinality 1 can be settled as above.

6.2. THEOREM. If $f: X \to Y$ is a closed mapping of a space X onto a space Y, then:

(a) If
$$\sup \{\dim f^{-1}(y): y \in Y\} \leq k, k = 0, 1, 2, ..., then$$

$$(6) D(X) \leqslant D(Y) + k.$$

(b) If $f^{-1}(y)$ consists of no more than (k+1) points for each $y \in Y$, then

$$D(Y) \leqslant D(X) + k .$$

This theorem extends Hurewicz's formulas for finite-dimensional spaces. Proof. (a) Let $D(Y) = \beta$ and

$$(8) Y = \bigcup \{B_{\gamma} \colon \gamma \leqslant J(\beta)\}$$

be a β -D-representation of Y. We put

$$A_{\gamma} = f^{-1}(B_{\gamma}).$$

Then

(10)
$$X = \bigcup \left\{ A_{\gamma} \colon \gamma \leqslant J(\beta) = J(\beta + k) \right\}.$$

We will prove that (10) is a $(\beta+k)$ -D-representation. By Hurewicz's formula for finite-dimensional spaces (see [9]),

$$\dim A_{\nu} \leq \dim B_{\nu} + k$$
.

In particular, for $J(\beta) = J(\beta + k)$

$$\dim A_{I(\beta+k)} \leq \dim B_{I(\beta)+k} \leq K(\beta)+k = K(\beta+k).$$

Therefore, conditions (a) and (b) of Definition 1.1 hold. Conditions (c) and (e) follow from (9). Hence, (10) is a $(\beta+k)$ -D-representation of X and inequality (6) holds.

(b) Let $D(X) = \beta$ and let the equality

$$X = \{B_{\gamma} : \gamma \leqslant J(\beta)\}$$

be a β -D-representation of X. We put

$$A_{v} = f(B_{v}).$$

Then

(12)
$$f(X) = Y = \bigcup \{A_{\gamma} : \gamma \leqslant J(\beta) = J(\beta + k)\}.$$

By virtue of Hurewicz's formula for finite-dimensional spaces (see [10])

(13)
$$\dim A_{\nu} \leqslant \dim B_{\nu} + k$$
, $\dim B_{J(\beta+k)} \leqslant \dim A_{J(\beta)} + k \leqslant K(\beta) + k = K(\beta+k)$.

Moreover, the sets A_{γ} are closed because f is a closed mapping and the sets B_{γ} are closed. Therefore, conditions (a), (b), (d) of Definition 1.1 hold. Condition (c) holds because f is a closed mapping. Condition (e) holds because the set $f^{-1}(y)$ is finite for every $y \in Y$. Hence equality (12) is a $(\beta+k)$ -D-representation of Y and (7) holds.

6.3. THEOREM. Let X be a compactum, then $D(X) \leq \beta$ if and only if there exists a zero-dimensional mapping $f: X \to P_{\theta}$.

Proof. We will use the following two assertions:

(14) (See [8], Luxemburg, Lemma 8.7.)

Let X be a compactum and (1) be its $\beta\text{-}D\text{-representation}$. We define a mapping

$$(15) \quad \pi: X \to X_{\#}$$

as the identification of all points of the set $A_{J(\beta)}$. We put

$$p=\pi(A_{J(\beta)}).$$

Then the equality

$$X_{\#} = \bigcup \{B_{\gamma} = \pi(A_{\gamma}) \colon \gamma \leqslant J(\beta)\}$$

is a $J(\beta)$ -D-representation of $X_{\#}$ and the set $B_{J(\beta)}$ is a point p. Furthermore, π is injective on $X \setminus A_{I(\beta)}$.

(16) (See [8], Luxemburg, Lemma 8.8.)

Let U be an open set in X, $A = X \setminus U$. If $f: X \to K$ and $g: X \to T$ are mappings such that

$$\dim(f^{-1}(x) \cap U) \leq 0$$
, $\dim(g^{-1}(y) \cap A) \leq 0$ for $y \in T$, $x \in K$,

then the mapping:

$$F: X \to K \times T$$

defined by the equality

$$F(x) = (f(x), g(x))$$

is zero-dimensional.

Let (1) be a β -D-representation of X and let π be the mapping (15). Then, by virtue of assertion (14) and Theorem 6.1, there exists an embedding

$$h: X_{\#} \to P_{\alpha} \quad (\alpha = J(\beta)).$$

Therefore, by virtue of (14), the mapping

$$q = h \circ \pi \colon X \to P_{\alpha}$$

is injective and consequently, zero-dimensional on $U = X \setminus A_{J(\beta)}$. Since $\dim A_{J(\beta)} \le K(\beta) = n$ (condition (d) of Definition 1.1), there exists a zero-dimensional mapping $r \colon A_{J(\beta)} \to I^n$ in n-dimensional cube I^n (see [11], Hurewicz). Let $g \colon X \to I^n$ be any extension of r. Then by virtue of (16), there exists a zero-dimensional mapping

$$f: X \to P_{\alpha} \times I^n = P_{\alpha+n} = P_{\beta}$$

which is defined by the equality: f(x) = (q(x), g(x)).

On the other hand, let $f: X \to P_{\beta}$ be a zero-dimensional mapping, then by Theorem 6.2 and Lemma 5.2 $D(X) \leq D(P_{\beta}) \leq \beta$.

Proof of Theorem 1.2. Let R be a compactum and Z(R) be the class of all compacta X having a zero-dimensional mapping $f: X \to R$. By virtue of [12], Pasynkov, Theorem 8.8, there is a universal element in the class Z(R). Let D_{β} be a universal element in the class $Z(P_{\beta})$. Then our theorem follows from Theorem 6.3.

6.4. COROLLARY.
$$D(P_{\beta}) = D(D_{\beta}) = \beta$$
.

Proof. Since for any β there exists a compact space X with $D(X) = \beta$ (see [1], Henderson), $D(D_{\beta}) \geqslant D(X) = \beta$. By the definition of D_{β} there exists a zero-dimensional mapping $f \colon D_{\beta} \to P_{\beta}$. Therefore, by Theorem 6.2 and Lemma 5.2

$$D(D_{\beta}) \leqslant D(P_{\beta}) \leqslant \beta$$
.

§ 7. Universal spaces for noncompact separable spaces. As mentioned in § 1, the universal element in the class of compact spaces X with $D(X) \leqslant \beta$ does not coincide with the one in the class of separable spaces with D-dimension $\leqslant \beta$ for $\beta \geqslant \omega_0$. To prove Theorem 1.3 we need some preliminary lemmas.

7.1. LEMMA. Let the equality

(1)
$$X = \bigcup \{A_{\gamma} : \gamma \leq J(\beta)\}, \quad J(\beta) = \alpha$$

be a β -D-representation of a space X and let $M \subset A_{J(\beta)}$ be an arbitrary set of dimension $\operatorname{Ind} M \leq s$. Then the equality

$$(X \setminus A_{J(\beta)}) \cup M = \bigcup \{B_{\gamma} : \gamma \leqslant J(\beta)\}$$

where $B_{\gamma} = (A_{\gamma} \cap (X \setminus A_{J(\beta)})) \cup M$, is an $(\alpha + s)$ -D-representation of $(X \setminus A_{J(\beta)}) \cup M$.

The lemma is evident.

7.2. DEFINITION. Let

(2)
$$\beta = \alpha + n, \quad \alpha = J(\beta), \quad n = K(\beta)$$

and A_n be a universal *n*-dimensional compact space. Then (see [5], Bothe), there exists (n+1)-dimensional compactum $R_{n+1} = A_n$ such that $R_{n+1} \in AR$. Let $q_{\beta} \in P_{\beta}$ be a fixed point (see Construction 5.1). Let

$$\pi_1: P_{\alpha} \times R_{n+1} \to P_{\alpha}, \quad \pi_2: P_{\alpha} \times R_{n+1} \to R_{n+1}$$

be projections. Then we put

$$S_{\beta} = P_{\alpha} \times R_{n+1} \setminus \{x \colon \pi_1(x) = q_{\alpha}, \pi_2(x) \in (R_{n+1} \setminus A_n), x \in P_{\alpha} \times R_{n+1}\} . \blacksquare$$

7.3. Lemma. $D(S_{\beta}) \leq \beta$.

Proof. Let (8) (§ 5) be an α -D-representation of P_{α} satisfying the conditions of Lemma 5.3. Then, by Corollary 3.9, the equality

(3)
$$P_{\alpha} \times R_{n+1} = \bigcup \left\{ B_{\gamma} = A_{\gamma} \times R_{n+1} \colon \gamma \leqslant \alpha = J(\alpha + n + 1) \right\}$$

is an $(\alpha+n+1)$ -D-representation of the space $P_{\alpha} \times R_{n+1}$. We put

$$M = \{x : x \in P_{\alpha} \times R_{n+1}, \, \pi_2(x) \in A_n, \, \pi_1(x) = q_{\alpha} \}.$$

Then M is homeomorphic to A_n and consequently $\dim M = n$. By Lemma 7.1 the equality

$$S_{\beta} = (P_{\alpha} \times R_{n+1} \setminus (A_{\alpha} \times R_{n+1})) \cap M = \bigcup \{C_{\gamma} : \gamma \leqslant \alpha = J(\alpha + n)\} \quad (A_{\alpha} = q_{\alpha})$$

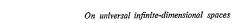
where $C_{\gamma} = ((P_{\alpha} \times R_{n+1} \setminus A_{\alpha} \times R_{n+1}) \cap B_{\gamma}) \cup M$, is an $(\alpha + n)$ -D-representation of S_{β} . Therefore $D(S_{\beta}) \leqslant \alpha + n = \beta$.

7.4. LEMMA. If $D(X) \leq \beta$ and X is separable, then there exists an embedding $f \colon X \to S_{\beta}$.

Proof. Suppose condition (2) holds. Then, by Lemma 8.9 in [3], Luxemburg, there exists a compactum $K \supset X$ such that

(4)
$$K = R_{n+1} \cup H, \quad H \cap R_{n+1} = \emptyset$$
 (3),

$$(5) X \subset H \cup A_n \quad (A_n \subset R_{n+1}),$$



(6) H is an open set such that there exists a family of compact sets $\{H_i\}$, simple with respect to H, such that $D(H_i) < \alpha$.

Let $\pi\colon K\to L$ be a mapping onto the quotient compactum L which we obtain by identification of all points of $R_{n+1}\subset K$; we let $\pi(R_{n+1})=\{l\}\subset L$. Then by condition (6), Lemma 3.5, and Theorem 6.1, there exists a homeomorphism $g\colon L\to P_\alpha$ such that

$$g(l) = q_{\alpha} \in P_{\alpha}.$$

Since $R_{n+1} \in AR$, there exists a retraction:

$$r: K \to R_{n+1}$$
.

We define a mapping $F: K \to P_{\alpha} \times R_{n+1}$ by the equality:

(8)
$$F = (g \circ \pi, r).$$

From conditions (5) and (7) it follows that

$$(9) F(X) \subset S_{\beta} \subset P_{\alpha} \times R_{n+1} .$$

Since g is a homeomorphism and π is injective on H, the composition $g \circ \pi$ is injective on H. Further, r is injective on R_{n+1} . Therefore, by virtue of (4) and (8), F is injective on K. Since K is compact, F is a homeomorphism. Let f be a restriction of F to X, then f is also a homeomorphism and by virtue of (9), $f(X) \subset S_{\beta}$.

Proof of Theorem 1.3. Since S_{β} is contained in the compactum $P_{\alpha} \times R_{n+1}$ it is a separable space. Our theorem now follows from Lemmas 7.3 and 7.4.

§ 8. On compactifications. For any separable space X there exists a compactification $K \supset X$ such that

$$D(K) \leq D(X) + 1$$

(see [13], Kozlovsky, and [3], Luxemburg, for the proof). Moreover, for any separable finite-dimensional space X there exists a compactification $K \in AR$ such that

$$\dim K \leq \dim X + 1$$

(see [5], Bothe). The following theorem is an extension of both these results.

8.1. Theorem. For each $\beta < \omega_1$ there exists a compactum $Q_{\beta} \in AR$ such that

$$D(Q_{\beta}) \leq \beta + 1$$

and Q_{β} contains a homeomorphic image of any separable space Y with $D(Y) \leq \beta$. Proof. We put

$$Q_{\beta} = P_{\alpha} \times R_{n+1}, \quad \alpha = J(\beta), \quad n = K(\beta)$$

(see Construction 5.1 and Definition 7.2). We have proved in § 7 (see (3) § 7) that $D(Q_{\rho}) \leqslant \alpha + n + 1 = \beta + 1$. Since $Q_{\rho} \supset S_{\rho}$, it follows from Lemma 7.4 that Q_{ρ} contains a homeomorphic image of each separable space Y with $D(Y) \leqslant \beta$. Moreover, $Q_{\rho} \in AR$ because $P_{\alpha} \in AR$ and $R_{n+1} \in AR$.

⁽³⁾ We use here the notation of Definition 7.2.

It is also easy to prove that $D(Q_{\beta}) = \beta + 1$.

8.2. DEFINITION (see [14], Zarelua). A mapping $f: X \to Y$ is called *scattering* if for each point $x \in X$ and for each neighborhood $V \ni X$ there exists a neighborhood $U \ni f(x)$, $U \subset Y$, such that there exist open sets P and W satisfying the conditions:

$$f^{-1}(U) = P \cup W, \quad P \cap W = \emptyset, \quad x \in P \subset V.$$

It is easy to prove that for compact spaces the class of all zero-dimensional mappings coincides with the class of all scattering mappings. Therefore, by Theorem 6.2

(1) If $f: X \to Y$ is a scattering mapping and X and Y are compact, then $D(X) \leq D(Y)$.

As we mentioned above a separable space need not have a compactification with the same D-dimension (see [1]).

The following theorem gives a necessary and sufficient condition for the existence of such a compactification.

8.3. THEOREM. Let X be a separable space with $D(X) = \beta$. Then the existence of a compactum $K \supset X$ such that D(K) = D(X) is equivalent to the existence of a scattering mapping $f \colon X \to P_{\beta}$.

Proof. Let $f\colon X\to P_\beta$ be a scattering mapping. Then by virtue of [14], Corollary 5, Zarelua, there exists a compactification $K\supset X$ and a scattering extension $F\colon K\to P_\beta$ of the mapping f. Therefore, by virtue of (1), $D(K)\leqslant D(P_\beta)=\beta$. Moreover, $D(K)\geqslant D(X)=\beta$ because $K\supset X$. We have thus proved that our condition is sufficient. Let K be a compactification of K with $D(K)=D(X)=\beta$. Then, by Theorem 6.3, there exists a zero-dimensional and, consequently, scattering, mapping $f\colon K\to P_\beta$. Let $g\colon X\to P_\beta$ be a restriction of f to K. Then clearly K is also scattering.

- 8.4. Problem. Let ${\mathscr S}$ be a class of all separable spaces and let ${\mathscr K}$ be a class of all compact spaces. In each of these classes consider two subclasses for $\omega_0 \leqslant \alpha < \omega_1$:
 - (1) Spaces X with ind $X \leq \alpha$.
 - (2) Spaces X with $\operatorname{Ind} X \leq \alpha$.

So we get four classes of spaces for each α . Do there exist universal elements in these classes?

8.5. Remark. According to [2], § 8, Luxemburg, there exist compact spaces X having $\operatorname{Ind} X = \alpha$ and an arbitrarily large $D(X) < \omega_1$. Therefore, there are no universal elements in the class of compact spaces X having $D(X) < \Delta$ and $\operatorname{Ind} X \leq \alpha$. Analogous results could be obtained for the other three classes in Problem 8.4.

References

 D. W. Henderson, D-dimension I. A new transfinite dimension, Pacific J. Math. 26 (1968), pp. 91-107. MR 39#4815.

- [2] L. A. Luxemburg, On transfinite D-dimension (Russian). Theses of the 6th All Union Topological Conference, Tbilisi 1972.
- On compactifications of metric spaces with transfinite dimension, Pacific Math. J. 101 (1982), pp. 399-450.
- [4] G. Nöbeling, Über eine n-dimensionale Universalmenge im R_{2n+1}, Math. Ann. 104 (1930), pp. 71-80.
- [5] H. G. Bothe, Eine Einbettung m-dimensionaler Menger in einen (m+1)-dimensionalen absoluten Retrakt, Fund. Math. 52 (1963), pp. 209-224, MR 27#1953.
- [6] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (3) (1954), pp. 177-195. MR 16#502.
- [7] F. Hausdorff, Mengenlehre, 2nd. ed., Berlin 1927.
- [8] L.A. Luxemburg, On compact metric spaces with noncoinciding transfinite dimensions, Soviet Math. Dokl. 14 (1973), pp. 1593-1597.
- [9] K. Morita, On closed mappings and dimension, Proc. Japan Acad. 32 (1956), pp. 161-165. MR 18#141.
- [10] J. I. Nagata, Modern Dimension Theory, Bibliotheca Mathematica, vol. VI, New York 1965. MR 38#8380.
- [11] W. Hurewicz, Über Abbildungen von endlichdimensionalen Räumen auf Teilmengen Cartesischer Raume, Sitzb. Preuss. Akad. Wiss. Phys. Math. Klasse, 1933, pp. 754-768.
- [12] B. A. Pasynkov, Partial topological products (Russian), Trudy Moskov. Mat. Obsc. 13 (1965), pp. 136-245. MR 33#6572.
- [13] I. M. Kozlovsky, Two theorems on metric spaces (Russian), Dokl. Akad. Nauk SSSR 204 pp. 784-787 = Soviet Math. Dokl. 13 (1972), pp. 743-747. MR 47#9572.
- [14] A. Zarelua, The equality of dimensions and bicompact extensions (Russian), Dokl. Akad. Nauk SSSR 144(1962), pp. 713-716. MR 26#5541.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF KENTUCKY Lexington, Kentucky 40506

Received 30 November 1981; in revised form 25 June 1982