On the ¢ principle
by

Adam Piolunowicz (Warszawa)

Abstract. We shall consider the principle &(E) and some of its versions which seem to be
weaker, and prove that under some additional simple assumption they are equivalent. Then, in
particular cases, we obtain as corollaries two versions of the principle .

DermiTIONS. Let A be an infinite cardinal number, ES*.

The principle ¢ ;+(E) holds iff there is a sequence ¢S,: a € E) such that:

1) VaEE S,E(X,

2) Vyeae{r€ E: X na=S,} is stationary in A%,

The principle OX+(E) holds iff there is a sequence {S,: aeE) such that:

' 1) VueE SEEOC,

2) VxsarJnar X = S,.

The principle ;+(E) holds iff there is a sequence S,: o€ E) such that:

1) vaeE S,,EP(OC),

2) YaexlSd <4,

3) Vygar e X n e S,.

o+ means the principle Oy (A7)

We sce that the principle ;+(E) implies OF(E) and that OF+(E) implies
&(E). Our main task is to answer the question under what assumption the con-
verse implications hold.

DEENITION. We call a tree T continuous iff, for all « € Lim, «>0, and, for
all x,7eT®, x s y={zeT: z<x} # {zeT: 2<y}.

We shall use the following two facts:

TrroREM 1. Let A be an infinite cardinal number and E a stationary subset of A*.
Then there is a continuous tree T such that:

a) |T|<2%,

b) every clement of T is of the form {f,g,a) where: f, g are Sunctions; rg(f),
1g(9)< {0, 1}; dom(g) and o are ordinal mimbers less than A+ ; dom(f) = dom(g) x
x dom(g);
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o) if XAt x At and Cis a closed unbounded set in A*, then there is a branch
G such that every element of G is of the form {yxipxp> Xcip» 00> where fe C and
Yxipxp» Lcp denote restrictions of characteristic functions of X and C, and the length
of Gis AT,

d) if {f, g, o) belongs to TP then dom(g)=B; moreover, if Be E ihen also
dom(g) € E.

We shall show a method of the construction of the required tree 7' later in
the paper.

THEOREM 2. Let A be an infinite cardinal number,

K={xeld®: 3p,+[p#0&a=21p]},

EcK, and assume that principle ;+(E) holds. Then, for every continuous tree T such
that |T|<2% there is a set S, SST, such that:

2) YoeaelS 0 T9I<,

b) Vierng S nT® = @,

c) for every branch G of the tree T, if the length of the branch G is A" then
Gn S #0a.

Proof. Let Ty = {f: f is a function, dom(f)e X and rg(f)={0,1}}. The
partial ordering (T, € is a continuous tree, 7 has 2* minimal elements, every
element of 7} has 2* immediate successors the height of T} is A*.

Let {S,: a € E) be a sequence satisfying <>;+(E). The characteristic functions
of elements S, (in the space o) belong to 7. Let .S, be the set of all these functions.
Obviously, Sy, Ty satisfy points a) and ¢) of the theorem.

Let <T, <) be a continuous tree, |T|<2* Then for T, = J T, <T,, =|To)
T . aeK T
is also a continuous tree, |Tp|<2%

We may assume that T is isomorphic to a subtree of T with the following
property (after suitable identification): if x e T (for some d) then x e T, (The
levels are preserved). We put S = S; 0 T.

Obviously S, T satisfy a) and ¢). We must show that b) holds as well. It is
sufficient to prove that if se S, and f is the characteristic function of s (in the
space «) then f (as an element of T},) belongs to T, This, however, is immediate. M

THEOREM 3. Let A be an infinite cardinal number,

K={ueld™: 3y .8+ 08&a =1 f]}

and ESK. Then the following are equivalent:

a) &y (E),

b OF(E),

¢) Oi+(E),

d) there is a continuous tree T such that: T # @, every element of T has 2" im-
mediate successors, the length of every branch of T belongs to E and for every « less
than " there are at most L branches of length a.
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Proof. Obviously a) =»b) = c). The proof of ¢) « d) strongly resembles the
proof of Theorem 2. Thus we must show ¢) = a). Assume j.(E).

LemMa 1. E is a stationary set.

Proof. Suppose that E is not stationary. Since K is closed unbounded set,
we can find a closed unbounded set C such that C<K and Cn E = @. Let
e E<A™) be an increasing enumeration of C. By induction on é<A* we construct
a family (Xz &<2™> such that:

1) ngﬁg,

2) for & <&y Xy = Xz 0 04y

3) Vacoy Xena gt S,

Let X, be given. There are 2* sets ¥ such that ¥ n ¢, = X, and YSe 4 A
We have ¢, & K\E and ESK; hence if cy<a<cg+A then o ¢ E. We note also that
| U SJ<A Hence there is a sct Y such that YScgy,, Yy = X; and

caSas ey . . .
Ve<oge = Y0 aé¢S,]. We put Xyy; = Y. By the induction assumption
and the construction, X, satisfies 1), 2), 3). The construction for the case ¢ = 0

is the same. For & e Lim, £>0 we put X; = U X,. We define X = {J X;. Then
n<g E<at

VoenX na g S, However this contradicts > 74 (E). B

LEMMA 2. There is a sequence {Sy: ae E) such that:

1) VoenSaSP{axa),

2) VuaEIS;tls)‘w

3) Vyesexar{o €A™ X n(uxa)e Sy} is stationary.

Proof. We already know that E is a stationary set. So, let T be a tree given
by Theorem 1 and let S be a set given by Theorem 2. Then § satisfies the following:

) VaerelS n T <4,

b) Vw,x»l»\ES n T(m) = Q,

¢) if G is a branch of length A* then Gn S # J.

For ae 4™ we put:

St = {s: Ay, 4[<F g, By e S & dom(g) = x &s = ({0}

We shall show that S2's satisfy 1), 2), 3). Obviously Se&P(axa).

First we note that by point b) of this lemma elements of § exist only on the
levels from E. Hence, by point d) of Theorem 1, for every {f, g, f> € S, dom(g) € E.
This implies that, for o & A™\E, S, = @. Hence we must consider only a sequence
{Sy: ae ED. ‘

By d) of Theorem 1 we infer that if {f,g,p> € T then dom(g)=y. Now we
can. rewrite the definition of S in the following fashion:

St ={s: Ap0l<fr g, By eS A YT &dom(g) = a&s=f""({0h]}.
233
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But

ISA UT? = [UE AT = ¥ ISnTP<lol:A<4h.
7€ 1%a 7S
Hence |S)|<A.

Now we show 3). Let us fix a set XA x A" and a closed unbounded set
CcA*. It is sufficient to prove that {ae A*: X n(axo)e S} n C # @. Let G be
a branch in the tree T such that every element of G is of the form C(xxpxps Xeppo o)y
where e C (see ¢) of Theorem 1). Let o€ G NS then Yo = Xxjpox o XCypr &7
and By C. We see X N (Byxfo)e Sy, and foeC. W

Lemma 3 (Kunen [4]). Let {(S: ae€ E) be a sequence from Lemma 2, and
let S be an enumeration S, such that S, = {SJF: B<|Sy|}. For X <A™ x A% and
BeA™ we put RyX) £ {aeA*: La, By € X}. Then there is Boed such that
Vxers Jyersxar Rp(¥) = X & {ue E: Yo (uxa) = S;”"} is stationary.

Proof. Suppose the lemma is not true. Then for every f< A we can pick X, A*
such that

Vycisxa+lRe(Y) = Xp = {aeE: ¥ (axa) = S} is not stationary] .

We put Y, = {{a, f>: ®€ X;}. We note that V,;Ry(Y,) = X,. Hence Vj.;Z;
£ [ueE: Yy (axa) = S} is not stationary.

But then also {x € E:- ¥, n (axo) e Sy} = | Zg is not stationary. This contra-
p<a

dicts point 3) of Lemma 3. M

Proof of Theorem 3. We follow the argument of Kunen [4]. Let
{S¥: B<|Si|, ne E}, oA beasin Lemma 3. For «e E we put S = Rpo(SJ7).
‘We must show that:

1) V.epSi s,

2) Yyca+ {@€E: Xnw=S,} is stationary.

1) follows from the construction of S)'.

We now show 2). Let a set XSA™ be given. Then, by Lemma 3, there is a set
YeAt xA* such that Ry (Y) = X and {«e E: Y (xxa) = S.5} is stationary.
Hence {eeE: Y (axa) = SM) = {aeE: Ry(Y n(axa)) = Ry (S} =
{aeE: X n =87 is also stationary. M

We derive as corollaries the following facts.

THEOREM 4. Suppose A is an infinite cardinal number. Then the following are
equivalent:

a) <>;,+, b) <>l+(l+\l).

THEOREM 5. The following are equivalent:

a') <>(D1,

b) there is a sequence {S,: a<w.y such that
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]J vﬂElﬂl Szgm:

2) Vyco, {reo;: Xno= S} 23

Proof. a) = b) is obvious.

b) = a) Let {S,: a<w,> be a sequence as in b). We put

4d={Xcw: |new: Xnn=25}<2}.

LEMMA. |A| = 2%
Proof. It is enough to prove that |A4|>2° Let

B={new: ., [0<k<n&S,=S,nk]}.
I. Suppose |B|<w. Let nyew be such that ¥, pn<n,. We put
C={Xco: VycpmeX < mé¢S, ).

It is sufficient to prove that:

i)y Ced, i) |C|=2%

i) By the definition of C, if O<n<n, and Xe C then X nnu # S,. But
[{nzne: X nn =25} <1 by the definition of B. We see that for every Xe C
[{new: Xnn=_3}<2 so Cs4.

ii) follows from the fact that for every element of P (w\n,) we can pick a set y
belonging to C which contains that clement. We obtain a function £, f: P (co\ny) = C,
and the function f is 1-1.

II. Suppose |B| = c. In this case we put
C={Xcw: Vyeolm+1¢B = (neX < mé¢ S, ).

We need to show that:
i) Csd, i) |C]=2%
The proof follows the argument of case I Thus in any case |4] = 2°. B

: 1-1
Let f be a function such that f: A4 m]’(w), For o<a<w; we put

S = {Sp@) Uf(S,nw)} ifS,nwed,
*7 {9} otherwise .
We prove that

) Vm<m<w| SEP (),
li) Vm<a<¢o1 |Sa'=[ = IS(D,
ill) Yycw, Jupo X N aeS,.

i) and ii) are obvious.
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jif) Let X<Sw;. We put ¥ = (X\0) Uf Y X nw). We note Ynowed.

Hence, there is o> such that Yo = §,. But then
Yna=(Xwnau({Xnao)na)= ((Tw) n @) U (X N o)
= (S \0) U f(S, " @) & S,
We sec that the principle ., (w\w) holds. By Theorem 4 we have Oy, M
We now give the proof of Theorem 1.
I. The construction of the set T. For oe E we define:
A, = {f: f is a function, dom(f) = axa, rg(f)s{0,1}},
B, = {g: g is a function, dom(g) = &, rg(g) =10, 1}, g~ *({0}) is a closed set in u},
D, = A,xB,,
D= |D,.

In D we define a partial ordering < as follows:

{1 G130 0025 G20 22D I f1 12, 91592, 1<k, galas) = 0 or {f1, 01, %>
= (fz= g2 dz>-

Suppose L = {{f,» g» @,y z€Z} is a chain in D, and the order type of L
is w, O<p<A*, peLim. Then we define:

G(L) = < U fz’ U Gz SU-P“z>‘
zeZ zeZ zeZ

We put

T, =Du{oc@): L ;é‘Qf, L is a chain, the order type of L is a limit ordinal
less than A*}.
For {f,g,uy €T, we define
. -1 : -1
5. g, 1) = {{Fo g, B> sup(g™ (0D n E)<B<a} if g7 ({0 N E # O,
K> g,9) {{(f,g,/}): B<a} otherwise .

First we note

(1) if<{fog,0peT\D then §(Kf,g,) = @.
‘We can already define
T=T,u U,

»eTy
II. Some properties of the set T. From the definition of T"it follows that:

(2) every element of T'is of the form <f, g, &) where f, g are functions; rg(f),
rg(9) {0, 1}; dom(g), o are ordinal numbers less than At; dom(f)
= dom(g) x dom(g).

Hence

3 1<%
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By the definition we also have:

@ if {9, ad e T then dom{g)>c,
(5) if {f, g, €T then dom(g) = a <« {f,g,apeTy.

Then by (1) and (5) we have:
6) if {59, ad e T and dom(y)>a then dom(g) € E.

0. A tree ordering on T. We define {fy, gy, 06> < {fa» g2s 03> iff

a) f1S/e 91502 % <Ua

b) if dom(g,)<dom(gs) then g, (dom(gy)) = 0.

For x, y € T'we define ¥y <> x<yvx = y. First we note that < is a well-founded,
partial ordering relation. We must slmow that, for every xeT, a set {zeT: zXx}
is a chain. We first notice the following fact:

Lemma. I {fis 915 2> <S2 035 a3y, {for o> %y <L fss g3, 03> and oy <eta
then dom(g,)=dom(gs).

Proof. Suppose the lemma is not true, Then dom(g,)<dom(g,). We note
that gy, 92543, and since g, S ¢, Sgs We have g3(dom(g,)) = 0; hence also

(i) g.(dom(g,)) = 0.

We now prove that :

(i) g7 ({0Y) M E # & and supg7 '({0}) n E>dom(gy).

1f dom(y,)e £ then (i) implies (ii).  So suppose dom(g,) ¢ E. Then
{fay G2y %2y 6 D (by the definition of T). We also have {f3, g2, dom(g,)y € T\\D
and therefore {f3, g2, dom(ga)) = ¢(Z) for some Z. From the definition of ¢ we
obtain sup (95 *({0}) N E) = dom(ga)- This concludes (ii) since g, <9g;-

From (4) we now get g Soy<dom(yg,) <dom(gy), so ay <dom(gy). (5) tells
us that {fy, g4, &, € 6(x) for some x. By the definition of 8 and (ii) we have:

(iif) o, >sup (g7 {0} N E).

But by (i), (iii) and (4) we have «;>sup (g7*({0}) n E)zdom(gz) >0 This
contradicts oy <o, W

We now prove that (T, <) is a tree. Suppose {fi, 91 0 ><{fs 93 %3Ds
gy Gor 03> < fs 93s 3> and 0y Katp. Then by the lemma dom(g,)Sdom(gz)
and dom(f,) = dom(y,) x dom(g,) = dom(g,) x dom(g) = dom(fy). Since S fa
cfs and g, g2S4; We get f1Efe 91502 01 S%:

If o, = oy then we also have oy <oy and so f,=f; and g, Sgy; thus {fin 915 %1
= <f27 g2 %)

So assume o <0y We must show dom(g,)<dom(gy) = gy(dom(gs)) = O.
But since g, Sg;Sg; by the definition of <, we bave ¢5(dom(gy)) = 0. Then
also g,(dom(gy)) =0. W

V. {f, g, ay belongs to T® Tt is sufficient to show that:

(i) for <f, g,y e T and f<a there are fi, g such that {fy, g5, B> <S5 9, o

Tndeed, in this fashion we see that {f, g,®> has exactly o predecessors. (i) re-
duces to the following:

4 — Fundamenta Mathematicae CXXII/2
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() for <f,g,ayeT; and B<a there aic f,,g, such that s

29 s 90,0
<<J> g, 0. vl

Indeed, suppose {f,g,a)eT\T). Then {f,g,ade 8({fryg,d ‘

: 59, s g, > ¢, dom(g)>) and
fig,e)<<f,g,dom(g)> e Ty. If we can find f,,g, such that I 2/1; B>
<{f> 9. dom(g)), we get, since T is a tree, <fy, g1, B> <<f, g, 0 or <f, gy, >
= <f} g,.a) or <f: g, 0‘>'<<f1> gl:ﬂ>- But /3<aa iI.Ild 80 <./lv gl:p><<f:g’ “>'

Again (ii) reduces to:

(ifi) if <f, g, o) € Ty, <o and sup (g7 {O}) N E n (B 1)< then there are
fl: 5] SUCh that <fis J1» /3> <<f; g’ O(>.

Indeed, if Beg™({0) N E we get (f, &

oxgs O B> €D and {fuup, g0, f>
<{f,g,a). So suppose B¢ g7 ({0}) A E but sup(g7*({0}) A £ (!ﬁ:fl))"J= B.
We define L = {<f12><1" 91y 1 1EGH{0P M E A (B+1).}
We notice that L&D, L is a chain with order type u and y is a limit. We get
<f|;y::113£ gip> B> = o(L)eT and {Higxps 9185 B> <S5 95 .
us we prove (ii). Let Z = {Kf1s 94 weTy: {fi, g, =
. s Y1 . »d1s s, OC) &
& f<y<a}. Then Z # & since {f,g9,a>eZ. We can pick a minimal element
/1> 9176 of Z. Assume y,>f. :
Then, since g;cg and dom(gy) = y,>8, sup(gr!
_ . v s sup (g7 {0} 0 E n (B+1))
= sup(g 1_(‘1[0}) ﬁEﬂ(ﬁ+1))<§.1 But <fi, 91,7 is a minimal element, and
so sup(g72({0}) N E) = sup (974({0}) 1 E A (B+1))<B. We get <fy, gy, B>
€ 6(<_fls g1 'y0>) and <f1a 91 ﬂ> <<f1) 91, ’}’o> '<<f’ g, “>' .

The following properties of the tree result:

(7)  The height of T is not ‘greater than A%,

By (4) and IV we have: )

(8) I <f g,B>eT™ then dom(g)>a.

By (6) and IV we have

) I <f,g,$>eT® and aeE then dom(g)e E.

V. T'is a continuous tree. Let « be a limit ordinal nurﬁber, a>0,{f,g,adeT®
?ndéet {i{]’,,, g,G B>: B<a} be the set of all predecessors of (f, g, a. Tt is sufficient

o show that = f and = : l
ﬂ«fp f ﬂgmgp g. We first note that L;}ﬁgf andﬁ&)a =

Hence, we must only prove that dom( (J Jp) = dom(f) and dom (U gp) = domyg).
We ti that = )i i o ‘
notice tha dom(ﬂgzgﬁ) dom(g) implies dom(ﬂgafﬁ) = dom(f) since, for

;very £<m, dom(fp) = dom(gy) x dom(g,) and dom(f) = dom(g) x dom(g). We
ave: . : :
Om(ﬁgdgﬂ)sdom(g) and dom(ﬁgag,,) is an ordinal number. By (4) we have

Vs<adom(g,)>B. Hence d.
p< (9p)=B. Hence om(ﬁ&)ﬁg,;)?u. Suppose dom(g)>dom( L<Jag,,)>og, From

. ﬁ '
(5) we _olbtam. frg,ade 6(<f,.g, dom(g)}) and then sup (g~ 1({0}) E)<a or
even ¢ 7'({0}) N E = @. But « is a limit ordinal number, and so there is f,<a

e
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such that also (f,g, B> belongs to §(<f, g, dom(g))). But now gg, = ¢ and
then g= U g;. B

B<a

V1. Conclusion. We know that T is a continuous tree. Points (2) and (3) of
part IT are exactly the same as points a) and b) in Theorem 1. (8) and (9) imply d).
We must prove ¢). Let XAt x 1%, Cis a closed unbounded subset of 1*. We put:

Gl = {<XX{uxm Xc|ua (x>: aeCn E} s
G, =G, u{o(L): LGy, L # @, L is a chain, the order type of L is a
limit ordinal less than A*},
G=G,u | d(x).
xeGz2
We infer that G is a chain and every element of G is of the form as in ¢). We must
prove that G is a branch. We first note that the order type of G is A* and by (7)

. the height of T is not greater than A*. So, it is sufficient to prove that ¥, ,;+3,,

{f, g, 0y € G. However, this follows from the argument of part IV. M
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