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On span and weakly chainable continua
by

Lex G. Oversteegen (Birmingham, Ala.) and
E.D. Tymchatyn (Saskatoon, Sas.) *

Abstract. Two mappings f, g: I~ Q of the closed unit interval into the Hilbert cube can be
e-uniformized provided there exist onto mappings @, b: I -1 such that foa = ¢ o b. Metric con-
&

tinua X of span zero are characterized by means of s-uniformization of mappings of I into neigh~
bourhoods of X in Q. This characterization is then used to obtain a variety of properties of con-
tinua of span zero.

1. Introduction. All spaces considered in this paper are metric unless other-
wise stated. A continuum is a compact connected space. We write fi X—+Y to
indicate that f is a mapping of X onto Y. We let J denote the closed unit interval
and Q the Hilbert cube. For >0 and 4= X we let S(A, &) denote the open &-ball
around 4 in X. If A= X we let Cl(4) denote the closure of 4 in X.

DEFINITION. We say two mappings f,g: J-» I can be uniformized if there
exist a,b: I I such that foa =geb.

UNIFORMIZATION THEOREM (see Mioduszewski [20]). If f,g: I+ I are piece-
wise ‘linear mappings then f and g can be uniformized.

DermrioN. If f, g: I — I are piecewise linear mappings and f is onto I then
clearly there exist mappings @, b: I —T such that b is onto and fea = g °b. We
say g can be uniformized with a piece of 1.

Note. If f, g: I -+ I are piecewise linear maps and @: I* - R is defined by
¢(x,3) = f(x)—g(y) then f can be uniformized with g if and only if there exists
a component K of ¢~!(0) such that K meets all four sides of I*. Note that X is
a polyhedron. Also, g can be uniformized with a piece of f if and only if there
exists a component X of ¢~*(0) which meets both I {0} and I'x {1}. Hence, f can
be uniformized with g if and only if f can be uniformized with a piece of g and g
can be unifqrmized with a piece of f.

DermTioN. If f, g: I — Q are mappings and >0 we say g can be g-uni-
formized with a piece of f if there exist a: I Tand b: I-» I suchthat foa = gob,
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second author was supported in part by NSERC grant number A5616.
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1:.e., foa(t) eS(g o b(t),e) for each re 1. We say fand g can be e-uniformized
lfff ;an be e-uniformized with a piece of g and g can be s-uniformized with a picce
of f.
‘ Note. If f,g: I— Q are maps and ¢>0 such that S can be ¢-uniformized
with a piece of g then 4
FeS(gd), ).

-DIT.FINTTION. If X'is a continuum let 7, Xx X = X denote the ith coordinate
pro.Ject.lon for i =1,2. Let 4X denote the diagonal in ¥x X. Define [sce 14] the
suijective span of X, o*(X), (resp. the surjective semispan of X, o§(X)) to be the
least upper bound of all real numbers & for which there exists subcontinuum Z of
XxX such that m,(Z) = X = n,(Z) (resp. m,(Z) = X) and d(x,¥)ze for each
(x,»)eZ. ‘

‘ :I‘he. Span of Xis a'(*X ) = sup{c*(4)| 4 subcontinuum of X } and the semispan
of X is crfJ(X) = sup{c§(4)| 4 subcontinuum of X}

In this paper we characterize continua X with 05(X) = 0 and o*(X ) =0 in
terms of .umformlzatlc.ms of mappings of I into neighbourhoods of ¥ in Q. We
char.acterlze weak chainability of continua in terms of nice approximations of the
continua by sequences of arcs. We prove that o3(X) = 0 implies X is a weakly

chainable atrlf)dlc tree-like continuum, We show that under some extra conditions
the converse is also true. ' \

2. A characterization of o*(X ) =0.

. TJI:EOREM 1. Let X< Q be a continuum. Then oeX) =0 if and only if for each
pair of sequences f)), g), f;, g;: I- Q of mappings such that limg,() = X and
i

limsup (I < X, 2 ' i
0 p f(I) , and for each £>0 there exists an integer n such that for each izn
i e-uniformizes with q piece of g;.

- Proc?f. (:)'Su%povse o5(X) = 0. Let X, = {(x,») e I? d(fix), g »))<e}
en X; is open in I since f; and g; are continuous functions. If there is a com-
pone;:t M; of X; such that M; meets both {0} xT and {1} x I then there exists an
arc Y;c M, su'ch that ¥; meets both {0} x I and {1}x I since M, is an open and
connected set in a Peano continuum. Let hy: t
hi(t) = (ai(2), by(2)) for each e where a,
and a; is onto. For each re]
. d(fi°ai(t):gi°bi(t))<5
sinee (a;(t), by(t)) € Y;< X, and so Ji is &-uniformizable with a piece of g
. Nozw-supp?se for each 7 no component of X, meets both {0} %1 and {ll1 X1
ince J* is unicoherent and no component of X, separates I'x {0} from J J 1‘.
X; does not separate I'x {0} from Ix {1}. Since 12\, ieh
K; of I™\X; meets both I'x {0} and Ix {1
i ) . Let Z, = , ) .
Then Z;is a continuum in Q2 such that d(ic, y ¢ {(fL(X)’ gi(}))l Gans k)

)¢ for each (x y)eZ;. Si i
‘ s . Since Q is
compact we may suppose the sequence Z;) converges to a continulf\m z ithhc

bi: I T are continuous functions

X; is compact some component

I-» Y, be a homeomorphism. Then
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.hyperspace of continua in Q% Also, Zc X x X, Let m,: Q* — Q be the projection

onto the second coordinate. Then

7,(Z) = imny(Z) = limg,(I) = X.
i i

For (x,v)eZ d(x,y)=e Thus, 65(X)>e which is a contradiction.

(<=) Suppose o3(X)>0. By Lelek [cf. 13] there exists a continuum C and mappings
f,g: C—Xsuchthatg(C)= Xand d(f(x), g(x))=¢e>0for each xe C. By [22] Lemma
2.4 there exist maps f;, g;: I—Q such that d(fi(t), g(t))=e—1/i foreach i=1,2,...
and each el and such that limg,(J) = g(C) = X and limsup fi()=f(C)=X.
If for each 7 f; 1/i-uniformizes with a piece of g; then there exist maps a;, b;: I — I
such that «; is onto I and f; o «; midie b;. Let t;e I such lthat a,(t;) = by(t;). Then
Jiadt)) e g;(b{t)) which is a contradiction.

COROLLARY 2. Let X<=Q be a continuum. Then c3(X) = 0 if and only if for
each pair of sequences f3), g;) of maps fi, ;2 1~ Q such that limg(I) = limfy(J)
= X and each £>0 there exists an integer n such that g; e-uniformizes with f; for
each izn.

Proof. (=) This is immediate from Theorem 1.

(<) Let f;) and g;) be two sequences of maps such that f;, g;: I — @, limg /)

= X and limsupfI)cX. For each i let fi: I— Q be a map such that fi(t)
i
= f{4t—2) for 1<i<} and such that limfj(I) = X. By assumption for each e>0
i

there exists an integer n such that izn implies g; and f; can be e-uniformized.
Hence, f; can be s-uniformized with a piece of g;.
COROLLARY 3. Let X be a contimum in Q with 65(X) = 0. There exists a se-
quence f;) of maps fi: I— Q such that Gmfy(I) = X and for each i,j=1,2,..
i

fiwj 1/i-uniformizes with f;.
Proof. Let g;) be a sequence of maps g,: I — Q such that limgyJ) = X. If
i

no subsequence of g;) satisfies the theorem then there exists £>0 such- that for
each sufficiently large 7 there exists j; such that g;4;, does not g-uniformize with g,.
Let f; = g;4;, for each sufficiently large i, Then Corollary 2 is violated.

TuEOREM 4. Let X< Q be a continuum. Then o*(X) = 0 if and only if for each
pair of sequences f;), g;) of mappings fi, g;: I— Q such that lirpfl(I) = lir?gi(I) =X
and each &> 0 there exists n such that for each i>n either f, e-uniformizes with a piece
of g; or g, e-uniformizes with a piece of f;.

Proof. The proof is similar to the proof of Theorem 1 and is omitted.

Davis [4] has proved that (o(X) = 0) = (g,(X) = 0). It would be very nice
to know whether Davis’ result extends to surjective span.

QuEstioN 1. Does (o*(X) = 0) = (¢5(X) = 0)?
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Question 2 [A. Lelek, problem 59, University of Houston Problem Book].
Does (c*(X) = 0) (resp. o3(X) = 0) = (o(X) = 0) (resp. (X)) = 0)?

3. A characterization of weak chainability. A finite sequence of sets
% = {Uy, ..., U,} is said to be a weak chain if U, ~ U, ,; % @ foreachi= 1, ey 1,
A weak chain ¥" = {V,, ..., V,,} is a refinement of a weak chain % = Uy, .., U}
and we write ¥" <, % if there exists a function

So{toomy - {1, ...}

such that for each i€ {1, ..., m} V,c Uy and forie {1, ...,m—1} S —=fG+ D)<,
We call f an admissible map of the weak chain ¥ to the weak chain %. A continuum
X is said to be weakly chainable if there exists a sequence %;, #%,, ... of open covers
of X which are weak chains such that the mesh of %; is less than 1/ and
Uiry <%, for each i=1,2, ..

TreoreM (Fearnley [6] and Lelek [15]). The continuum X is weakly chainable
if and only if X is the continuous image of the pseudo-arc.

DeFINITION. A continuum X is said to admit a uniformizable approximation
by arcs if there exists a sequence f;) of mappings f;: I — Q such that lim fi(J) = X

] 1

and for each #,j=1,2,... Si4y 1/i-uniformizes with a piece of i

THEOREM 5. 4 contimum X is weakly chainable if and only if X admits a uni-
Jormizable approximation by arcs.

Proof. (=) Suppose X is a weakly chainable continuum. Let Ty, Ty, ... be

a sequence of finite open coverings of ¥ (the members of T; are open in Q) such

that limmeshT; = 0. For each i let P, = {U,...,U}} be a weak chain in the
i

cover T; such that P; covers X and for each 7 there exists an admissible map 7; of
the weak chain P;,, to the weak chain P;. Choose xj-e U} for each i = 1,2, ..,
andj=1,...,n; such that {x}| i = 1,2, ... and j=1,...,n;} is in general position
in Q. Define f;: I-Q such thatf,(}—lj—l) = 3-“ forj=0,1,..,m~1 and f; is
-
JjooJj+1

linear on each interval of the form [———i, _1:| Then it is casy to see that f;)
n—1" n,—

gives a uniformizable approximation of X by arcs. Take a;: I — I to be the piecewise
linear map which is defined by

1 o
ai( J )=vl(1) 1 For

Nipg—1 -1 J= 1,...,111.;.1.
Then fiiq0a; = f; for each >0 and for each sufficiently large i
(<) Let f;) be a sequence of mappings Jit I— Q such that lim fiI) = X and
i

foreach i,/ =1, 2,... fix; 1/i-uniformizes with J;. It is easy to see that for each i
the Hausdorff distance from X to f{I) is no more than 1/1.

ey
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Let T;) be a sequence of finite open covers of X and J,) a sequence of positive
numbers such that-if for Ue T}

. 25,
U~ ={xeU|ldx, QO\U)>6;} and U*= {xe Ul dix, Q\U)>~?}

then
(1) meshT;,,<8,/3,
(2) {U™| UeT;} is an open cover for X,
(3) Ty, refines T5.
For each i we have

U{Ue T} CI(S(X, 5))>8(X,5)>U{Ue Tiny).
We may suppose without loss of generality that for each i
flheU{U™| UeT}.

By taking a subsequence of f;), we may assume that for each i=1,2,... fi4

uniformizes within 8;/3 with a piece of f;. )
Let 0 = ty<t;< ... <t, = 1 be such that f,([t,_, t;))cU; for some U;e T,
and for each i = 1,...,r. Then Py = {Uy,...,U,} is said to be a weak chain de-
r

termined by f; in 73. Then X <:i_U1 U;.

By hypothesis there exist piecewise linear mappings ay, b;: I — I such that
a, is onto and f,oay 5;—7-3]"1 oby. Let 0 =s,<s;<..<s, =1 be such that
by([s;-1, i) < [t),—4, 23] for some j;e {1,...,r}. Clearly, | j;—ji2 1] <1 for iE{l,-—.,ri_}-
Let P, = {V,, ..., V,,} where V; = Uy, for ie{l,...,r¢}. Then P, is a weak chain
determined by f; o b; in Ty. Then oy: {1, ..., 7} — {1, ..., r} defined by «,() = Jj;
is an admissible map of the weak chain P, to the weak chain P;.

Let0 = uy<u; < ... <u,, = 1 be such that for each ie {1, ..., r;}

Sooay (- g, w) <O
for some O;eT, and [u;—y, u;]<[s},~1, &) for some k;e{l,...,r}. Then P,
= {0y, ..., 0,,} is a weak chain determined by f, o ay in T,. If ie{l, ..., r;} and
-1, u <[sp,—1» S,] for some k;e{1,...,r} then
S(fz oy (-1, i) 51/3)‘:S(f1 o by ([sp—15 S.)) » 251/3)CS(VIZ’ 28,/3)=V,,.
Since 0,8 (fs o aq([ti—1, wil), 52/3) and 8,/3<8,/3, O,CV,“.. o
Define By {1,...,r2} = {1,...,rq} by B,(i) = k;. Then f, is an admls-s1.b1e
map of the weak chain P, in T, to the weak chain P, in T). The composition
71 = oy o fB; is an admissible map of the weak chain P, to the weak chain P;.
By assumption there exist piecewise linear mappings a,b: I—1 suc.h t!nat
a is onto and fyea =, f2ob. Since a;: I-» I there exist by the Uniformization
2 B
Theorem mappings b,,d: I— I such that d is onto and @;.b, = bod. Hence,

f3°a°dbﬁ3f2°bdd=f2°a1obl‘
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Let a, = a o d. Let P, be a weak chain determined by f, o @y o b, in T, and let P,
be a weak chain determined by f3 o a, in T, as above. The rest of the proof now
proceeds easily by induction as above.

COROLLARY 6. If X is a continuum with o5(X) = O then X is weakly chainable.

Proof. This follows from Corollary 3 and Theorem 5.

COROLLARY 7. If X is a homogeneous plane continuum then X is weally chainable.

Proof. By [22], either oo(X) = 0 or X is the union of two subcontinua A and B
such that go(4) = go(B) = 0.

QuESTION 3. Does (¢*(X) = 0) = X is weakly chainable?

4. Continua with zero surjective span. If X is a continuum we let C(X) denote
the space of subcontinua of X with the Hausdorff metric. If f: X~ Y'is a mapping
of continua we say f is weakly confluent if Ke C(Y) implies there exists L e C(X)
such that f(L) = K. We say Y e class Wif f: X — Y is weakly confluent whenever f
is any map of a continuum onto Y.

Davis [4] defined the notion of symmetric span zero which is weaker than
span zero. He proved that continua with symmetric span zero are in class W. We
prove a similar result for surjective span. It is known [4] that the dyadic solenoid
has span positive but symmetric span zero. Since the dyadic solenoid is not the
continuous image of the pseudo-arc by Fort [7] it follows that Corollary 6 fails for
continua with symmetric span zero.

TuEOREM 8. If X is a continuum with ¢*(X) = 0 then X e class W.

Proof. If X ¢ class W there exists (see Nadler [21]) a Whitney map u: C(X)— R,
(i.e. (A¢B in C(X)) = (u(A)<u(B) and p({x})=0 for all xe X), 1, e u(C(X))
and 4 a continuum in x"*(¢,) such that U4 = X and 4 5 u~1(t,) (see [L0]). Since
4~ t,) is a continuum (see [21]) there exist 4, Bepu~*(t,)\A4 with 4 # B. Since
A,Bepu *(t,) A#B and B& 4 so there exist x € ANB and y € B\A4. By [21], 14.8.1
there exists a continuum A, in u~*(z,) such that 4 e 4,, Ac4,, A\A4 is homeo~
morphic to [0, 1) and B¢ A,. (Take Ce 4 such that xe C. Let % be an arc in
1 Y(t,) such that xe K for each Ke % and 4, Ce Z. Let A, be irreducible in
A v £ with respect to containing A and A). Similarly, there exists a continnum
A, in p7(to) such that Be 4,, AcA,, A;N\4 is homeomorphic to [0, 1)and 4 ¢ A,.

As in the proof of [10], Theorem 3.2 there exists a continuum ¥ and a mapping
f1 ¥ X such that A4, =f(C(Y)) but B¢ f(C(Y)). Let M be the mapping cylinder
of f and let ¢: ¥xI— M, be the natural projection, i.e. o|¥x(0,1] is
homeomorphism onto ¢ (¥'x(0, 1]) and ¢|¥x {0} = f where ¥ is identified with
Yx{0}. For each i = 1,2, ... let 4; [see J. Grispolakis and E. D, Tymchatyn,
Continua which admit only certain classes of onto mappings, Top. Proc. 3 (1978),
347-362, Theorem 3.5] be a ray compactified by ¥; = @(¥x{1/i}) such that if
i [0, 00) =» A, is a homeomorphism then lim C (fy([n, 00))) = C(¥)). Let m;<n

n

be integers such that every subcontinuum of #y[m;, n,]) is within a Hausdorff
distance 1/i of some subcontinuum of ¥; and every subcontinuum of ¥; is within
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a Hausdorff distance 1/i of some subcontinuum of ¥; and every subcontinuum
of Y; is within a Hausdorff distance 1/i of hy([m;, n;]). Then hj[m;, n] are maps
such that limh([m;, n;])) = X and lmC (h,([m;, n;])) = f(C(T)). So

i i

A e limC(([m;, nl))= C(XIN{B} .

Similarly, there exist mappings g;) g;: - Q such that limg,(I) = X and
BelimC(gI)=C(X)\N{4].

Now if ¢ is sufficiently small then for sufficiently large i /; does not &-uniformize
with a piece of g; and vice versa. This is so because 1([m;, n;]) (resp. g(I)) contains
continua which are close in the sense of Hausdorff distance to A4 (resp. B) and g (/)
(resp. N[m;, n;])) does not. If i, were to g-uniformize with a piece of g; then
gi(1) would have to contain continua arbitrarily close to A.

Lelek [16] has proved that if ¢(X)= 0then X is atriodic and tree-like. Davis [4]
has shown that (6(X) = 0) = (0,(X) = 0). We obtain Lelek’s result under the
weaker hypothesis a§(X) = 0.

THEOREM 9. Let X< Q be a contimum. If 6§{X) = 0 then X is tree-like.

Proof. Since X e class W by Theorem 8 and X is weakly chainable by Corol-
lary 6 every subcontinuum of X is weakly chainable. Since the unit disk in the plane
contains subcontinua which are not weakly chainable (see Fort [7]) X admits no
weakly confluent map onto a plane disk. By Mazurkiewicz [18] dimX = 1. To
prove that X is tree-like it suffices by a theorem of Krasinkiewicz ([12], Theorem 3.1)
to prove X admits no essential mapping onto the unit circle S*.

Just suppose g: X — S* is an essential mapping. Let f: P — X be a mapping
of the pseudo-arc onto X. Let /: [0, o) = O\P be a homeomorphism such that
CI(h([0, w0))) = ([0, c0)) U P = P*. Then P* is clearly a chainable continuum. .
Define an upper semi-continuous equivalence relation ~ on P* by x~y in P* if
x =yporx,yeP and f(x) = f{y). Let f*: P¥ - X* = P*/~ be the identification
map. Let g¥: X* — S* be a continuous extension of g. Such an extension exists
since dimX* = 1 and S* is an ANR (see Hu [11], p. 172).

Now, g* o f*: P¥ — S is an inesséntial map so there exists a lifting ¢: P* —» R
of g* o f* to the universal covering space R of S*. Let n,<#n,< ... be integers such
thatif B;= f* o h([n;, n;4]) then limB;= X. For each i g*|B;is inessential since B;

is an arc. For each 7, let Y, = ¢ o (f*| 1{[ny ny44))) "t B;~ R. Then for each i v, is
a lifting of g*|B; and ¥ (B;)=@(P*), a compact set.

Let U be an open neighbourhood of X* in Q such that g* admits a continuous
extension g': U— S!. By Grispolakis [8] there exists a sequence S;) of simple
closed curves in U such that ¢'|S; is essential for each / and lmsupS;=X. For

each 7 let p,e S; and let f;: (I, I) = (S;, p;) be a relative homeomorphism. If #;:
I— R is a lifting of g’ o f; then diameter n,(I)>1 for each i. For each i let C; be
a simple closed curve in U such that p;e C; and C; admits a 1/i-local homeo-


GUEST


166 L.G. Oversteegen and E.D. Tymchatyn

morphism /; onto S, with the cardinality of R (py) equal to i I /72 (1, Iy = (C,,p)
is a relative homeomorphism and #}: I — R is a lifting of ¢’ o f{ then lim diameter
i

() =

For small e>0 and large i the map f; does not e-uniformize with f* o Afln;, n;4,]
since the liftings ¥; to R of g’ of* o hl|[n;, ny4] are bounded and the liftings "
of g’ of; are unbounded. This contradicts Theorem 1 and completes the proof of
the theorem. '

TugoreM 10. If X is @ continuum with o§(X) = 0 then X is atriodic.

Proof. Just suppose X contains a triod X,. Then there exist continua 4, B,
C, M suchthat X, =AduBuCand M =AnB=4nC=BnC# X, Let
de M, ae ANM, be B\M and ce C\M. We may suppose d({a,b, ¢}, M)23.

For each positive integer i define f;: I — S(Xp, 1/i) such that

S@, 1) k=1,

[6i+k\ S, 1) i k=3,

fi<7>e Se 1) fk=5,
S@, 1) if k=0,2,4,6,

6/ 6/+2
fi(l:a,——&-‘:l) S(4,1/i),
6j+2 6j+4 .

f([ 2 Y Dcsw,uz),

G4 66T\ | ,
f([ TERA? })CS(Q 1/i)
for j = 0,1, ...,i—1. Then it is easy to see that for each sufficiently large 7 f; does
not g-uniformize with f;.; for j>1 where
¢ = {min{d(a, b), d(a, ¢), d(b, c)} .
In fact f; can g-uniformize with f;, ;]I where L is a subarc of I of length at most
6i+4
6G+)) "
Let g;) be a sequence of mappings g;: I — Q such that limg(J) =
i

and

X. By the

proof of Corollary 3 there exists an integer n such that for each i>n f,; fe-uni-
formizes with a piece of g; for each j>1i. Hence, there exists a subinterval J of I and
integers k>j>1 such that f;,, and fj,, each }e-uniformize with f}|J. Hence (see
[20]), fi+; and fi.; e-uniformize. This is a contradiction. Hence, X is atriodic.

COROLLARY 11. If X is a contimuum with o§(X) = 0 then every subcontinuum
of X is atriodic, tree-like and weakly chainable.

‘We note some other conditions which imply that a space is atriodic and tree-like.

THEOREM 12. If X is a weakly chainable contimuum such that every subcontinuum
of X is in class- W then X is atriodic and tree-like.
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Proof. As in the proof of Theorem 9, X is one dimensional. It is well known
(see [21], 14.73.18 and [10]) that a continuum in class W is not a triod. It follows
by [24], 2.4 that no subcontinuum of X" admits an essential mapping to any graph.
By a theorem of Case and Chamberlin [2] X is tree-like.

COROLLARY 13, Every hereditarily indecomposable and weakly chainable con-
tinuum is tree-like.

Proof. It is a result of Cook [3] that every hereditarily indecomposable con-
tinuum is in class W.

THEOREM 14. Let X be a contimmum with ¢*(X) = 0. Then dimX<1.

Proof. If dim X> 1 then there exists an essential map ¢ of X onto the disk 12,
By [18] o is weakly confluent. Let 4" and B’ be two disjoint copies of the spiral

S = {1, 0] 0<0<2n} U {K1+1/8, 0] 81}

in the disk I? (where <{r, @) denotes the polar coordinates of a point in the plane).
Let A and B be continua in X such that 0(4) = 4’ and ¢(B) = B’. Define p: S— S*
by p({r, 8)) = <1, 0). By abuse of notation let p also denote each of the natural
projections of 4’ = S and B’ =+ S*. By [Tl poo|d: 4 - S' and p o ¢|B: B—>S*
are essential maps.

Let ¥y, ¥, ... be a sequence of finite open covers of X such that mesh ¥;<1/j
for each j. Let ao e A and let b, € B. We may suppose that for each j o, b € N*(V))

and that X' u U N 1(VJ) is a continuum in Q. (By N'(¥)) is meant the 1-di-

Jj=
menswnal skeleton of the nerve N(¥)) of V).

Let H be the figure eight graph,ie. H is the wedge of two disjoint circles.
Define h: AuB— H such that h|Bs, hlddx and A(4) nh(B) = {h(ay)}
= {h(bo)}. By Hu [11], p.172 / can be extended to a map (which we again denote
by h) of Uu N¥(Vy) u NYV,) u ... to H where U is a small compact neighbour-
hood of 4 LU B in Q.

For each j let U; = {Ve Vj| ¥V n (4 v B) # &}. By Marde§i¢ and Segal [17]
for each sufficiently large J hIN(U)dk«. Since H is one dimensional RINY(U;) k%
for each sufficiently large j. (Otherwise, 2 could be extended one simplex at a time
to be inessential on N'(U)), the nerve of U}). For sufficiently large / there exjst disjoint
simple closed curves C;, DyeN ‘(UJ) such that h|C;de, h|D;d*, C; is contained
in a small neighbourhood of 4 and D, is contained in a small neighbourhood of B.
(Since 7|4 4 * there exists a minimal subcontinuum C; of N Y(U;) in a small neigh-
bourhood of 4 such that h|C;4:+. Since NY(Uj) is a graph C; is a simple closed
curve). We may suppose i was chosen such that A(C;) N A(Dy) = h(do).

Let (P, ) be the universal covering space of H. Then P is an infinite tree. Let
zp e n " (h(ao)). We may suppose P and H are metrized so that x, y € P with (x)
= n(y) implies d(x, ») is an integer and = is a Jocal isometry of P onto H.

For each j let f;: T—» NV, ) be a map such that {0) = ay and f(1) = b,
Let ¢;: 7 — P be the lifting of /o f; such that ¢0) = z,. Let diameter o D<N;
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where N, is an integer. Let hj: S — NY(U,)) and kj: S*— N'(U)) be maps such
that #{(1) = ag, kj(1) = by and /1j and kj are homotopic to (N;+1)-fold covering
maps of §! onto C; and D, respectively. Define hy ke I~ NY(¥) by

Ly o [ for 0<i<,
D =1 f@e=1)  for gxi<l

o) = {]’1(21). for 0<1<],

J kie*™  for i<1<1.
It is casy to see that if y;: I > P is a lifting of hohyand £t T > Pis a lifting
of ok; then W10, 3D =S (&), €) or &([E, IDeSWLI), &) implies e>1. ‘
Now, hy); and k;); are sequences of mappings of I to O such that Iijrn/lj(f y=X

= limk(I). Ifa: T -+ [isa mapping then ;o a is a lifting of &t o ; o & to P. Further-
i

more, every lifting of hoh;oa to P is W;ea followed by a deck transformation
of P. Let 5>0 be such that x, ye U with d(x, ) <8 then d(h(x), h(y))<%. For
large j h; does not 5-uniformize with a piece of k; and k; does not §-uniformize
with a piece of k;.

5. On span of weakly chainable continua. Much of the work in this paper
has been motivated by the following: ‘

QuEsTIoN 4 [A. Lelek, problem 81-82, University of Houston Problem Book].
Is (63(X) = 0) <> X is chainable? .

QUESTION 5. Among atriodic tree-like continua are the following two notions
equivalent?

1) o5 =0, 2) weak chainability.

1t is obvious that chainable continua are weakly chainable. Lelek [14] proved
that chainable continua have o = 0.

In Corollary 6 we proved that 1) = 2). In the next theorem we extend the
main result in [23] to show that under certain additional conditions 2) = 1).

The proof is a simplified version of the proof of 2.1 in [23].

THEOREM 15. If X is a weakly chainable continuum such that X € class W and
0o(Y) = 0 for each proper subcontimum Y of X then oo(X) = 0.

Proof. Let X =1im(X,,/;) and let the pseudo-arcP = lim(l,, g;) where
the X,’s are polyhedra, the I,’s are arcs and f;’ and gy are onto mappings. Suppose
that the map ¢: P — X is weakly induced (see Mioduszewski [19]) by the sequence
,) of mappings ¢@,: I, - X, with respect to the sequence ¢,) of positive numbers

such that lime, = 0. We may assume no proper subcontinuum of P maps onto X
p
under o.

Just suppose o5(X)>0. There exist >0, a continuum C and mappings &, k:
C — X such that A(C) = X and d(k(c), k(c))>n for each c e C. We may assume
that k(K) # X for each proper subcontinuum X of C. Moreover, we may assume
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that d(f; = h(c), f; o k(c))>7 for each ce C where f;: X — X, denotes the ith co-
ordinate projection. Choose 7 a positive integer so that 10g, <.

Let P* = lil_n(I;f , g’;ll,ﬁ) be a proper subcontinuum of P such that 9.(P*) = I,
(g,: P — I, is the pth coordinate projection). We may assume the maps g'p) were
chosen so that such P* always exists. Set Y; = @(P*). Then ¥, is a proper sub-
continuum of X. Since X is in class W there exists a proper subcontinuum C* of C
such that A(C*) = ¥,. Set k(C*) = Y,. Then Y, is also a proper subcontinuum
of X. Note that

¥y =Tm (f(¥), 1 FD)
for i=1,2. Since XeclassW there exists a continuum P = lim(1,, g"[f,) <P
such that ¢(P) = 7,. -
Since the map ¢ is almost induced and ¢(¥;) = 0 for i = 1,2 there exists
an integer w>n, an arc 4 (see [22], 2.4) approximating C* and mappings
hyt 4~ f(Yy) and k,: 4 — f(Y,) (approximating f, o & and f, ok respectively)

such that
() d(f1 o hy(t), f1 o ku(£))>n
for each te 4 and

f;’°‘P:x°g;|‘ ﬁf;.°(pn-

« gh
L=} €—————— It .

on|I¥ &n .1 1¥ a
A i
X; : X £ ?u(l;tk) . By
\ /
by
A b,
P ku
1 o
X Xn nen) B,
oulf, & oulf,

oL, =———— |,

Let 6>0 such that d(x, y)<é in X, implies d(fi(x),/1(»))<e,. Since cr;,(Y 1)
=0 and limo,J) = ¥; = limn(A4), for sufficiently large u the mappings
Q¥ IF - o1 and h,: A —f(Y;) may be §-uniformized by Corollary 2.
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Hence, there exists an arc B; and mappings a,: By I¥ and b,: By — A such that

(%%) @y o0y = hyoby.

Similarly, for sufficiently large u there exists an arc B, and mappings a,: B, -1,
andb,: B, —+ By such that
@uoay 7 kyobyobs.

By (%)
Quodyoby 5 hyobyoby.

Hence

flo@uooyioby = Sioh,obyob,
and

flopuoty = ftokyobyoby.
Also
Slo®, = fio@uogn
and hence
flo@yognoaioby = ftohyobyoby

and
5 fi'D(Pnngcazzfnfilaku‘?bﬂbz-

Since the map g'ed;eby: By~ Iy =1I, is onto and gyody: By 1<l
there exists o€ B, such that g% a; o by(te) = g" o ay(to). Hence by (%)

d(ft ohyoby oby(te)f1okyobyo Batto))<4e,<7 .
This contradicts (x) and the proof is complete.

Notice that Theorem 15 gives another proof that the atriodic tree-like continuum
described by W. T. Ingram (Fund. Math. 77 (1972), pp. 99-107) is not weakly
chainable since it has positive span and its proper subcontinua are arcs.

‘We may restate Theorem 15 as follows:

COROLLARY 16. If X is a weakly chainable tree-like continuum and oo(Y) =0
for each proper subcontinuum Y of X then ao(X) = 0.

Proof. The condition ao(Y) = 0 for each proper subcontinuum of X implies
by Theorem 9 that X is atriodic for if X were a triod it would contain a proper
subcontinuum which is also a triod. By [9] X eclass W so Theorem 15 applies.

The condition that X be tree-like in Corollary 16 is necessary as may be seen
by considering the simple closed curve.

Theorem 15 may be strengthened in the following way:

THEOREM 17. If X is a weakly chainable continuum in class W such that there
exist continua Y, in X with imY, = X and oo(Y;) = O for each i then oo(X)

— sup{oo(@) Ze COONXIY.
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Proof. In the proof of Theorem 15 we may choose P* and Y, with the ad- '
ditional requirement that oo(Y;) = 0. The rest of the proof is now a relatively
straightforward modification of the proof of Theorem 15.

Note. Theorem 15 may be compared with the following result [see 22, proof
of Theorem 3.6]: If X is a homogeneous hereditarily indecomposable continuum
such that the semi-span of all proper subcontinua is zero, then go(X) = 0.

6. Decomposition and union theorems. Propositions 20-22 in this section are
stated for not necessarily metric continuva.

Let Y be a (not necessarily metric) continuum (i.e. Y is a compact connected
HausdorfT space). Then the semi-span 64(Y) of ¥ is zero if for every continuum
ZeYx Y such that n,(2)27,(Z), Zn AY # @.

A mapping f: X = Y of (not necessarily metric) continua is monotone if f 6]
is connected for each ye Y.

We are interested in obtaining some converses to the following well-known
theorem:

THEOREM. If f: X — Y is a monotone mapping of (not necessarily metric) con-
tinua and o*(X) = 0 (resp. o5(X) = 0) then o*(¥) = 0 (resp. o5(Y) = 0).

Proof. Continua in ¥x YNAY pull back under fxf to continua in X x X\dX.

We say a continuum X is a strongly terminal subcontinuum of a (not necessarily
metric) continuum Y if X< ¥ and if B, C continua in Y such that B # B\X # @
# O\X % C then B C or Cc<B. For example, if ¥ is hereditarily indecomposable
every subcontinuum of ¥ is strongly terminal.

The proofs of the next two propositions are similar to that of Proposition 20
and are omitted.

ProOPOSITION 18. Let X< Y be metric continua and let £>0 be such that X is
a strongly terminal continuum in Y, oo(X)<e and oo(Y/X) = 0. Then oo(Y)<e.

PROPOSITION 19. Let X< Y be metric continua and let £>0 be such that X is
strongly terminal in Y, os(X)<e and oo(Y/X) = 0. Then oy <e.

ProposITION 20. Let Xy, ..., X, be pairwise disjoint strongly terminal sub-
continug of a (not necessarily metric) continum Y such that ool YH{XNi=1) =0 and
ao(X)) = 0 for each i =1, ..., n. Then oo(¥) = 0.

Proof. The proof is by induction on n. We will first consider the case n = 1.
Put X, = X. Suppose Z is a subcontinuum of ¥x ¥ such that 7,(Z)>n,(Z) and
ZnAY =@ Then Z¢ X% X and Z n (Xx X) # @ since go(X) = oo(Y]X) = 0.
‘We may suppose without loss of generality that (Z) =Y.

Let U,),s be 2 directed family of closed neighbourhoods of X such that
X= () U,. Hence for every o, f € 4 there exists a y € 4 such that XeU,c U, 0 Up.

aed

Let (%, Yo) € Z N (Xx X). For each o€ A let Z, denote the component of (x,, Yo)
in Zn (Cl{U)xCIU,). By the Boundary Bumping Theorem either 7,(Z,) N
A BA(U,) # @ or my(Z,) nBd(U,) # @. Hence there exists a cofinal subset A’
of A such that either 7,(Z,) n Bd(U,) # @ or ny(Z) N BA(U,) ¢ O for allae 4.

5 — Fundamenta Mathematicae CXXII/2
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Without loss of generality we may suppose 7,(Z,) n Bd(U,) # @ for all ue 4.

For each «, f e 4 such that U, U, let . U = U, denote the inclusion. Let Z,

= lim{Z,, % Z,}, then Z, is a continuum and Z,~ (| Z,c X x X. Since Bd(U,) n
. aed

N my(Z,) # @ and X is strongly terminal in Y, n,(Z,)> X for each o e A. Hence
(Zy) = Xomy(Z,) and oy(X) 5 0. This is a contradiction.

The proposition now follows easily from induction on n.

LemMMA 21. Suppose Y = lim{X,,f’} is an inverse system of continua and
a(X,) =0 for each o. Then o(Y) = 0.

Proof. We may suppose that each £ is an onto map. Suppose Ze ¥Yx Y is
a continuum such that 7,(Z)>n,(Z) and Zn 4Y = @. Now,

Y Y = lim{X, x X,./f %11}

Since Y'x Y is compact and Z and AY are disjoint closed subscts of ¥Yx ¥
there exists an « such that

AX, N} JLZ) = [ x[AAY) 0 fux JAZ) = @

where f,; Y — X, is the coordinate projection. This contradicts the assumption
that o(X,) = 0.

ProrosiTION 22, Suppose f: X — Y is a monotone map of continua such that

Jor each open cover U of X there exist only finitely many y e Y with =% W& U for

any Ue . Suppose also that if y € Y such that f~'()) is non-degenerate then f=(y)

is a strongly terminal subcontinuum of X with o(f™'(3)) = 0. If ¢(¥) = 0 then
o(X) = 0. _

Proof. Let 4 = {ye Y|f'(p) is non-degenerate}. Let & denote the family

of finite subsets of A4 partially ordered under inclusion. For each Fe % let

XF = X{f7 0}lyene If F, GeF with F=G there exists a natural projection

0% X Xp. By Proposition 20 ¢(Xz) = 0 for each Fe % and it is easy to
see that

X~ lim {Xp, o7} .
Hence, the proposition follows by Lemma 21.

QuUEsTION 6. If fi X = Y is a monotone map of atriodic continua such that
a(Y)=0o(f"H) =0 for each ye Y, ihen is ¢(X) = 07

Question 6 is related to Problem 105 (due to H. Cook and J. B. Fugate) in the
University of Houston Problem Book, where in each case span zero was replaced
by chainability.

Recall now the following result of Duda and Kell [5]:

THEOREM (Duda and Kell [5]). Let X = AU B be an atriodic continuum. If

A and B are continua such that A N B is connected and ao(Ad) = 0o(B) = 0 then
go(X) = 0.
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PROPOSITION 23. Let X be u subcontinuum of the atriodic continuum Y. If
oo(Y/X) = 6o{X) =0 and ¥ = A U B where A and B are continua with X = A ~ B
then -oo(Y) = 0.

Proof. Let A* = CI(A\X) and X* = A* n X. Now go(4A*/X*) = 0 since
A*/X* is the monotone image of Y/X. By Proposition 18 a4(A*) = 0. By the Duda
and Kell result oy(4) = oo(4* U X) = 0. Similarly, o6,(B) = 0. Applying the
Duda and Kell result again we get ao(Y) = 0.

It is unclear whether the proof of Duda and Kell can be extended to the case
og(d) = 0 = o§(B). Tt is sometimes useful to know that a continuum X with
oa(X) = 0 can be embedded as a proper subcontinuum of a continuum ¥ with
oY) = 0.

PROPOSITION 24. If X is a continuum with ¢*(X) = 0 (vesp. oa(X) = 0) and
Y is a compactification of a half line by X such that YNX is dense in Y then ¢*(Y)
= 0 (resp. og(Y) = 0).

We do the proof for the case o*(X) = 0. The other case follows from Prop-
osition 19.

Proof. Identify Y\X with [0, e0). For xe[0, o0) let ¥, = ¥\[0, x).

Suppose L is a continuum in Y'x YNAY such that n(L) = ¥ where 4Y de-
notes the diagonal of Y and =;: ¥'x ¥ — Y is the ith coordinate projection. There
is a component Z, = L of (¥, x ¥;) n L which meets both {0} x Y, and ¥,x {0}.

By induction there exists for each positive integer n a component Z, of
(Y, xY,)nZ,_, such that n(Z,) =7, for i=1,2. Then Z = ﬂ Z, i3 a con-

n=0
tinnum in L n X' x X such that n(Z) = X for i = 1,2 and Z misses the diagonal
of X. This contradicts the assumption that ¢*(X) = 0.

PROPOSITION 25. Let X be a continuum with 6g(X) = 0. Let A and B be com-
pactifications of half lines by X such that ANX and B\X are dense in A and B
respectively and A n B = X. Then o3(A U B) = 0.

The proof uses Proposition 24 and iy similar to that given by Duda and Kell
[5], 3.2.
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On d-paracompactness and related properties
by

J. Chaber (Warszawa)

Abstract. We give a simple definition of d-paracompact spaces and use it in order to prove
that the following classes of spaces are preserved by perfect mappings: the class of perfect preimages
of metacompact (metalindelsf) Moore spaces and the class of spaces which, for an arbitrary open
cover %, admit a perfect % -mapping onto a Moore space. These results were announced in [Ché]
and it was shown there that the class of perfect preimages of Moore spaces is not preserved by
perfect mappings. ’

A method of constructing mappings onto developable spaces has been in-
troduced in [P]. This method uses the concept of d-paracompact spaces. The
definition of d-paracompactness in [P] is very technical. A simpler but still technical
concept of a kernel-normal sequence of open covers has been introduced in [Br].

In the first section of this paper we give a simple definition of d-paracompactness
which is analogous to certain characterizations of paracompactness and sub-
paracompactness. We also define related concepts of d-regularity, d-normality
and collectionwise d-normality. All these properties are weaker than developability
(= d-metrizability). We prove that our definition of d-paracompactness is equiv-
alent to the one given in [P] and show some simple facts about related concepts
which are useful in further investigations of d-paracompactness.

In the second section we prove that, in the class of metacompact (metalindeldf)
spaces, d-paracompactness shows some analogies with the weaker concept of
subparacompactness. In particular, it is preserved (in both directions) by perfect
mappings and, consequently, the class of perfect preimages of metacompact
(metalindelsf) Moore spaces is preserved by perfect mappings (this solves Prob-
lem 3.1 of [Ch5]).

The third section is devoted to the investigation of the preservation of
d-paracompactness by perfect mappings. We give a method of constructing perfect
mappings from spaces which are not d-normal (d-normal but not d-paracompact)
onto Moore spaces. According to the results of the second section, such Moore
spaces cannot be metalindelof. We prove that perfect images of d-paracompact
p-spaces are d-paracompact p-spaces. This shows that the property of having,
for an arbitrary open cover %, a perfect % -mapping onto a Moore space is an
invariant of perfect mappings.
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